1
|
Gąsiorowski L. Phoronida-A small clade with a big role in understanding the evolution of lophophorates. Evol Dev 2024; 26:e12437. [PMID: 37119003 DOI: 10.1111/ede.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023]
Abstract
Phoronids, together with brachiopods and bryozoans, form the animal clade Lophophorata. Modern lophophorates are quite diverse-some can biomineralize while others are soft-bodied, they could be either solitary or colonial, and they develop through various eccentric larval stages that undergo different types of metamorphoses. The diversity of this clade is further enriched by numerous extinct fossil lineages with their own distinct body plans and life histories. In this review, I discuss how data on phoronid development, genetics, and morphology can inform our understanding of lophophorate evolution. The actinotrocha larvae of phoronids is a well documented example of intercalation of the new larval body plan, which can be used to study how new life stages emerge in animals with biphasic life cycle. The genomic and embryonic data from phoronids, in concert with studies of the fossil lophophorates, allow the more precise reconstruction of the evolution of lophophorate biomineralization. Finally, the regenerative and asexual abilities of phoronids can shed new light on the evolution of coloniality in lophophorates. As evident from those examples, Phoronida occupies a central role in the discussion of the evolution of lophophorate body plans and life histories.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
2
|
Kuzmina TV, Temereva EN. Structure of the oral tentacles of early ontogeny stage in brachiopod Hemithiris psittacea (Rhynchonelliformea, Rhynchonellida). J Morphol 2024; 285:e21686. [PMID: 38491849 DOI: 10.1002/jmor.21686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/18/2024]
Abstract
Brachiopods have the most complex lophophore in comparison with other lophophorates, i.e., phoronids and bryozoans. However, at early ontogenetic stages, brachiopods have a lophophore of simple morphology, which consists of the oral tentacles. Data on the ultrastructure of the oral tentacles is mostly missing. Nonetheless, it has recently been suggested that the structure of oral tentacles is ancestral for all lophophorates in general, and for brachiopods in particular. The fine structure of the oral tentacles in the brachiopod Hemithiris psittacea is studied using light microscopy, transmission and scanning electron microscopy, cytochemistry and confocal laser scanning microscopy. The oral tentacles have a round shape in transverse section, and four ciliary zones, i.e., one frontal, two lateral, and one abfrontal. Latero-frontal sensory cells occur among the frontal epithelium. Four basiepithelial nerves in the ciliary epithelium are colocalized with ciliary zones. Lophophores of simple morphology in phoronids and brachiopods are characterized by non-specified round forms of tentacles. In phoronids and bryozoans, tentacles have additional latero-frontal ciliary zones that function as a sieve during filtration. In most brachiopods, lateral cilia are involved in the capture of food particles, whereas latero-frontal cells are retained in the frontal zone as sensory elements. The oral tentacles of H. psittacea contain a coelomic canal and have distinct frontal and abfrontal longitudinal muscles, which are separated from each other by peritoneal cells. A similar structure of tentacle muscles occurs in all bryozoans, whereas in phoronids, the frontal and abfrontal tentacle muscles are not separated by peritoneal cells. We suggest that the lophophorates' ancestor had tentacles, which were similar to the tentacles of some phoronids with lophophore of simple morphology. We also assume that the structure of the oral tentacles is ancestral for all brachiopods and the specialization of brachiopod tentacles correlates with the appearance of the double row of tentacles.
Collapse
|
3
|
Temereva EN, Isaeva MA, Kosevich IA. Unusual lophophore innervation in ctenostome Flustrellidra hispida (Bryozoa). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:245-258. [PMID: 35662417 DOI: 10.1002/jez.b.23164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Since ctenostomes are traditionally regarded as an ancestral clade to some other bryozoan groups, the study of additional species may help to clarify questions on bryozoan evolution and phylogeny. One of these questions is the bryozoan lophophore evolution: whether it occurred through simplification or complication. The morphology and innervation of the ctenostome Flustrellidra hispida (Fabricius, 1780) lophophore have been studied with electron microscopy and immunocytochemistry with confocal laser scanning microscopy. Lophophore nervous system of F. hispida consists of several main nerve elements: cerebral ganglion, circumoral nerve ring, and the outer nerve ring. Serotonin-like immunoreactive perikarya, which connect with the circumoral nerve ring, bear the cilium that directs to the abfrontal side of the lophophore and extends between tentacle bases. The circumoral nerve ring gives rise to the intertentacular and frontal tentacle nerves. The outer nerve ring gives rise to the abfrontal neurites, which connect to the outer groups of perikarya and contribute to the formation of the abfrontal tentacle nerve. The outer nerve ring has been described before in other bryozoans, but it never contributes to the innervation of tentacles. The presence of the outer nerve ring participating in the innervation of tentacles makes the F. hispida lophophore nervous system particularly similar to the lophophore nervous system of phoronids. This similarity allows to suggest that organization of the F. hispida lophophore nervous system may reflect the ancestral state for all bryozoans. The possible scenario of evolutionary transformation of the lophophore nervous system within bryozoans is suggested.
