1
|
Lutz TM, Kimna C, Casini A, Lieleg O. Bio-based and bio-inspired adhesives from animals and plants for biomedical applications. Mater Today Bio 2022; 13:100203. [PMID: 35079700 PMCID: PMC8777159 DOI: 10.1016/j.mtbio.2022.100203] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 01/01/2023] Open
Abstract
With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.
Collapse
Affiliation(s)
- Theresa M. Lutz
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Ceren Kimna
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| | - Angela Casini
- Chair of Medicinal and Bioinorganic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, Garching, 85748, Germany
| | - Oliver Lieleg
- School of Engineering and Design, Department of Materials Engineering, Technical University of Munich, Boltzmannstraße 15, Garching, 85748, Germany
- Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer Str. 8, Garching, 85748, Germany
| |
Collapse
|
2
|
Audino JA, Marian JEAR. Form and function of tentacles in pteriomorphian bivalves. J Morphol 2019; 281:33-46. [PMID: 31750976 DOI: 10.1002/jmor.21077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/26/2019] [Accepted: 10/18/2019] [Indexed: 11/09/2022]
Abstract
Tentacles are remarkable anatomical structures in invertebrates for their diversity of form and function. In bivalves, tentacular organs are commonly associated with protective, secretory, and sensory roles. However, anatomical details are available for only a few species, rendering the diversity and evolution of bivalve tentacles still obscure. In Pteriomorphia, a clade including oysters, scallops, pearl oysters, and relatives, tentacles are abundant and diverse. We investigated tentacle anatomy in the group to understand variation, infer functions, and investigate patterns in tentacle diversity. Six species from four pteriomorphian families (Ostreidae, Pinnidae, Pteriidae, and Spondylidae) were collected and thoroughly investigated with integrative microscopy techniques, including histology, scanning electron microscopy, and confocal microscopy. Tentacles can be classified as middle fold tentacles (MFT) and inner fold tentacles (IFT) according to their position with respect to the folds of the mantle margin. While MFT morphology indicates intense secretion of mucosubstances, no evidence for secretory activity was found for IFT. However, both tentacle types have appropriate ciliary distribution and length to promote mucus transportation for cleaning and lubrication. Protective and sensory functions are discussed based on different lines of evidence, including secretion, cilia distribution, musculature, and innervation. Our results support the homology of MFT and IFT only for Pterioidea and Ostreoidea, considering their morphology, the presence of ciliated receptors at the tips, and branched innervation pattern. This is in accordance with recent phylogenetic hypotheses that support the close relationship between these superfamilies. In contrast, major structural differences indicate that MFT and IFT are probably not homologous across all pteriomorphians. By applying integrative microscopy, we were able to reveal anatomical elements that are essential for the understanding of homology and function when dealing with such superficially similar structures.
Collapse
Affiliation(s)
- Jorge A Audino
- Department of Zoology, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
3
|
Jung SH, Song HY, Hyun YS, Kim YC, Whang I, Choi TY, Jo S. A Brain Atlas of the Long Arm Octopus, Octopus minor. Exp Neurobiol 2018; 27:257-266. [PMID: 30181688 PMCID: PMC6120969 DOI: 10.5607/en.2018.27.4.257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 12/05/2022] Open
Abstract
Cephalopods have the most advanced nervous systems and intelligent behavior among all invertebrates. Their brains provide comparative insights for understanding the molecular and functional origins of the human brain. Although brain maps that contain information on the organization of each subregion are necessary for a study on the brain, no whole brain atlas for adult cephalopods has been constructed to date. Here, we obtained sagittal and coronal sections covering the entire brain of adult Octopus minor (Sasaki), which belongs to the genus with the most species in the class Cephalopoda and is commercially available in East Asia throughout the year. Sections were stained using Hematoxylin and Eosin (H&E) to visualize the cellular nuclei and subregions. H&E images of the serial sections were obtained at 30~70-µm intervals for the sagittal plain and at 40~80-µm intervals for the coronal plain. Setting the midline point of the posterior end as the fiducial point, we also established the distance coordinates of each image. We found that the brain had the typical brain structure of the Octopodiformes. A number of subregions were discriminated by a Hematoxylin-positive layer, the thickness and neuronal distribution pattern of which varied markedly depending upon the region. We identified more than 70 sub-regions based on delineations of representative H&E images. This is the first brain atlas, not only for an Octopodiformes species but also among adult cephalopods, and we anticipate that this atlas will provide a valuable resource for comparative neuroscience research.
