1
|
Isaksson LJ, Mastroleo F, Vincini MG, Marvaso G, Zaffaroni M, Gola M, Mazzola GC, Bergamaschi L, Gaito S, Alongi F, Doyen J, Fossati P, Haustermans K, Høyer M, Langendijk JA, Matute R, Orlandi E, Schwarz M, Troost EGC, Vondracek V, La Torre D, Curigliano G, Petralia G, Orecchia R, Alterio D, Jereczek-Fossa BA. The emerging role of Artificial Intelligence in proton therapy: A review. Crit Rev Oncol Hematol 2024; 204:104485. [PMID: 39233128 DOI: 10.1016/j.critrevonc.2024.104485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/25/2024] [Indexed: 09/06/2024] Open
Abstract
Artificial intelligence (AI) has made a tremendous impact in the space of healthcare, and proton therapy is not an exception. Proton therapy has witnessed growing popularity in oncology over recent decades, and researchers are increasingly looking to develop AI and machine learning tools to aid in various steps of the treatment planning and delivery processes. This review delves into the emergent role of AI in proton therapy, evaluating its development, advantages, intended clinical contexts, and areas of application. Through the analysis of 76 studies, we aim to underscore the importance of AI applications in advancing proton therapy and to highlight their prospective influence on clinical practices.
Collapse
Affiliation(s)
- Lars Johannes Isaksson
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy
| | - Federico Mastroleo
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy
| | - Maria Giulia Vincini
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy.
| | - Giulia Marvaso
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy.
| | - Mattia Zaffaroni
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Michał Gola
- Department of Human Histology and Embryology, Collegium Medicum, School of Medicine, University of Warmia and Mazury, Olsztyn 10-082, Poland
| | - Giovanni Carlo Mazzola
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Luca Bergamaschi
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Simona Gaito
- Proton Clinical Outcomes Unit, The Christie NHS Proton Beam Therapy Centre, Manchester M20 4BX, UK; Division of Clinical Cancer Science, School of Medical Sciences, The University of Manchester Manchester M13 9PL, UK
| | - Filippo Alongi
- Department of Advanced Radiation Oncology, IRCCS Sacro Cuore Don Calabria, 37024 Negrar-Verona, Italy & DSMC, University of Brescia, Brescia, Italy
| | - Jerome Doyen
- Centre Antoine-Lacassagne, University of Côte d'Azur, Nice 06189, France; University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Centre Antoine Lacassagne, Institute for Research on Cancer and Aging of Nice (IRCAN), 06189 Nice, France, Centre Antoine Lacassagne, Nice 06189, France
| | - Piero Fossati
- EBG MedAustron GmbH, Marie-Curie-Str. 5, Wiener Neustadt 2700, Austria; Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, 3500, Austria
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Morten Høyer
- Aarhus University (AU), Nordre Ringgade 1, Aarhus C 8000, Denmark
| | - Johannes Albertus Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Raùl Matute
- Centro de Protonterapia Quironsalud, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy; Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Marco Schwarz
- Radiation Oncology Department, University of Washington, Seattle, WA 98109, USA
| | - Esther G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01309, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany, and Helmholtz Association/Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01307, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01309, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden 01328, Germany
| | - Vladimir Vondracek
- Proton Therapy Centre Czech, Prague, Czech Republic and Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University Prague, Kladno, Czech Republic
| | - Davide La Torre
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy; SKEMA Business School, Université Côte d'Azur, Sophia Antipolis, France
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan 20141, Italy
| | - Giuseppe Petralia
- Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy; Division of Radiology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Daniela Alterio
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Barbara Alicja Jereczek-Fossa
- Division of Radiation Oncology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan 20141, Italy
| |
Collapse
|
2
|
Villegas F, Dal Bello R, Alvarez-Andres E, Dhont J, Janssen T, Milan L, Robert C, Salagean GAM, Tejedor N, Trnková P, Fusella M, Placidi L, Cusumano D. Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy. Radiother Oncol 2024; 198:110387. [PMID: 38885905 DOI: 10.1016/j.radonc.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi-modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
Collapse
Affiliation(s)
- Fernanda Villegas
- Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden; Radiotherapy Physics and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Emilie Alvarez-Andres
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jennifer Dhont
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Institut Jules Bordet, Department of Medical Physics, Brussels, Belgium; Université Libre De Bruxelles (ULB), Radiophysics and MRI Physics Laboratory, Brussels, Belgium
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Milan
- Medical Physics Unit, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Charlotte Robert
- UMR 1030 Molecular Radiotherapy and Therapeutic Innovations, ImmunoRadAI, Paris-Saclay University, Institut Gustave Roussy, Inserm, Villejuif, France; Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ghizela-Ana-Maria Salagean
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania; Department of Radiation Oncology, TopMed Medical Centre, Targu Mures, Romania
| | - Natalia Tejedor
- Department of Medical Physics and Radiation Protection, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Petra Trnková
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy.