Collapse
Affiliation(s)
- Elena N Temereva
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A Isaeva
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Igor A Kosevich
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Brachiopod and mollusc biomineralisation is a conserved process that was lost in the phoronid-bryozoan stem lineage. EvoDevo 2022; 13:17. [PMID: 36123753 PMCID: PMC9484238 DOI: 10.1186/s13227-022-00202-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brachiopods and molluscs are lophotrochozoans with hard external shells which are often believed to have evolved convergently. While palaeontological data indicate that both groups are descended from biomineralising Cambrian ancestors, the closest relatives of brachiopods, phoronids and bryozoans, are mineralised to a much lower extent and are comparatively poorly represented in the Palaeozoic fossil record. Although brachiopod and mollusc shells are structurally analogous, genomic and proteomic evidence indicates that their formation involves a complement of conserved, orthologous genes. Here, we study a set of genes comprised of 3 homeodomain transcription factors, one signalling molecule and 6 structural proteins which are implicated in mollusc and brachiopod shell formation, search for their orthologs in transcriptomes or genomes of brachiopods, phoronids and bryozoans, and present expression patterns of 8 of the genes in postmetamorphic juveniles of the rhynchonelliform brachiopod T. transversa. RESULTS Transcriptome and genome searches for the 10 target genes in the brachiopods Terebratalia transversa, Lingula anatina, Novocrania anomala, the bryozoans Bugula neritina and Membranipora membranacea, and the phoronids Phoronis australis and Phoronopsis harmeri resulted in the recovery of orthologs of the majority of the genes in all taxa. While the full complement of genes was present in all brachiopods with a single exception in L. anatina, a bloc of four genes could consistently not be retrieved from bryozoans and phoronids. The genes engrailed, distal-less, ferritin, perlucin, sp1 and sp2 were shown to be expressed in the biomineralising mantle margin of T. transversa juveniles. CONCLUSIONS The gene expression patterns we recovered indicate that while mineralised shells in brachiopods and molluscs are structurally analogous, their formation builds on a homologous process that involves a conserved complement of orthologous genes. Losses of some of the genes related to biomineralisation in bryozoans and phoronids indicate that loss of the capacity to form mineralised structures occurred already in the phoronid-bryozoan stem group and supports the idea that mineralised skeletons evolved secondarily in some of the bryozoan subclades.
Collapse
|
5
|
Temereva E. First Modern Data on the Lophophore Nervous System in Adult Novocrania anomala and a Current Assessment of Brachiopod Phylogeny. BIOLOGY 2022; 11:biology11030406. [PMID: 35336780 PMCID: PMC8945433 DOI: 10.3390/biology11030406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary The nervous system of Novocrania anomala adults is described for the first time. A table containing data on the lophophore innervation in species from three brachiopod subphyla is presented. A comparative analysis suggests a close relationship between the Craniiformea and the Rhynchonelliformea, and thereby supports the “Calciata” hypothesis of brachiopod phylogeny. Abstract Although the lophophore is regarded as the main synapomorphy of all lophophorates, the evolution of the lophophore in certain groups of lophophorates remains unclear. To date, the innervation of the lophophore has been studied with modern methods only for three brachiopod species belonging to two subphyla: Linguliformea and Rhynchonelliformea. In the third subphylum, the Craniiformea, there are data for juveniles but not for adults. In the current research, the innervation of the lophophore in Novocrania anomala adults was studied by immunocytochemistry and confocal laser scanning microscopy. In the spiral lophophore of adults of the craniiform N. anomala, each arm is innervated by six brachial nerves: main, additional main, accessory, second accessory, additional lower, and lower brachial nerves. Compared with other brachiopod species, this complex innervation of the lophophore correlates with the presence of many lophophoral muscles. The general anatomy of the lophophore nervous system and the peculiarities of the organization of the subenteric ganglion of the craniiform N. anomala have a lot in common with those of rhynchonelliforms but not with those of linguliforms. These findings are consistent with the “Calciata” hypothesis of the brachiopod phylogeny and are inconsistent with the inference that the Craniiformea and Linguliformea are closely related.