Collapse
Affiliation(s)
- Seung-Hyun Jung
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea
| | - Ha Yeun Song
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea
| | - Young Se Hyun
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea
| | - Yu-Cheol Kim
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea
| | - Ilson Whang
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea
| | - Tae-Young Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea
| | - Seonmi Jo
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea
| |
Collapse
|
4
|
Zhang X, Dai X, Wang L, Miao Y, Xu P, Liang P, Dong B, Bao Z, Wang S, Lyu Q, Liu W. Characterization of an Atypical Metalloproteinase Inhibitors Like Protein (Sbp8-1) From Scallop Byssus. Front Physiol 2018; 9:597. [PMID: 29875695 PMCID: PMC5975577 DOI: 10.3389/fphys.2018.00597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/03/2018] [Indexed: 12/04/2022] Open
Abstract
Adhesion is a vital physiological process for many marine molluscs, including the mussel and scallop, and therefore it is important to characterize the proteins involved in these adhesives. Although several mussel byssal proteins were identified and characterized, the study for scallop byssal proteins remains scarce. Our previous study identified two foot-specific proteins (Sbp7, Sbp8-1), which were annotated as the tissue inhibitors of metalloproteinases (TIMPs). Evolutionary analysis suggests that the TIMP genes of Chlamys farreri had gone through multiple gene duplications during evolution, and their potential functional roles in foot may have an ancient evolutionary origin. Focusing on the Sbp8-1, the sequence alignment and biochemical analyses suggest that Sbp8-1 is an atypical TIMP. One significant feature is the presence of two extra free Cys residues at its C-terminus, which causes the Sbp8-1 polymerization. Considering the fact that the no inhibitory activity was observed and it is mainly distributed in byssal thread and plaque, we proposed that this atypical Sbp8-1 may play as the cross-linker in scallop byssus. This study facilitates not only the understanding of scallop byssus assembly, also provides the inspiration of water-resistant materials design.
Collapse
Affiliation(s)
- Xiaokang Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lulu Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yan Miao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pingping Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Pengyu Liang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao, China
| | - Qianqian Lyu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao, China
| | - Weizhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Ocean University of China, Qingdao, China
| |
Collapse
|
5
|
von Byern J, Cyran N, Klepal W, Nödl MT, Klinger L. Characterization of the adhesive dermal secretion of Euprymna scolopes Berry, 1913 (Cephalopoda). ZOOLOGY 2016; 120:73-82. [PMID: 27646066 DOI: 10.1016/j.zool.2016.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/28/2016] [Accepted: 08/20/2016] [Indexed: 10/21/2022]
Abstract
Bio-adhesion is a common and crucial process in nature and is used by several different species for camouflage, prey capture, hatching or to avoid drifting. Four genera of cephalopods belonging to four different families (Euprymna, Sepiolidae; Idiosepius, Idiosepiidae; Nautilus, Nautilidae; and Sepia, Sepiidae) produce glue for temporary attachment. Euprymna species live in near-shore benthic habitats of the Indo-Pacific Ocean, are nocturnal and bury into the seafloor during the day. The animals secrete adhesives through their epithelial glands to completely coat themselves with sand. In cases of danger, they instantaneously release the sandy coat as a sinking decoy to deflect predators. Earlier morphological investigations have shown that the adhesive gland cells of Euprymna scolopes are scattered on the dorsal epidermis. It has been proposed that neutral mucopolysaccharides, secreted by one gland type (goblet cells), are responsible for adhesion, whereas the release of the glue could be caused by acidic mucoproteins produced by ovate cells in the ventral epidermis. The ultrastructural re-investigation of the Euprymna epithelium in this study has indicated the presence of a new gland type (named flask cell), exclusively located in the dorsal epithelium and always neighboured to the known goblet cells. Based on our histochemical observations, the secretory material of the ovate cells does not display a strong reaction to tests for acidic groups, as had been previously assumed. Within the dermis, a large muscle network was found that was clearly distinctive from the normal mantle musculature. Based on our data, an antagonistic gland system, as previously proposed, seems to be unlikely for Euprymna scolopes. We hypothesize that the adhesive secretion is formed by two gland types (goblet and flask cells). The release of the sand coat may occur mechanically, i.e. by contraction of the dermal mantle muscle, and not chemically through the ovate cells.