| | - Davide Cusumano
- Mater Olbia Hospital, Strada Statale Orientale Sarda 125, Olbia, Sassari, Italy
| |
Collapse
|
3
|
Güllmar D, Hsu WC, Reichenbach JR. Predicting disease-related MRI patterns of multiple sclerosis through GAN-based image editing. Z Med Phys 2024; 34:318-329. [PMID: 38143166 PMCID: PMC11156773 DOI: 10.1016/j.zemedi.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a complex neurodegenerative disorder that affects the brain and spinal cord. In this study, we applied a deep learning-based approach using the StyleGAN model to explore patterns related to MS and predict disease progression in magnetic resonance images (MRI). METHODS We trained the StyleGAN model unsupervised using T1-weighted GRE MR images and diffusion-based ADC maps of MS patients and healthy controls. We then used the trained model to resample MR images from real input data and modified them by manipulations in the latent space to simulate MS progression. We analyzed the resulting simulation-related patterns mimicking disease progression by comparing the intensity profiles of the original and manipulated images and determined the brain parenchymal fraction (BPF). RESULTS Our results show that MS progression can be simulated by manipulating MR images in the latent space, as evidenced by brain volume loss on both T1-weighted and ADC maps and increasing lesion extent on ADC maps. CONCLUSION Overall, this study demonstrates the potential of the StyleGAN model in medical imaging to study image markers and to shed more light on the relationship between brain atrophy and MS progression through corresponding manipulations in the latent space.
Collapse
Affiliation(s)
- Daniel Güllmar
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Jena 07743, Germany; Michael Stifel Center for Data-Driven and Simulation Science, Jena 07743, Germany.
| | - Wei-Chan Hsu
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Jena 07743, Germany; Michael Stifel Center for Data-Driven and Simulation Science, Jena 07743, Germany
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute for Diagnostic and Interventional Radiology, University Hospital Jena, Jena 07743, Germany; Michael Stifel Center for Data-Driven and Simulation Science, Jena 07743, Germany
| |
Collapse
|
4
|
Sherwani MK, Gopalakrishnan S. A systematic literature review: deep learning techniques for synthetic medical image generation and their applications in radiotherapy. FRONTIERS IN RADIOLOGY 2024; 4:1385742. [PMID: 38601888 PMCID: PMC11004271 DOI: 10.3389/fradi.2024.1385742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
The aim of this systematic review is to determine whether Deep Learning (DL) algorithms can provide a clinically feasible alternative to classic algorithms for synthetic Computer Tomography (sCT). The following categories are presented in this study: ∙ MR-based treatment planning and synthetic CT generation techniques. ∙ Generation of synthetic CT images based on Cone Beam CT images. ∙ Low-dose CT to High-dose CT generation. ∙ Attenuation correction for PET images. To perform appropriate database searches, we reviewed journal articles published between January 2018 and June 2023. Current methodology, study strategies, and results with relevant clinical applications were analyzed as we outlined the state-of-the-art of deep learning based approaches to inter-modality and intra-modality image synthesis. This was accomplished by contrasting the provided methodologies with traditional research approaches. The key contributions of each category were highlighted, specific challenges were identified, and accomplishments were summarized. As a final step, the statistics of all the cited works from various aspects were analyzed, which revealed that DL-based sCTs have achieved considerable popularity, while also showing the potential of this technology. In order to assess the clinical readiness of the presented methods, we examined the current status of DL-based sCT generation.
