1
|
Lv X, Wang J, Wei F. A persistent mineralization process in alveolar bone throughout the postnatal growth stage in rats. Arch Oral Biol 2024; 167:106062. [PMID: 39094423 DOI: 10.1016/j.archoralbio.2024.106062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Alveolar bone quality is essential for the maxillofacial integrity and function, and depends on alveolar bone mineralization. This study aims to investigate the in vivo changes in alveolar bone mineralization, from the perspective of mineral deposition and crystal transition in postnatal rats. DESIGN Nine postnatal time points of Wistar rats, ranging from day 1 to 56, were set to obtain the maxillary alveolar bone samples. Each time point consisted of ninety rats, with 45 females and 45 males. Macromorphology of alveolar bone was reconducted by Micro-Computed Tomography and the mineral content was quantified via Thermogravimetric analysis, Scanning Electron Microscope, High-Resolution Transmission Electron Microscopy and vibrational spectroscopy. Furthermore, the crystallinity and composition were characterized by vibrational spectroscopy, X-ray Diffraction, X-ray Photoelectron Spectroscopy and Selected Area Electron Diffraction. RESULTS The progressive increase of mineral deposition was accompanied by substantial growth in alveolar bone mass and volume in postnatal rats. Whereas the mineral percentage initially decreased and then increased, reaching a nadir on postnatal day 14 (P14) when tooth eruption was first observed. Besides, localized mineralization was initiated by the formation of amorphous precursors and then converted into mineral crystals, while there was no statistically significant change in the average crystallinity of the bone during growth. CONCLUSION Mineralization of alveolar bone is ongoing throughout the early growth in postnatal rats. Mineral deposition increases with age, whereas the crystallinity remains stable within a certain range. Besides, the mineral percentage reaches its lowest point on P14, which may be attributed to tooth eruption.
Collapse
Affiliation(s)
- Xinli Lv
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong 250012, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong 250012, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No. 44-1 Wenhua Road West, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Metformin can mitigate skeletal dysplasia caused by Pck2 deficiency. Int J Oral Sci 2022; 14:54. [PMCID: PMC9663691 DOI: 10.1038/s41368-022-00204-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
As an important enzyme for gluconeogenesis, mitochondrial phosphoenolpyruvate carboxykinase (PCK2) has further complex functions beyond regulation of glucose metabolism. Here, we report that conditional knockout of Pck2 in osteoblasts results in a pathological phenotype manifested as craniofacial malformation, long bone loss, and marrow adipocyte accumulation. Ablation of Pck2 alters the metabolic pathways of developing bone, particularly fatty acid metabolism. However, metformin treatment can mitigate skeletal dysplasia of embryonic and postnatal heterozygous knockout mice, at least partly via the AMPK signaling pathway. Collectively, these data illustrate that PCK2 is pivotal for bone development and metabolic homeostasis, and suggest that regulation of metformin-mediated signaling could provide a novel and practical strategy for treating metabolic skeletal dysfunction.
Collapse
|
3
|
Yazdanian M, Alam M, Abbasi K, Rahbar M, Farjood A, Tahmasebi E, Tebyaniyan H, Ranjbar R, Hesam Arefi A. Synthetic materials in craniofacial regenerative medicine: A comprehensive overview. Front Bioeng Biotechnol 2022; 10:987195. [PMID: 36440445 PMCID: PMC9681815 DOI: 10.3389/fbioe.2022.987195] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
The state-of-the-art approach to regenerating different tissues and organs is tissue engineering which includes the three parts of stem cells (SCs), scaffolds, and growth factors. Cellular behaviors such as propagation, differentiation, and assembling the extracellular matrix (ECM) are influenced by the cell's microenvironment. Imitating the cell's natural environment, such as scaffolds, is vital to create appropriate tissue. Craniofacial tissue engineering refers to regenerating tissues found in the brain and the face parts such as bone, muscle, and artery. More biocompatible and biodegradable scaffolds are more commensurate with tissue remodeling and more appropriate for cell culture, signaling, and adhesion. Synthetic materials play significant roles and have become more prevalent in medical applications. They have also been used in different forms for producing a microenvironment as ECM for cells. Synthetic scaffolds may be comprised of polymers, bioceramics, or hybrids of natural/synthetic materials. Synthetic scaffolds have produced ECM-like materials that can properly mimic and regulate the tissue microenvironment's physical, mechanical, chemical, and biological properties, manage adherence of biomolecules and adjust the material's degradability. The present review article is focused on synthetic materials used in craniofacial tissue engineering in recent decades.