Collapse
Affiliation(s)
- Janek von Byern
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200 Vienna, Austria; Core Facility Cell Imaging and Ultrastructural Research, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Norbert Cyran
- Core Facility Cell Imaging and Ultrastructural Research, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Waltraud Klepal
- Core Facility Cell Imaging and Ultrastructural Research, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Marie Therese Nödl
- Department of Theoretical Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Lisa Klinger
- Core Facility Cell Imaging and Ultrastructural Research, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
6
|
Anatomy of the pallial tentacular organs of the scallop Nodipecten nodosus (Linnaeus, 1758) (Bivalvia: Pectinidae). ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Siebert S, Goetz FE, Church SH, Bhattacharyya P, Zapata F, Haddock SHD, Dunn CW. Stem cells in Nanomia bijuga (Siphonophora), a colonial animal with localized growth zones. EvoDevo 2015; 6:22. [PMID: 26090088 PMCID: PMC4471933 DOI: 10.1186/s13227-015-0018-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/11/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Siphonophores (Hydrozoa) have unparalleled colony-level complexity, precision of colony organization, and functional specialization between zooids (i.e., the units that make up colonies). Previous work has shown that, unlike other colonial animals, most growth in siphonophores is restricted to one or two well-defined growth zones that are the sites of both elongation and zooid budding. It remained unknown, however, how this unique colony growth and development is realized at the cellular level. RESULTS To understand the colony-level growth and development of siphonophores at the cellular level, we characterize the distribution of proliferating cells and interstitial stem cells (i-cells) in the siphonophore Nanomia bijuga. Within the colony, we find evidence that i-cells are present at the tip of the horn, the structure within the growth zone that gives rise to new zooids. Co-localized gene expression of vasa-1, pl10, piwi, nanos-1, and nanos-2 suggests that i-cells persist in the youngest zooid buds and that i-cells become progressively restricted to specific regions within the zooids until they are mostly absent from the oldest zooids. The examined genes remain expressed in gametogenic regions. No evidence for i-cells is found in the stem between maturing zooids. Domains of high cell proliferation include regions where the examined genes are expressed, but also include some areas in which the examined genes were not expressed such as the stem within the growth zones. Cell proliferation in regions devoid of vasa-1, pl10, piwi, nanos-1, and nanos-2 expression indicates the presence of mitotically active epithelial cell lineages and, potentially, progenitor cell populations. CONCLUSIONS We provide the first evidence for i-cells in a siphonophore. Our findings suggest maintenance of i-cell populations at the sites of growth zones and that these sites are the main source of i-cells. This restriction of stem cells to particular regions in the colony, in combination with localized budding and spatial patterning during pro-bud subdivision, may play a major role in facilitating the precision of siphonophore growth. Spatially restricted maintenance of i-cells in mature zooids and absence of i-cells along the stem may explain the reduced developmental plasticity in older parts of the colony.
Collapse
Affiliation(s)
- Stefan Siebert
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St. Box GW, Providence, RI 02912 USA
| | - Freya E Goetz
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, 20004 Washington USA
| | - Samuel H Church
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St. Box GW, Providence, RI 02912 USA
| | - Pathikrit Bhattacharyya
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St. Box GW, Providence, RI 02912 USA
| | - Felipe Zapata
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St. Box GW, Providence, RI 02912 USA
| | | | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman St. Box GW, Providence, RI 02912 USA
| |
Collapse
|
8
|
Chen Y, Shih MC, Wu MH, Yang EC, Chi KJ. Underwater attachment using hairs: the functioning of spatula and sucker setae from male diving beetles. J R Soc Interface 2015; 11:20140273. [PMID: 24920108 DOI: 10.1098/rsif.2014.0273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Males of Dytiscinae beetles use specialized adhesive setae to adhere to female elytra during underwater courtship. This coevolution of male setae and female elytra has attracted much attention since Darwin. However, there has been little examination of their biomechanical functioning despite increasing knowledge on biofibrillar adhesion. Here, we report and compare, for the first time, the mechanisms of underwater attachment using two hair types, the primitive spatula and derived 'passive' sucker, found in male diving beetles. Results from interspecific scaling of protarsal palettes and adhesion by single seta suggest better performance in the later-evolved circular (sucker) setae. Spatula setae with a modified shallow sucker and channels use the combined mechanisms of suction and viscous resistance for adhesion. Velocity-dependent adhesion provides sufficient control for resisting the female's erratic movements while also detaching easily through slow peeling. Direction-dependent shear resistance helps reorient setae surfaces into a preferred direction for effective adhesion. Seta deformation using different mechanisms for circular and spatula setae reduces the force that is transmitted to the contact interface. A softer spring in spatula setae explains their adhesion at lower preloads and assists in complete substrate contact. Attachment mechanisms revealed in adhesive setae with modified spatula and passive suckers provide insights for bioinspired designs of underwater attachment devices.
Collapse
Affiliation(s)
- Ying Chen
- Department of Physics and Institute of Biophysics, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ming-Chih Shih
- Department of Physics and Institute of Biophysics, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ming-Huang Wu
- Department of Physics and Institute of Biophysics, National Chung Hsing University, Taichung 40227, Taiwan
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Jung Chi
- Department of Physics and Institute of Biophysics, National Chung Hsing University, Taichung 40227, Taiwan Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|