Collapse
Affiliation(s)
- Moiz Khan Sherwani
- Section for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
5
|
Zhang D, Wang C, Chen T, Chen W, Shen Y. Scalable Swin Transformer network for brain tumor segmentation from incomplete MRI modalities. Artif Intell Med 2024; 149:102788. [PMID: 38462288 DOI: 10.1016/j.artmed.2024.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Deep learning methods have shown great potential in processing multi-modal Magnetic Resonance Imaging (MRI) data, enabling improved accuracy in brain tumor segmentation. However, the performance of these methods can suffer when dealing with incomplete modalities, which is a common issue in clinical practice. Existing solutions, such as missing modality synthesis, knowledge distillation, and architecture-based methods, suffer from drawbacks such as long training times, high model complexity, and poor scalability. METHOD This paper proposes IMS2Trans, a novel lightweight scalable Swin Transformer network by utilizing a single encoder to extract latent feature maps from all available modalities. This unified feature extraction process enables efficient information sharing and fusion among the modalities, resulting in efficiency without compromising segmentation performance even in the presence of missing modalities. RESULTS Two datasets, BraTS 2018 and BraTS 2020, containing incomplete modalities for brain tumor segmentation are evaluated against popular benchmarks. On the BraTS 2018 dataset, our model achieved higher average Dice similarity coefficient (DSC) scores for the whole tumor, tumor core, and enhancing tumor regions (86.57, 75.67, and 58.28, respectively), in comparison with a state-of-the-art model, i.e. mmFormer (86.45, 75.51, and 57.79, respectively). Similarly, on the BraTS 2020 dataset, our model scored higher DSC scores in these three brain tumor regions (87.33, 79.09, and 62.11, respectively) compared to mmFormer (86.17, 78.34, and 60.36, respectively). We also conducted a Wilcoxon test on the experimental results, and the generated p-value confirmed that our model's performance was statistically significant. Moreover, our model exhibits significantly reduced complexity with only 4.47 M parameters, 121.89G FLOPs, and a model size of 77.13 MB, whereas mmFormer comprises 34.96 M parameters, 265.79 G FLOPs, and a model size of 559.74 MB. These indicate our model, being light-weighted with significantly reduced parameters, is still able to achieve better performance than a state-of-the-art model. CONCLUSION By leveraging a single encoder for processing the available modalities, IMS2Trans offers notable scalability advantages over methods that rely on multiple encoders. This streamlined approach eliminates the need for maintaining separate encoders for each modality, resulting in a lightweight and scalable network architecture. The source code of IMS2Trans and the associated weights are both publicly available at https://github.com/hudscomdz/IMS2Trans.
Collapse
Affiliation(s)
- Dongsong Zhang
- School of Big Data and Artificial Intelligence, Xinyang College, Xinyang, 464000, Henan, China; School of Computing and Engineering, University of Huddersfield, Huddersfield, HD13DH, UK
| | - Changjian Wang
- National Key Laboratory of Parallel and Distributed Computing, Changsha, 410073, Hunan, China
| | - Tianhua Chen
- School of Computing and Engineering, University of Huddersfield, Huddersfield, HD13DH, UK
| | - Weidao Chen
- Beijing Infervision Technology Co., Ltd., Beijing, 100020, China
| | - Yiqing Shen
- Department of Computer Science, Johns Hopkins University, Baltimore, 21218, MD, USA.
