1
|
Fionda B, Placidi E, de Ridder M, Strigari L, Patarnello S, Tanderup K, Hannoun-Levi JM, Siebert FA, Boldrini L, Antonietta Gambacorta M, De Spirito M, Sala E, Tagliaferri L. Artificial intelligence in interventional radiotherapy (brachytherapy): Enhancing patient-centered care and addressing patients' needs. Clin Transl Radiat Oncol 2024; 49:100865. [PMID: 39381628 PMCID: PMC11459626 DOI: 10.1016/j.ctro.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
This review explores the integration of artificial intelligence (AI) in interventional radiotherapy (IRT), emphasizing its potential to streamline workflows and enhance patient care. Through a systematic analysis of 78 relevant papers spanning from 2002 to 2024, we identified significant advancements in contouring, treatment planning, outcome prediction, and quality assurance. AI-driven approaches offer promise in reducing procedural times, personalizing treatments, and improving treatment outcomes for oncological patients. However, challenges such as clinical validation and quality assurance protocols persist. Nonetheless, AI presents a transformative opportunity to optimize IRT and meet evolving patient needs.
Collapse
Affiliation(s)
- Bruno Fionda
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Elisa Placidi
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Mischa de Ridder
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Patarnello
- Real World Data Facility, Gemelli Generator, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Kari Tanderup
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jean-Michel Hannoun-Levi
- Department of Radiation Oncology, Antoine Lacassagne Cancer Centre, University of Côte d’Azur, Nice, France
| | - Frank-André Siebert
- Clinic of Radiotherapy (Radiooncology), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Maria Antonietta Gambacorta
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Evis Sala
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Tagliaferri
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
2
|
Chen J, Qiu RL, Wang T, Momin S, Yang X. A Review of Artificial Intelligence in Brachytherapy. ARXIV 2024:arXiv:2409.16543v1. [PMID: 39398213 PMCID: PMC11469420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Artificial intelligence (AI) has the potential to revolutionize brachytherapy's clinical workflow. This review comprehensively examines the application of AI, focusing on machine learning and deep learning, in facilitating various aspects of brachytherapy. We analyze AI's role in making brachytherapy treatments more personalized, efficient, and effective. The applications are systematically categorized into seven categories: imaging, preplanning, treatment planning, applicator reconstruction, quality assurance, outcome prediction, and real-time monitoring. Each major category is further subdivided based on cancer type or specific tasks, with detailed summaries of models, data sizes, and results presented in corresponding tables. This review offers insights into the current advancements, challenges, and the impact of AI on treatment paradigms, encouraging further research to expand its clinical utility.
Collapse
Affiliation(s)
- Jingchu Chen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
- School of Mechanical Engineering, Georgia Institute of Technology, GA, Atlanta, USA
| | - Richard L.J. Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Shadab Momin
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30308
| |
Collapse
|
3
|
Kraus AC, Iqbal Z, Cardan RA, Popple RA, Stanley DN, Shen S, Pogue JA, Wu X, Lee K, Marcrom S, Cardenas CE. Prospective Evaluation of Automated Contouring for CT-Based Brachytherapy for Gynecologic Malignancies. Adv Radiat Oncol 2024; 9:101417. [PMID: 38435965 PMCID: PMC10906166 DOI: 10.1016/j.adro.2023.101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/30/2023] [Indexed: 03/05/2024] Open
Abstract
Purpose The use of deep learning to auto-contour organs at risk (OARs) in gynecologic radiation treatment is well established. Yet, there is limited data investigating the prospective use of auto-contouring in clinical practice. In this study, we assess the accuracy and efficiency of auto-contouring OARs for computed tomography-based brachytherapy treatment planning of gynecologic malignancies. Methods and Materials An inhouse contouring tool automatically delineated 5 OARs in gynecologic radiation treatment planning: the bladder, small bowel, sigmoid, rectum, and urethra. Accuracy of each auto-contour was evaluated using a 5-point Likert scale: a score of 5 indicated the contour could be used without edits, while a score of 1 indicated the contour was unusable. During scoring, automated contours were edited and subsequently used for treatment planning. Dice similarity coefficient, mean surface distance, 95% Hausdorff distance, Hausdorff distance, and dosimetric changes between original and edited contours were calculated. Contour approval time and total planning time of a prospective auto-contoured (AC) cohort were compared with times from a retrospective manually contoured (MC) cohort. Results Thirty AC cases from January 2022 to July 2022 and 31 MC cases from July 2021 to January 2022 were included. The mean (±SD) Likert score for each OAR was the following: bladder 4.77 (±0.58), small bowel 3.96 (±0.91), sigmoid colon 3.92 (±0.81), rectum 4.6 (±0.71), and urethra 4.27 (±0.78). No ACs required major edits. All OARs had a mean Dice similarity coefficient > 0.86, mean surface distance < 0.48 mm, 95% Hausdorff distance < 3.2 mm, and Hausdorff distance < 10.32 mm between original and edited contours. There was no significant difference in dose-volume histogram metrics (D2.0 cc/D0.1 cc) between original and edited contours (P values > .05). The average time to plan approval in the AC cohort was 19% less than the MC cohort. (AC vs MC, 117.0 + 18.0 minutes vs 144.9 ± 64.5 minutes, P = .045). Conclusions Automated contouring is useful and accurate in clinical practice. Auto-contouring OARs streamlines radiation treatment workflows and decreases time required to design and approve gynecologic brachytherapy plans.