Collapse
Affiliation(s)
- Elena Temereva
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, 119991 Moscow, Russia; ; Tel.: +7-(909)-9764434
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 101000 Moscow, Russia
| |
Collapse
|
6
|
Temereva E, Rimskaya-Korsakova N, Dyachuk V. Detailed morphology of tentacular apparatus and central nervous system in Owenia borealis (Annelida, Oweniidae). ZOOLOGICAL LETTERS 2021; 7:15. [PMID: 34865650 PMCID: PMC8647411 DOI: 10.1186/s40851-021-00182-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The Oweniidae are marine annelids with many unusual features of organ system, development, morphology, and ultrastructure. Together with magelonids, oweniids have been placed within the Palaeoannelida, a sister group to all remaining annelids. The study of this group may increase our understanding of the early evolution of annelids (including their radiation and diversification). In the current research, the morphology and ulta-anatomy of the head region of Owenia borealis is studied by scanning electron microscopy (SEM), 3D reconstructions, transmission electron microscopy (TEM), and whole-mount immunostaining with confocal laser scanning microscopy. According to SEM, the tentacle apparatus consists of 8-14 branched arms, which are covered by monociliary cells that form a ciliary groove extending along the oral side of the arm base. Each tentacle contains a coelomic cavity with a network of blood capillaries. Monociliary myoepithelial cells of the tentacle coelomic cavity form both the longitudinal and the transverse muscles. The structure of this myoepithelium is intermediate between a simple and pseudo-stratified myoepithelium. Overall, tentacles lack prominent zonality, i.e., co-localization of ciliary zones, neurite bundles, and muscles. This organization, which indicates a non-specialized tentacle crown in O. borealis and other oweniids with tentacles, may be ancestral for annelids. TEM, light, and confocal laser scanning microscopy revealed that the head region contains the anterior nerve center comprising of outer and inner (=circumoral) nerve rings. Both nerve rings are organized as concentrated nerve plexus, which contains perikarya and neurites extending between basal projections of epithelial cells (radial glia). The outer nerve ring gives rise to several thick neurite bundles, which branch and extend along aboral side of each tentacle. Accordingly to their immunoreactivity, both rings of the anterior nerve center could be homologized with the dorsal roots of circumesophageal connectives of the typical annelids. Accordingly to its ultrastructure, the outer nerve ring of O. borealis and so-called brain of other oweniids can not be regarded as a typical brain, i.e. the most anterior ganglion, because it lacks ganglionic structure.
Collapse
Affiliation(s)
- Elena Temereva
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Lomonosov State University, Leninskie Gory 1, bld. 12, Moscow, 119992 Russia
| | - Nadezhda Rimskaya-Korsakova
- Department of Invertebrate Zoology, Biological Faculty, Moscow State University, Lomonosov State University, Leninskie Gory 1, bld. 12, Moscow, 119992 Russia
| | - Vyacheslav Dyachuk
- National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041 Russia
| |
Collapse
|
7
|
Kuzmina T, Temereva E. Ultrastructure of ganglia in the brachiopod
Coptothyris grayi
and its phylogenetic significance. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tatyana Kuzmina
- Department of Invertebrate Zoology Biological Faculty Moscow State University Moscow Russia
| | - Elena Temereva
- Department of Invertebrate Zoology Biological Faculty Moscow State University Moscow Russia
- Faculty Biology and Biotechnology National Research University Higher School of Economics Moscow Russia
| |
Collapse
|
8
|
Novel data on the innervation of the lophophore in adult phoronids (Lophophorata, Phoronida). ZOOLOGY 2020; 143:125832. [PMID: 32971479 DOI: 10.1016/j.zool.2020.125832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 11/21/2022]
Abstract
The structure of the lophophore nervous system may help clarify the status of the clade Lophophorata, whose monophyly is debated. In the current study, antibody labeling and confocal laser scanning microscopy revealed previously undescribed main nerve elements in the lophophore in adult phoronids: Phoronis australis and Phoronopsis harmeri. In both species, the nervous system includes a dorsal ganglion, a tentacle nerve ring, an inner nerve ring, intertentacular groups of perikarya, and tentacle nerves. The dorsal ganglion and tentacle nerve ring contain many serotonin-like immunoreactive perikarya of different sizes. The inner nerve ring is described for the first time in adult phoronids with complex lophophore. It contains a thin bundle of serotonin-like immunoreactive neurites. The tentacles possess abfrontal, frontal, and laterofrontal nerves. The abfrontal nerves originate from the tentacle nerve ring; the frontal tentacle nerves extend from the inner nerve ring in P. harmeri and from the intertentacular frontal nerves in P. australis. The intertentacular groups of perikarya are found in phoronids for the first time. These small nerve centers connect with neither the tentacle nerve ring nor the inner nerve ring, giving rise to the laterofrontal tentacle nerves. The discovery of the inner nerve ring in adult phoronids makes the architecture of the lophophore nervous system similar in all lophophorates and thereby supports the monophyly of this group. The presence of intertentacular nerves, perikarya, and groups of perikarya is a typical feature of the nervous system in lophophorate presumably coordinating movements of the tentacles and thereby increasing the efficiency of lophophore functioning.