| |
Collapse
|
6
|
Dayarathna S, Islam KT, Uribe S, Yang G, Hayat M, Chen Z. Deep learning based synthesis of MRI, CT and PET: Review and analysis. Med Image Anal 2024; 92:103046. [PMID: 38052145 DOI: 10.1016/j.media.2023.103046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/14/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Medical image synthesis represents a critical area of research in clinical decision-making, aiming to overcome the challenges associated with acquiring multiple image modalities for an accurate clinical workflow. This approach proves beneficial in estimating an image of a desired modality from a given source modality among the most common medical imaging contrasts, such as Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron Emission Tomography (PET). However, translating between two image modalities presents difficulties due to the complex and non-linear domain mappings. Deep learning-based generative modelling has exhibited superior performance in synthetic image contrast applications compared to conventional image synthesis methods. This survey comprehensively reviews deep learning-based medical imaging translation from 2018 to 2023 on pseudo-CT, synthetic MR, and synthetic PET. We provide an overview of synthetic contrasts in medical imaging and the most frequently employed deep learning networks for medical image synthesis. Additionally, we conduct a detailed analysis of each synthesis method, focusing on their diverse model designs based on input domains and network architectures. We also analyse novel network architectures, ranging from conventional CNNs to the recent Transformer and Diffusion models. This analysis includes comparing loss functions, available datasets and anatomical regions, and image quality assessments and performance in other downstream tasks. Finally, we discuss the challenges and identify solutions within the literature, suggesting possible future directions. We hope that the insights offered in this survey paper will serve as a valuable roadmap for researchers in the field of medical image synthesis.
Collapse
Affiliation(s)
- Sanuwani Dayarathna
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Clayton VIC 3800, Australia.
| | | | - Sergio Uribe
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Monash University, Clayton VIC 3800, Australia
| | - Guang Yang
- Bioengineering Department and Imperial-X, Imperial College London, W12 7SL, United Kingdom
| | - Munawar Hayat
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Clayton VIC 3800, Australia
| | - Zhaolin Chen
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Clayton VIC 3800, Australia; Monash Biomedical Imaging, Clayton VIC 3800, Australia
| |
Collapse
|
7
|
Li X, Bellotti R, Meier G, Bachtiary B, Weber D, Lomax A, Buhmann J, Zhang Y. Uncertainty-aware MR-based CT synthesis for robust proton therapy planning of brain tumour. Radiother Oncol 2024; 191:110056. [PMID: 38104781 DOI: 10.1016/j.radonc.2023.110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND AND PURPOSE Deep learning techniques excel in MR-based CT synthesis, but missing uncertainty prediction limits its clinical use in proton therapy. We developed an uncertainty-aware framework and evaluated its efficiency in robust proton planning. MATERIALS AND METHODS A conditional generative-adversarial network was trained on 64 brain tumour patients with paired MR-CT images to generate synthetic CTs (sCT) from combined T1-T2 MRs of three orthogonal planes. A Bayesian neural network predicts Laplacian distributions for all voxels with parameters (μ, b). A robust proton plan was optimized using three sCTs of μ and μ±b. The dosimetric differences between the plan from sCT (sPlan) and the recalculated plan (rPlan) on planning CT (pCT) were quantified for each patient. The uncertainty-aware robust plan was compared to conventional robust (global ± 3 %) and non-robust plans. RESULTS In 8-fold cross-validation, sCT-pCT image differences (Mean-Absolute-Error) were 80.84 ± 9.84HU (body), 35.78 ± 6.07HU (soft tissues) and 221.88 ± 31.69HU (bones), with Dice scores of 90.33 ± 2.43 %, 95.13 ± 0.80 %, and 85.53 ± 4.16 %, respectively. The uncertainty distribution positively correlated with absolute prediction error (Correlation Coefficient: 0.62 ± 0.01). The uncertainty-conditioned robust optimisation improved the rPlan-sPlan agreement, e.g., D95 absolute difference (CTV) was 1.10 ± 1.24 % compared to conventional (1.64 ± 2.71 %) and non-robust (2.08 ± 2.96 %) optimisation. This trend was consistent across all target and organs-at-risk indexes. CONCLUSION The enhanced framework incorporates 3D uncertainty prediction and generates high-quality sCTs from MR images. The framework also facilitates conditioned robust optimisation, bolstering proton plan robustness against network prediction errors. The innovative feature of uncertainty visualisation and robust analyses contribute to evaluating sCT clinical utility for individual patients.