Collapse
Affiliation(s)
- Abigayle C. Kraus
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zohaib Iqbal
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rex A. Cardan
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Richard A. Popple
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Dennis N. Stanley
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sui Shen
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joel A. Pogue
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xingen Wu
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin Lee
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Samuel Marcrom
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carlos E. Cardenas
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
4
|
Zhao JZ, Ni R, Chow R, Rink A, Weersink R, Croke J, Raman S. Artificial intelligence applications in brachytherapy: A literature review. Brachytherapy 2023; 22:429-445. [PMID: 37248158 DOI: 10.1016/j.brachy.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 05/31/2023]
Abstract
PURPOSE Artificial intelligence (AI) has the potential to simplify and optimize various steps of the brachytherapy workflow, and this literature review aims to provide an overview of the work done in this field. METHODS AND MATERIALS We conducted a literature search in June 2022 on PubMed, Embase, and Cochrane for papers that proposed AI applications in brachytherapy. RESULTS A total of 80 papers satisfied inclusion/exclusion criteria. These papers were categorized as follows: segmentation (24), registration and image processing (6), preplanning (13), dose prediction and treatment planning (11), applicator/catheter/needle reconstruction (16), and quality assurance (10). AI techniques ranged from classical models such as support vector machines and decision tree-based learning to newer techniques such as U-Net and deep reinforcement learning, and were applied to facilitate small steps of a process (e.g., optimizing applicator selection) or even automate the entire step of the workflow (e.g., end-to-end preplanning). Many of these algorithms demonstrated human-level performance and offer significant improvements in speed. CONCLUSIONS AI has potential to augment, automate, and/or accelerate many steps of the brachytherapy workflow. We recommend that future studies adhere to standard reporting guidelines. We also stress the importance of using larger sample sizes and reporting results using clinically interpretable measures.
Collapse
Affiliation(s)
- Jonathan Zl Zhao
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Ruiyan Ni
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ronald Chow
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Alexandra Rink
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Robert Weersink
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Jennifer Croke
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Srinivas Raman
- Princess Margaret Hospital Cancer Centre, Radiation Medicine Program, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|
5
|
Liu H, Gong G, Zou W, Hu N, Wang J. Topologically preserved registration of 3D CT images with deep networks. Phys Med Biol 2023; 68. [PMID: 36623316 DOI: 10.1088/1361-6560/acb197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Objective. Computed Tomography (CT) image registration makes fast and accurate imaging-based disease diagnosis possible. We aim to develop a framework which can perform accurate local registration of organs in 3D CT images while preserving the topology of transformation.Approach. In this framework, the Faster R-CNN method is first used to detect local areas containing organs from fixed and moving images whose results are then registered with a weakly supervised deep neural network. In this network, a novel 3D channel coordinate attention (CA) module is introduced to reduce the loss of position information. The image edge loss and the organ labelling loss are used to weakly supervise the training process of our deep network, which enables the network learning to focus on registering organs and image structures. An intuitive inverse module is also used to reduce the folding of deformation field. More specifically, the folding is suppressed directly by simultaneously maximizing forward and backward registration accuracy in the image domain rather than indirectly by measuring the consistency of forward and inverse deformation fields as usual.Main results. Our method achieves an average dice similarity coefficient (DSC) of 0.954 and an average Similarity (Sim) of 0.914 on publicly available liver datasets (LiTS for training and Sliver07 for testing) and achieves an average DSC of 0.914 and an average Sim of 0.947 on our home-built left ventricular myocardium (LVM) dataset.Significance. Experimental results show that our proposed method can significantly improve the registration accuracy of organs such as the liver and LVM. Moreover, our inverse module can intuitively improve the inherent topological preservation of transformations.
Collapse
Affiliation(s)
- Huaying Liu
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, People's Republic of China
| | - Guanzhong Gong
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250000, People's Republic of China
| | - Wei Zou
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, People's Republic of China
| | - Nan Hu
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, People's Republic of China
| | - Jiajun Wang
- School of Electronic and Information Engineering, Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|