1
|
Gharibi O, Hajianfar G, Sabouri M, Mohebi M, Bagheri S, Arian F, Yasemi MJ, Bitarafan Rajabi A, Rahmim A, Zaidi H, Shiri I. Myocardial perfusion SPECT radiomic features reproducibility assessment: Impact of image reconstruction and harmonization. Med Phys 2024. [PMID: 39470363 DOI: 10.1002/mp.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Coronary artery disease (CAD) has one of the highest mortality rates in humans worldwide. Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) provides clinicians with myocardial metabolic information non-invasively. However, there are some limitations to interpreting SPECT images performed by physicians or automatic quantitative approaches. Radiomics analyzes images objectively by extracting quantitative features and can potentially reveal biological characteristics that the human eye cannot detect. However, the reproducibility and repeatability of some radiomic features can be highly susceptible to segmentation and imaging conditions. PURPOSE We aimed to assess the reproducibility of radiomic features extracted from uncorrected MPI-SPECT images reconstructed with 15 different settings before and after ComBat harmonization, along with evaluating the effectiveness of ComBat in realigning feature distributions. MATERIALS AND METHODS A total of 200 patients (50% normal and 50% abnormal) including rest and stress (without attenuation and scatter corrections) MPI-SPECT images were included. Images were reconstructed using 15 combinations of filter cut-off frequencies, filter orders, filter types, reconstruction algorithms, number of iterations and subsets resulting in 6000 images. Image segmentation was performed on the left ventricle in the first reconstruction for each patient and applied to 14 others. A total of 93 radiomic features were extracted from the segmented area, and ComBat was used to harmonize them. The intraclass correlation coefficient (ICC) and overall concordance correlation coefficient (OCCC) tests were performed before and after ComBat to examine the impact of each parameter on feature robustness and to assess harmonization efficiency. The ANOVA and the Kruskal-Wallis tests were performed to evaluate the effectiveness of ComBat in correcting feature distributions. In addition, the Student's t-test, Wilcoxon rank-sum, and signed-rank tests were implemented to assess the significance level of the impacts made by each parameter of different batches and patient groups (normal vs. abnormal) on radiomic features. RESULTS Before applying ComBat, the majority of features (ICC: 82, OCCC: 61) achieved high reproducibility (ICC/OCCC ≥ 0.900) under every batch except Reconstruction. The largest and smallest number of poor features (ICC/OCCC < 0.500) were obtained by IterationSubset and Order batches, respectively. The most reliable features were from the first-order (FO) and gray-level co-occurrence matrix (GLCM) families. Following harmonization, the minimum number of robust features increased (ICC: 84, OCCC: 78). Applying ComBat showed that Order and Reconstruction were the least and the most responsive batches, respectively. The most robust families, in a descending order, were found to be FO, neighborhood gray-tone difference matrix (NGTDM), GLCM, gray-level run length matrix (GLRLM), gray-level size zone matrix (GLSZM), and gray-level dependence matrix (GLDM) under Cut-off, Filter, and Order batches. The Wilcoxon rank-sum test showed that the number of robust features significantly differed under most batches in the Normal and Abnormal groups. CONCLUSION The majority of radiomic features show high levels of robustness across different OSEM reconstruction parameters in uncorrected MPI-SPECT. ComBat is effective in realigning feature distributions and enhancing radiomic features reproducibility.
Collapse
Affiliation(s)
- Omid Gharibi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Maziar Sabouri
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Mobin Mohebi
- Department of Biomedical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Soroush Bagheri
- Department of Medical Physics, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Arian
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Yasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Ahmad Bitarafan Rajabi
- Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arman Rahmim
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
- University Research and Innovation Center, Óbuda University, Budapest, Hungary
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Stefano A. Challenges and limitations in applying radiomics to PET imaging: Possible opportunities and avenues for research. Comput Biol Med 2024; 179:108827. [PMID: 38964244 DOI: 10.1016/j.compbiomed.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Radiomics, the high-throughput extraction of quantitative imaging features from medical images, holds immense potential for advancing precision medicine in oncology and beyond. While radiomics applied to positron emission tomography (PET) imaging offers unique insights into tumor biology and treatment response, it is imperative to elucidate the challenges and constraints inherent in this domain to facilitate their translation into clinical practice. This review examines the challenges and limitations of applying radiomics to PET imaging, synthesizing findings from the last five years (2019-2023) and highlights the significance of addressing these challenges to realize the full clinical potential of radiomics in oncology and molecular imaging. A comprehensive search was conducted across multiple electronic databases, including PubMed, Scopus, and Web of Science, using keywords relevant to radiomics issues in PET imaging. Only studies published in peer-reviewed journals were eligible for inclusion in this review. Although many studies have highlighted the potential of radiomics in predicting treatment response, assessing tumor heterogeneity, enabling risk stratification, and personalized therapy selection, various challenges regarding the practical implementation of the proposed models still need to be addressed. This review illustrates the challenges and limitations of radiomics in PET imaging across various cancer types, encompassing both phantom and clinical investigations. The analyzed studies highlight the importance of reproducible segmentation methods, standardized pre-processing and post-processing methodologies, and the need to create large multicenter studies registered in a centralized database to promote the continuous validation and clinical integration of radiomics into PET imaging.