Collapse
Affiliation(s)
- Xia Li
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland; Department of Computer Science, ETH Zurich, Switzerland
| | - Renato Bellotti
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Gabriel Meier
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland
| | | | - Damien Weber
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland; Department of Radiation Oncology, University Hospital of Zurich, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Antony Lomax
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | | | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland.
| |
Collapse
|
8
|
Eidex Z, Ding Y, Wang J, Abouei E, Qiu RLJ, Liu T, Wang T, Yang X. Deep learning in MRI-guided radiation therapy: A systematic review. J Appl Clin Med Phys 2024; 25:e14155. [PMID: 37712893 PMCID: PMC10860468 DOI: 10.1002/acm2.14155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
Recent advances in MRI-guided radiation therapy (MRgRT) and deep learning techniques encourage fully adaptive radiation therapy (ART), real-time MRI monitoring, and the MRI-only treatment planning workflow. Given the rapid growth and emergence of new state-of-the-art methods in these fields, we systematically review 197 studies written on or before December 31, 2022, and categorize the studies into the areas of image segmentation, image synthesis, radiomics, and real time MRI. Building from the underlying deep learning methods, we discuss their clinical importance and current challenges in facilitating small tumor segmentation, accurate x-ray attenuation information from MRI, tumor characterization and prognosis, and tumor motion tracking. In particular, we highlight the recent trends in deep learning such as the emergence of multi-modal, visual transformer, and diffusion models.
Collapse
Affiliation(s)
- Zach Eidex
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Yifu Ding
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Jing Wang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Elham Abouei
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Richard L. J. Qiu
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - Tian Liu
- Department of Radiation OncologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Tonghe Wang
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
9
|
Ueda T, Yamashita K, Kawazoe R, Sayawaki Y, Morisawa Y, Kamezaki R, Ikeda R, Shiraishi S, Uchiyama Y, Ito S. Feasibility of direct brain 18F-fluorodeoxyglucose-positron emission tomography attenuation and high-resolution correction methods using deep learning. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2024; 12:108-119. [PMID: 39050241 PMCID: PMC11263769 DOI: 10.22038/aojnmb.2024.74875.1522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/24/2023] [Accepted: 01/11/2024] [Indexed: 07/27/2024]
Abstract
Objectives To develop the following three attenuation correction (AC) methods for brain 18F-fluorodeoxyglucose-positron emission tomography (PET), using deep learning, and to ascertain their precision levels: (i) indirect method; (ii) direct method; and (iii) direct and high-resolution correction (direct+HRC) method. Methods We included 53 patients who underwent cranial magnetic resonance imaging (MRI) and computed tomography (CT) and 27 patients who underwent cranial MRI, CT, and PET. After fusion of the magnetic resonance, CT, and PET images, resampling was performed to standardize the field of view and matrix size and prepare the data set. In the indirect method, synthetic CT (SCT) images were generated, whereas in the direct and direct+HRC methods, a U-net structure was used to generate AC images. In the indirect method, attenuation correction was performed using SCT images generated from MRI findings using U-net instead of CT images. In the direct and direct+HRC methods, AC images were generated directly from non-AC images using U-net, followed by image evaluation. The precision levels of AC images generated using the indirect and direct methods were compared based on the normalized mean squared error (NMSE) and structural similarity (SSIM). Results Visual inspection revealed no difference between the AC images prepared using CT-based attenuation correction and those prepared using the three methods. The NMSE increased in the order indirect, direct, and direct+HRC methods, with values of 0.281×10-3, 4.62×10-3, and 12.7×10-3, respectively. Moreover, the SSIM of the direct+HRC method was 0.975. Conclusion The direct+HRC method enables accurate attenuation without CT exposure and high-resolution correction without dedicated correction programs.