Collapse
|
9
|
First data on the organization of the nervous system in juveniles of Novocrania anomala (Brachiopoda, Craniiformea). Sci Rep 2020; 10:9295. [PMID: 32518307 PMCID: PMC7283359 DOI: 10.1038/s41598-020-66014-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/14/2020] [Indexed: 01/30/2023] Open
Abstract
The organization and development of the nervous system are traditionally used for phylogenetic analysis and may be useful for clarification of evolution and phylogeny of some poor studied groups. One of these groups is brachiopods: most data on their nervous system organization were obtained in 19th century. In this research, antibody staining and confocal laser scanning microscopy were used to study the nervous system of early ontogenetic stages of the brachiopod Novocrania anomala. Although N. anomala adults are thought to lack a supraenteric ganglion, a large supraenteric ganglion exists in N. anomala juveniles with either a trocholophe or a schizolophe. During ontogenesis, the supraenteric ganglion in the juvenile changes its shape: the commissure between the two lobes of the ganglion extends. This commissure possibly gives rise to the main brachial nerve in adults. The supraenteric ganglion gives rise to the cross (transversal) nerves that extend to the accessory brachial nerve, which gives rise to the tentacular nerves. In juveniles with a trocholophe, the accessory brachial nerve gives rise to the frontal and intertentacular nerves of tentacles that form a single row. When the trocholophe transforms into the schizolophe, the second row of tentacles appears and the innervation of the tentacles changes. The intertentacular nerves disappear and the second accessory nerve forms and gives rise to the laterofrontal tentacular nerves of the inner and outer tentacles and to the abfrontal nerves of the inner tentacles. The so-called subenteric ganglion, which was described as a ganglion in N. anomala adults, is represented by a large circumvisceral nerve in N. anomala juveniles.The results suggest that ‘phoronid-like’ non-specialized tentacles may be regarded as the ancestral type of tentacles for brachiopods and probably for all lophophorates. The presence of intertentacular nerves is the ancestral feature of all lophophorates. The transformation of the juvenile supraenteric ganglion into the main brachial nerve of N. anomala adults suggests that research is needed on the development and organization of the supraenteric ganglion and the main brachial nerve in other brachiopods, whose adults have a prominent supraenteric ganglion.
Collapse
|
10
|
Temereva EN. Myoanatomy of the Lophophore in Adult Phoronids and the Evolution of the Phoronid Lophophore. THE BIOLOGICAL BULLETIN 2019; 237:270-282. [PMID: 31922911 DOI: 10.1086/705424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Confocal laser scanning microscopy was used to study the myoanatomy of the lophophore of three phoronids with different types of lophophore: Phoronis ijimai, Phoronis australis, and Phoronopsis harmeri. A four-part ground plan of the lophophoral musculature was detected in all three species and was previously reported for Phoronis ovalis. The ground plan includes (i) a circular muscle, (ii) longitudinal muscles of the tentacular lamina, (iii) groups of paired distal muscles of the tentacular lamina, and (iv) frontal and abfrontal muscles of the tentacles. In P. australis, the tentacular lamina contains strong abfrontal and numerous frontal muscles. Phoronis harmeri has an inner circular muscle and arch-like muscles. Among all studied phoronids, the four-part ground plan of the lophophoral musculature is least complex in P. ijimai, which has a horseshoe-shaped lophophore. The results suggest two possible scenarios by which the morphology of the phoronid lophophore has transformed over evolutionary time. According to the first scenario, the morphology of the ancestral horseshoe-shaped lophophore became more complicated in the case of most phoronids but became simplified in the case of P. ovalis and bryozoans. According to the second scenario, the lophophore gradually transformed from a simple oval shape to a horseshoe shape and then to a spiral shape. The four-part ground plan of the lophophoral musculature is also present in bryozoans, which is consistent with the view that the lophophorates are monophyletic.
Collapse
|