Collapse
Affiliation(s)
- Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy.
| |
Collapse
|
3
|
Kaiser L, Quach S, Zounek AJ, Wiestler B, Zatcepin A, Holzgreve A, Bollenbacher A, Bartos LM, Ruf VC, Böning G, Thon N, Herms J, Riemenschneider MJ, Stöcklein S, Brendel M, Rupprecht R, Tonn JC, Bartenstein P, von Baumgarten L, Ziegler S, Albert NL. Enhancing predictability of IDH mutation status in glioma patients at initial diagnosis: a comparative analysis of radiomics from MRI, [ 18F]FET PET, and TSPO PET. Eur J Nucl Med Mol Imaging 2024; 51:2371-2381. [PMID: 38396261 PMCID: PMC11178656 DOI: 10.1007/s00259-024-06654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/10/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE According to the World Health Organization classification for tumors of the central nervous system, mutation status of the isocitrate dehydrogenase (IDH) genes has become a major diagnostic discriminator for gliomas. Therefore, imaging-based prediction of IDH mutation status is of high interest for individual patient management. We compared and evaluated the diagnostic value of radiomics derived from dual positron emission tomography (PET) and magnetic resonance imaging (MRI) data to predict the IDH mutation status non-invasively. METHODS Eighty-seven glioma patients at initial diagnosis who underwent PET targeting the translocator protein (TSPO) using [18F]GE-180, dynamic amino acid PET using [18F]FET, and T1-/T2-weighted MRI scans were examined. In addition to calculating tumor-to-background ratio (TBR) images for all modalities, parametric images quantifying dynamic [18F]FET PET information were generated. Radiomic features were extracted from TBR and parametric images. The area under the receiver operating characteristic curve (AUC) was employed to assess the performance of logistic regression (LR) classifiers. To report robust estimates, nested cross-validation with five folds and 50 repeats was applied. RESULTS TBRGE-180 features extracted from TSPO-positive volumes had the highest predictive power among TBR images (AUC 0.88, with age as co-factor 0.94). Dynamic [18F]FET PET reached a similarly high performance (0.94, with age 0.96). The highest LR coefficients in multimodal analyses included TBRGE-180 features, parameters from kinetic and early static [18F]FET PET images, age, and the features from TBRT2 images such as the kurtosis (0.97). CONCLUSION The findings suggest that incorporating TBRGE-180 features along with kinetic information from dynamic [18F]FET PET, kurtosis from TBRT2, and age can yield very high predictability of IDH mutation status, thus potentially improving early patient management.
Collapse
Affiliation(s)
- Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - S Quach
- Department of Neurosurgery, University Hospital, LMU Munich, 81377, Munich, Germany
| | - A J Zounek
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - B Wiestler
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - A Zatcepin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
| | - A Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - A Bollenbacher
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - L M Bartos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - V C Ruf
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - G Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - N Thon
- Department of Neurosurgery, University Hospital, LMU Munich, 81377, Munich, Germany
| | - J Herms
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - M J Riemenschneider
- Department of Neuropathology, University Hospital Regensburg, 93053, Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - S Stöcklein
- Department of Radiology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - M Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - R Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053, Regensburg, Germany
| | - J C Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, 81377, Munich, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - L von Baumgarten
- Department of Neurosurgery, University Hospital, LMU Munich, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| | - S Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - N L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), 91054, Erlangen, Germany
| |
Collapse
|
4
|
Ahrari S, Zaragori T, Zinsz A, Oster J, Imbert L, Verger A. Application of PET imaging delta radiomics for predicting progression-free survival in rare high-grade glioma. Sci Rep 2024; 14:3256. [PMID: 38332004 PMCID: PMC10853227 DOI: 10.1038/s41598-024-53693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
This study assesses the feasibility of using a sample-efficient model to investigate radiomics changes over time for predicting progression-free survival in rare diseases. Eighteen high-grade glioma patients underwent two L-3,4-dihydroxy-6-[18F]-fluoro-phenylalanine positron emission tomography (PET) dynamic scans: the first during treatment and the second at temozolomide chemotherapy discontinuation. Radiomics features from static/dynamic parametric images, alongside conventional features, were extracted. After excluding highly correlated features, 16 different models were trained by combining various feature selection methods and time-to-event survival algorithms. Performance was assessed using cross-validation. To evaluate model robustness, an additional dataset including 35 patients with a single PET scan at therapy discontinuation was used. Model performance was compared with a strategy extracting informative features from the set of 35 patients and applying them to the 18 patients with 2 PET scans. Delta-absolute radiomics achieved the highest performance when the pipeline was directly applied to the 18-patient subset (support vector machine (SVM) and recursive feature elimination (RFE): C-index = 0.783 [0.744-0.818]). This result remained consistent when transferring informative features from 35 patients (SVM + RFE: C-index = 0.751 [0.716-0.784], p = 0.06). In addition, it significantly outperformed delta-absolute conventional (C-index = 0.584 [0.548-0.620], p < 0.001) and single-time-point radiomics features (C-index = 0.546 [0.512-0.580], p < 0.001), highlighting the considerable potential of delta radiomics in rare cancer cohorts.