Collapse
Affiliation(s)
- Tomohiro Ueda
- Graduate School of Health Sciences, Kumamoto University, Japan
| | | | - Retsu Kawazoe
- Graduate School of Health Sciences, Kumamoto University, Japan
| | - Yuta Sayawaki
- Graduate School of Health Sciences, Kumamoto University, Japan
| | | | - Ryosuke Kamezaki
- Department of Central Radiology Kumamoto University Hospital, Japan
| | - Ryuji Ikeda
- Department of Central Radiology Kumamoto University Hospital, Japan
| | - Shinya Shiraishi
- Department of Diagnostic Radiology, Faculty of Life Sciences,Kumamoto University, Japan
| | - Yoshikazu Uchiyama
- Department of Information and Communication Technology, Faculty of Engineering, University of Miyazaki, Japan
| | - Shigeki Ito
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, Japan
| |
Collapse
|
10
|
McNaughton J, Fernandez J, Holdsworth S, Chong B, Shim V, Wang A. Machine Learning for Medical Image Translation: A Systematic Review. Bioengineering (Basel) 2023; 10:1078. [PMID: 37760180 PMCID: PMC10525905 DOI: 10.3390/bioengineering10091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND CT scans are often the first and only form of brain imaging that is performed to inform treatment plans for neurological patients due to its time- and cost-effective nature. However, MR images give a more detailed picture of tissue structure and characteristics and are more likely to pick up abnormalities and lesions. The purpose of this paper is to review studies which use deep learning methods to generate synthetic medical images of modalities such as MRI and CT. METHODS A literature search was performed in March 2023, and relevant articles were selected and analyzed. The year of publication, dataset size, input modality, synthesized modality, deep learning architecture, motivations, and evaluation methods were analyzed. RESULTS A total of 103 studies were included in this review, all of which were published since 2017. Of these, 74% of studies investigated MRI to CT synthesis, and the remaining studies investigated CT to MRI, Cross MRI, PET to CT, and MRI to PET. Additionally, 58% of studies were motivated by synthesizing CT scans from MRI to perform MRI-only radiation therapy. Other motivations included synthesizing scans to aid diagnosis and completing datasets by synthesizing missing scans. CONCLUSIONS Considerably more research has been carried out on MRI to CT synthesis, despite CT to MRI synthesis yielding specific benefits. A limitation on medical image synthesis is that medical datasets, especially paired datasets of different modalities, are lacking in size and availability; it is therefore recommended that a global consortium be developed to obtain and make available more datasets for use. Finally, it is recommended that work be carried out to establish all uses of the synthesis of medical scans in clinical practice and discover which evaluation methods are suitable for assessing the synthesized images for these needs.
Collapse
Affiliation(s)
- Jake McNaughton
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Department of Engineering Science and Biomedical Engineering, University of Auckland, 3/70 Symonds Street, Auckland 1010, New Zealand
| | - Samantha Holdsworth
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Mātai Medical Research Institute, 400 Childers Road, Tairāwhiti Gisborne 4010, New Zealand
| | - Benjamin Chong
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Mātai Medical Research Institute, 400 Childers Road, Tairāwhiti Gisborne 4010, New Zealand
| | - Alan Wang
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| |
Collapse
|
11
|
Gu X, Zhang Y, Zeng W, Zhong S, Wang H, Liang D, Li Z, Hu Z. Cross-modality image translation: CT image synthesis of MR brain images using multi generative network with perceptual supervision. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 237:107571. [PMID: 37156020 DOI: 10.1016/j.cmpb.2023.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Computed tomography (CT) and magnetic resonance imaging (MRI) are the mainstream imaging technologies for clinical practice. CT imaging can reveal high-quality anatomical and physiopathological structures, especially bone tissue, for clinical diagnosis. MRI provides high resolution in soft tissue and is sensitive to lesions. CT combined with MRI diagnosis has become a regular image-guided radiation treatment plan. METHODS In this paper, to reduce the dose of radiation exposure in CT examinations and ameliorate the limitations of traditional virtual imaging technologies, we propose a Generative MRI-to-CT transformation method with structural perceptual supervision. Even though structural reconstruction is structurally misaligned in the MRI-CT dataset registration, our proposed method can better align structural information of synthetic CT (sCT) images to input MRI images while simulating the modality of CT in the MRI-to-CT cross-modality transformation. RESULTS We retrieved a total of 3416 brain MRI-CT paired images as the train/test dataset, including 1366 train images of 10 patients and 2050 test images of 15 patients. Several methods (the baseline methods and the proposed method) were evaluated by the HU difference map, HU distribution, and various similarity metrics, including the mean absolute error (MAE), structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and normalized cross-correlation (NCC). In our quantitative experimental results, the proposed method achieves the lowest MAE mean of 0.147, highest PSNR mean of 19.27, and NCC mean of 0.431 in the overall CT test dataset. CONCLUSIONS In conclusion, both qualitative and quantitative results of synthetic CT validate that the proposed method can preserve higher similarity of structural information of the bone tissue of target CT than the baseline methods. Furthermore, the proposed method provides better HU intensity reconstruction for simulating the distribution of the CT modality. The experimental estimation indicates that the proposed method is worth further investigation.