Collapse
Affiliation(s)
- Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Abbasi
- Department of Prosthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahbar
- Department of Restorative Dentistry, School of Dentistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Amin Farjood
- Orthodontic Department, Dental School, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arian Hesam Arefi
- Dental Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
4
|
Zhang Z, Yaryhin O, Koyabu D, Werneburg I. Morphological association between muscle attachments and ossification sites in the late cartilaginous skull of tuatara embryos. J Morphol 2022; 283:908-931. [DOI: 10.1002/jmor.21474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/11/2022] [Accepted: 03/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Zitong Zhang
- Fachbereich Geowissenschaften, Universität Tübingen Hölderlinstraße 12 72074 Tübingen Germany
- Fachbereich Biologie, Universität Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | | | - Daisuke Koyabu
- Research and Development Center for Precision Medicine University of Tsukuba 1‐2 Kasuga, Tsukuba‐shi Ibaraki 305‐8550 Japan
- Department of Molecular Craniofacial Embryology Tokyo Medical and Dental University 1‐5‐45 Yushima, Bunkyo‐ku Tokyo 113‐8549 Japan
| | - Ingmar Werneburg
- Fachbereich Geowissenschaften, Universität Tübingen Hölderlinstraße 12 72074 Tübingen Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment (SHEP) an der Universität Tübingen Hölderlinstraße 12 Tübingen 72076 Germany
| |
Collapse
|
5
|
Yamamoto M, Takada H, Ishizuka S, Kitamura K, Jeong J, Sato M, Hinata N, Abe S. Morphological association between the muscles and bones in the craniofacial region. PLoS One 2020; 15:e0227301. [PMID: 31923241 PMCID: PMC6953862 DOI: 10.1371/journal.pone.0227301] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/16/2019] [Indexed: 01/02/2023] Open
Abstract
The strains of inbred laboratory mice are isogenic and homogeneous for over 98.6% of their genomes. However, geometric morphometric studies have demonstrated clear differences among the skull shapes of various mice strains. The question now arises: why are skull shapes different among the mice strains? Epigenetic processes, such as morphological interaction between the muscles and bones, may cause differences in the skull shapes among various mice strains. To test these predictions, the objective of this study is to examine the morphological association between a specific part of the skull and its adjacent muscle. We examined C57BL6J, BALB/cA, and ICR mice on embryonic days (E) 12.5 and 16.5 as well as on postnatal days (P) 0, 10, and 90. As a result, we found morphological differences between C57BL6J and BALB/cA mice with respect to the inferior spine of the hypophyseal cartilage or basisphenoid (SP) and the tensor veli palatini muscle (TVP) during the prenatal and postnatal periods. There was a morphological correlation between the SP and the TVP in the C57BL6J, BALB/cA, and ICR mice during E15 and P0. However, there were not correlation between the TVP and the SP during P10. After discectomy, bone deformation was associated with a change in the shape of the adjacent muscle. Therefore, epigenetic modifications linked to the interaction between the muscles and bones might occur easily during the prenatal period, and inflammation seems to allow epigenetic modifications between the two to occur.
Collapse
Affiliation(s)
- Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
| | | | - Satoshi Ishizuka
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
| | - Kei Kitamura
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, United States of America
| | - Masaki Sato
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- Laboratory of Biology, Tokyo Dental College, Tokyo, Japan
| | - Nobuyuki Hinata
- Department of Urology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
- Tokyo Dental College Research Branding Project, Tokyo Dental College, Tokyo, Japan
- * E-mail:
| |
Collapse
|
6
|
Franks EM, Scott JE, McAbee KR, Scollan JP, Eastman MM, Ravosa MJ. Intracranial and hierarchical perspective on dietary plasticity in mammals. ZOOLOGY 2017; 124:30-41. [PMID: 28867598 DOI: 10.1016/j.zool.2017.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 11/16/2022]
Abstract
The effect of dietary properties on craniofacial form has been the focus of numerous functional studies, with increasingly more work dedicated to the importance of phenotypic plasticity. As bone is a dynamic tissue, morphological variation related to differential loading is well established for many masticatory structures. However, the adaptive osteogenic response of several cranial sites across multiple levels of bony organization remains to be investigated. Here, rabbits were obtained at weaning and raised for 48 weeks until adulthood in order to address the naturalistic influence of altered loading on the long-term development of masticatory and non-masticatory elements. Longitudinal data from micro-computed tomography (μCT) scans were used to test the hypothesis that variation in cortical bone formation and biomineralization in masticatory structures is linked to increased stresses during oral processing of mechanically challenging foods. It was also hypothesized that similar parameters for neurocranial structures would be minimally affected by varying loads as this area is characterized by low strains during mastication and reduced hard-tissue mechanosensitivity. Hypotheses were supported regarding bone formation for maxillomandibular and neurocranial elements, though biomineralization trends of masticatory structures did not mirror macroscale findings. Varying osteogenic responses in masticatory elements suggest that physiological adaptation, and corresponding variation in skeletal performance, may reside differentially at one level of bony architecture, potentially affecting the accuracy of behavioral and in silico reconstructions. Together, these findings underscore the complexity of bone adaptation and highlight functional and developmental variation in determinants of skull form.
Collapse
Affiliation(s)
- Erin M Franks
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jeremiah E Scott
- Department of Anthropology, Southern Illinois University, 1000 Faner Drive, Carbondale, IL 62901, USA.
| | - Kevin R McAbee
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Joseph P Scollan
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Meghan M Eastman
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Ravosa
- Department of Biological Sciences, 100 Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Anthropology, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|