Collapse
Affiliation(s)
- Shamimeh Ahrari
- Imagerie Adaptative Diagnostique et Interventionnelle, Institut National de la Santé et de la Recherche Médicale U1254, Université de Lorraine, 54000, Nancy, France
- Nancyclotep Imaging Platform, Université de Lorraine, 54000, Nancy, France
| | - Timothée Zaragori
- Imagerie Adaptative Diagnostique et Interventionnelle, Institut National de la Santé et de la Recherche Médicale U1254, Université de Lorraine, 54000, Nancy, France
- Nancyclotep Imaging Platform, Université de Lorraine, 54000, Nancy, France
| | - Adeline Zinsz
- Department of Nuclear Medicine, Centre Hospitalier Régional Universitaire de Nancy, 54000, Nancy, France
| | - Julien Oster
- Imagerie Adaptative Diagnostique et Interventionnelle, Institut National de la Santé et de la Recherche Médicale U1254, Université de Lorraine, 54000, Nancy, France
| | - Laetitia Imbert
- Imagerie Adaptative Diagnostique et Interventionnelle, Institut National de la Santé et de la Recherche Médicale U1254, Université de Lorraine, 54000, Nancy, France
- Nancyclotep Imaging Platform, Université de Lorraine, 54000, Nancy, France
- Department of Nuclear Medicine, Centre Hospitalier Régional Universitaire de Nancy, 54000, Nancy, France
| | - Antoine Verger
- Imagerie Adaptative Diagnostique et Interventionnelle, Institut National de la Santé et de la Recherche Médicale U1254, Université de Lorraine, 54000, Nancy, France.
- Nancyclotep Imaging Platform, Université de Lorraine, 54000, Nancy, France.
- Department of Nuclear Medicine, Centre Hospitalier Régional Universitaire de Nancy, 54000, Nancy, France.
| |
Collapse
|
5
|
Marzi C, Giannelli M, Barucci A, Tessa C, Mascalchi M, Diciotti S. Efficacy of MRI data harmonization in the age of machine learning: a multicenter study across 36 datasets. Sci Data 2024; 11:115. [PMID: 38263181 PMCID: PMC10805868 DOI: 10.1038/s41597-023-02421-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/27/2023] [Indexed: 01/25/2024] Open
Abstract
Pooling publicly-available MRI data from multiple sites allows to assemble extensive groups of subjects, increase statistical power, and promote data reuse with machine learning techniques. The harmonization of multicenter data is necessary to reduce the confounding effect associated with non-biological sources of variability in the data. However, when applied to the entire dataset before machine learning, the harmonization leads to data leakage, because information outside the training set may affect model building, and potentially falsely overestimate performance. We propose a 1) measurement of the efficacy of data harmonization; 2) harmonizer transformer, i.e., an implementation of the ComBat harmonization allowing its encapsulation among the preprocessing steps of a machine learning pipeline, avoiding data leakage by design. We tested these tools using brain T1-weighted MRI data from 1740 healthy subjects acquired at 36 sites. After harmonization, the site effect was removed or reduced, and we showed the data leakage effect in predicting individual age from MRI data, highlighting that introducing the harmonizer transformer into a machine learning pipeline allows for avoiding data leakage by design.