Collapse
Affiliation(s)
- Xianfan Gu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yu Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wen Zeng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sihua Zhong
- Central Research Institute, United Imaging Healthcare Group, Shanghai, 201807, China
| | - Haining Wang
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518045, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Eidex Z, Ding Y, Wang J, Abouei E, Qiu RL, Liu T, Wang T, Yang X. Deep Learning in MRI-guided Radiation Therapy: A Systematic Review. ARXIV 2023:arXiv:2303.11378v2. [PMID: 36994167 PMCID: PMC10055493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
MRI-guided radiation therapy (MRgRT) offers a precise and adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed. MRI-guided radiation therapy offers a precise, adaptive approach to treatment planning. Deep learning applications which augment the capabilities of MRgRT are systematically reviewed with emphasis placed on underlying methods. Studies are further categorized into the areas of segmentation, synthesis, radiomics, and real time MRI. Finally, clinical implications, current challenges, and future directions are discussed.
Collapse
Affiliation(s)
- Zach Eidex
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Yifu Ding
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Jing Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Elham Abouei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
| | - Tian Liu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
13
|
Possibilities and challenges when using synthetic computed tomography in an adaptive carbon-ion treatment workflow. Z Med Phys 2022:S0939-3889(22)00064-2. [PMID: 35764469 DOI: 10.1016/j.zemedi.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND PURPOSE Anatomical surveillance during ion-beam therapy is the basis for an effective tumor treatment and optimal organ at risk (OAR) sparing. Synthetic computed tomography (sCT) based on magnetic resonance imaging (MRI) can replace the X-ray based planning CT (X-rayCT) in photon radiotherapy and improve the workflow efficiency without additional imaging dose. The extension to carbon-ion radiotherapy is highly challenging; complex patient positioning, unique anatomical situations, distinct horizontal and vertical beam incidence directions, and limited training data are only few problems. This study gives insight into the possibilities and challenges of using sCTs in carbon-ion therapy. MATERIALS AND METHODS For head and neck patients immobilised with thermoplastic masks 30 clinically applied actively scanned carbon-ion treatment plans on 15 CTs comprising 60 beams were analyzed. Those treatment plans were re-calculated on MRI based sCTs which were created employing a 3D U-Net. Dose differences and carbon-ion spot displacements between sCT and X-rayCT were evaluated on a patient specific basis. RESULTS Spot displacement analysis showed a peak displacement by 0.2 cm caused by the immobilisation mask not measurable with the MRI. 95.7% of all spot displacements were located within 1 cm. For the clinical target volume (CTV) the median D50% agreed within -0.2% (-1.3 to 1.4%), while the median D0.01cc differed up to 4.2% (-1.3 to 25.3%) comparing the dose distribution on the X-rayCT and the sCT. OAR deviations depended strongly on the position and the dose gradient. For three patients no deterioration of the OAR parameters was observed. Other patients showed large deteriorations, e.g. for one patient D2% of the chiasm differed by 28.1%. CONCLUSION The usage of sCTs opens several new questions, concluding that we are not ready yet for an MR-only workflow in carbon-ion therapy, as envisaged in photon therapy. Although omitting the X-rayCT seems unfavourable in the case of carbon-ion therapy, an sCT could be advantageous for monitoring, re-planning, and adaptation.
Collapse
|