Collapse
Affiliation(s)
- Chiara Marzi
- Department of Statistics, Computer Science and Applications "Giuseppe Parenti", University of Florence, 50134, Florence, Italy
- "Nello Carrara" Institute of Applied Physics (IFAC), National Research Council (CNR), 50019, Sesto Fiorentino, Florence, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", 56126, Pisa, Italy
| | - Andrea Barucci
- "Nello Carrara" Institute of Applied Physics (IFAC), National Research Council (CNR), 50019, Sesto Fiorentino, Florence, Italy
| | - Carlo Tessa
- Radiology Unit Apuane e Lunigiana, Azienda USL Toscana Nord Ovest, 54100, Massa, Italy
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50139, Florence, Italy
- Division of Epidemiology and Clinical Governance, Institute for Study, Prevention and netwoRk in Oncology (ISPRO), 50139, Florence, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi" - DEI, University of Bologna, 47522, Cesena, Italy.
- Alma Mater Research Institute for Human-Centered Artificial Intelligence, University of Bologna, 40121, Bologna, Italy.
| |
Collapse
|
6
|
Manzarbeitia-Arroba B, Hodolic M, Pichler R, Osipova O, Soriano-Castrejón ÁM, García-Vicente AM. 18F-Fluoroethyl-L Tyrosine Positron Emission Tomography Radiomics in the Differentiation of Treatment-Related Changes from Disease Progression in Patients with Glioblastoma. Cancers (Basel) 2023; 16:195. [PMID: 38201621 PMCID: PMC10778283 DOI: 10.3390/cancers16010195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/10/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
The follow-up of glioma patients after therapeutic intervention remains a challenging topic, as therapy-related changes can emulate true progression in contrast-enhanced magnetic resonance imaging. 18F-fluoroethyl-tyrosine (18F-FET) is a radiopharmaceutical that accumulates in glioma cells due to an increased expression of L-amino acid transporters and, contrary to gadolinium, does not depend on blood-brain barrier disruption to reach tumoral cells. It has demonstrated a high diagnostic value in the differentiation of tumoral viability and pseudoprogression or any other therapy-related changes, especially when combining traditional visual analysis with modern radiomics. In this review, we aim to cover the potential role of 18F-FET positron emission tomography in everyday clinical practice when applied to the follow-up of patients after the first therapeutical intervention, early response evaluation, and the differential diagnosis between therapy-related changes and progression.
Collapse
Affiliation(s)
| | - Marina Hodolic
- Nuclear Medicine Department, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Robert Pichler
- Institute of Nuclear Medicine Kepler University Hospital—Neuromed Campus, 4020 Linz, Austria; (R.P.); (O.O.)
| | - Olga Osipova
- Institute of Nuclear Medicine Kepler University Hospital—Neuromed Campus, 4020 Linz, Austria; (R.P.); (O.O.)
| | | | - Ana María García-Vicente
- Nuclear Medicine Department, University Hospital of Toledo, 45007 Toledo, Spain; (B.M.-A.); (Á.M.S.-C.)
| |
Collapse
|
7
|
Fuchs T, Kaiser L, Müller D, Papp L, Fischer R, Tran-Gia J. Enhancing Interoperability and Harmonisation of Nuclear Medicine Image Data and Associated Clinical Data. Nuklearmedizin 2023; 62:389-398. [PMID: 37907246 PMCID: PMC10689089 DOI: 10.1055/a-2187-5701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
Nuclear imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) in combination with computed tomography (CT) are established imaging modalities in clinical practice, particularly for oncological problems. Due to a multitude of manufacturers, different measurement protocols, local demographic or clinical workflow variations as well as various available reconstruction and analysis software, very heterogeneous datasets are generated. This review article examines the current state of interoperability and harmonisation of image data and related clinical data in the field of nuclear medicine. Various approaches and standards to improve data compatibility and integration are discussed. These include, for example, structured clinical history, standardisation of image acquisition and reconstruction as well as standardised preparation of image data for evaluation. Approaches to improve data acquisition, storage and analysis will be presented. Furthermore, approaches are presented to prepare the datasets in such a way that they become usable for projects applying artificial intelligence (AI) (machine learning, deep learning, etc.). This review article concludes with an outlook on future developments and trends related to AI in nuclear medicine, including a brief research of commercial solutions.
Collapse
Affiliation(s)
- Timo Fuchs
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
- Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, LMU University Hospital, LMU, Munich, Germany
| | - Dominik Müller
- IT-Infrastructure for Translational Medical Research, University of Augsburg, Augsburg, Germany
- Medical Data Integration Center, University Hospital Augsburg, Augsburg, Germany
| | - Laszlo Papp
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Wien, Austria
| | - Regina Fischer
- Medical Data Integration Center (MEDIZUKR), University Hospital Regensburg, Regensburg, Germany
- Partner Site Regensburg, Bavarian Center for Cancer Research (BZKF), Regensburg, Germany
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Wurzburg, Germany
| |
Collapse
|