1
|
The Complex and Well-Developed Morphological and Histological Structures of the Gastrointestinal Tract of the Plateau Zokor Improve Its Digestive Adaptability to High-Fiber Foods. Animals (Basel) 2022; 12:ani12182447. [PMID: 36139307 PMCID: PMC9494992 DOI: 10.3390/ani12182447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
The morphological and histological traits of the gastrointestinal tract (GIT) enable the animal to perform some specific functions that enhance the species’ adaptability to environments. The plateau zokor (Eospalax baileyi) is a subterranean rodent that mainly forages on plant roots in the Qinghai-Tibet Plateau, but little is known about the mechanism by which the plateau zokor digests roots that have high fiber contents. In this study, we used comparative anatomy methods to compare the morphological and histological traits of the GIT of both the plateau zokor and the plateau pika (Ochotona curzoniae), a small, fossorial lagomorph that forages aboveground plant parts, in order to clarify the traits of the plateau zokor’s GIT and to understand its adaptations to high-fiber foods. The results showed that the foods which plateau zokors eat have a higher fiber content than those which the plateau pikas eat. The plateau zokor has a double-chambered and hemi-glandular stomach (the tubular glands are only in the gastric corpus II, and the gastric fundus is keratinized), whereas the plateau pika has a simple, wholly glandular stomach. The gross morphological indicators (organ index and relative length) of the GIT were significantly lower in the plateau zokor than they were in the plateau pika (p < 0.001). However, the thickness of the gastric corpus II mucosal layer and the gastric fundus muscle layer are significantly higher in the plateau zokor than they are in the plateau pika (p < 0.001), and the thickness of each layer of intestinal tissue is higher in the plateau zokor than it is in the plateau pika. Additionally, the small intestinal villi also are higher and wider in the plateau zokor than they are in the plateau pika. Our results suggest that instead of adapting to digest the high-fiber diet by expanding the size of the GIT, the plateau zokor has evolved a complex stomach and a well-developed gastrointestinal histological structure, and that these specialized GIT structures are consistent with an optimal energy-economy evolutionary adaptation strategy.
Collapse
|
2
|
Naumova EI, Chistova TY, Varshavskii AA, Zharova GK. Functional Diversity of Morphologically Similar Digestive Organs in Muroidea Species. BIOL BULL+ 2021. [DOI: 10.1134/s1062359021020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract
We examine possible ways of functional adjustment of morphologically similar alimentary tracts in rodents with different dietary specializations. We study the structure of stomach and gut epithelial surface as well as the features of its colonization with microorganisms in five gerbil species: Psammomys obesus, Meriones crassus, Gerbillus henleyi, G. andersoni, and G. dasyurus. Data on the morphological diversity of mucosa-associated microbiota have been obtained and confirmed by the results of previous microbiology studies. Species differences in chymus acidity associated with dietary specialization have been determined. Variations in the activity of the endoglucanase microbial enzyme, which is crucial for rodents fed on cellulose-containing food, have also been detected. The importance of microbiota for functional adaptations to various food types in rodents with morphologically similar digestive tracts has been evaluated.
Collapse
|
3
|
Naumova EI, Chistova TY, Zharova GK, Kam M, Khokhlova IS, Krasnov BR, Clauss M, Degen AA. Particle size reduction along the digestive tract of fat sand rats (Psammomys obesus) fed four chenopods. J Comp Physiol B 2021; 191:831-841. [PMID: 33738527 DOI: 10.1007/s00360-021-01357-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
It is generally accepted that microbial digestion contributes little to digesta particle size reduction in herbivores, and that faecal particle size reflects mainly chewing efficiency, and may vary with diet. Nevertheless, a decrease in mean particle size (MPS) along the gastrointestinal tract (GIT) has been reported, especially in hindgut fermenters. However, to what degree the very fine particle fraction (non-food origin, especially microbes) affects MPS is unclear. Fat sand rats (Psammomys obesus, diurnal herbivores, n = 23, 175 ± sd 24 g) consumed one of four chenopods (natural dietary items in the wild) for 30 days. Digestibility was related negatively to dietary fibre content. We determined digesta MPS in the forestomach, glandular stomach, small intestine, caecum, colon and faeces by wet sieving, including (MPSfines) or excluding (MPSnofines) particles < 0.25 mm. The proportions of fines were higher and of MPSfines were correspondingly lower in GIT sections that harbour microbes (forestomach, hindgut), whereas MPSnofines did not differ between forestomach and glandular stomach. However, MPSnofines decreased along the GIT, indicating MPS reduction due to digestive (enzymatic and microbial) processes. The four different diets led to different MPS, but the magnitude of MPS reduction in the GIT was not correlated with dietary fibre fractions or dry matter digestibility. These results indicate that within a species, MPS cannot be used as a proxy for diet quality or digestibility, and raise the hypothesis that MPS reduction along the GIT may be more pronounced in smaller than in larger mammalian terrestrial herbivores, possibly due to the fine initial particles produced by chewing in small species.
Collapse
Affiliation(s)
- Elena I Naumova
- Laboratory of Ecology, Physiology and Functional Morphology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Tatyana Y Chistova
- Laboratory of Ecology, Physiology and Functional Morphology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Galina K Zharova
- Laboratory of Ecology, Physiology and Functional Morphology, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, 119071, Russia
| | - Michael Kam
- Desert Animal Adaptations and Husbandry, Wyler Department for Dryland Agriculture, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Irina S Khokhlova
- Desert Animal Adaptations and Husbandry, Wyler Department for Dryland Agriculture, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, 8057, Zurich, Switzerland
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department for Dryland Agriculture, The French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
4
|
Chuluunbaatar T, Ichii O, Nakamura T, Irie T, Namba T, Islam MR, Otani Y, Masum MA, Okamatsu-Ogura Y, Elewa YHA, Kon Y. Unique Running Pattern and Mucosal Morphology Found in the Colon of Cotton Rats. Front Physiol 2020; 11:587214. [PMID: 33192600 PMCID: PMC7649294 DOI: 10.3389/fphys.2020.587214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/05/2020] [Indexed: 12/31/2022] Open
Abstract
Cotton rats are one of the experimental rodents used for testing different infectious and non-infectious diseases, including gastrointestinal tract pathology. However, their intestinal morphological characteristics are still poorly understood. Here, we clarified the anatomical and histological characteristics of the cecum and ascending colon (AC) of young (1–3-month old), adult (4–6-month old), and old (10–12-month old) cotton rats. The large intestine (LI) in cotton rats is composed of the cecum, AC, transverse and descending colons, and rectum, and is similar to that of other mammals. The AC begins with a double or triple spiral loop-like flexure (SLLF) and ends with a coupled horseshoe-like flexure (HSLF). A single longitudinal mucosal fold (SLMF) was found at the beginning of the AC along the mesentery line and developed with age. Furthermore, the SLMF contained several lymphatic nodules (LNs), indicating their role in digestive and immunological functions. Small and large protuberant LNs were found in the cecum and SLLF, respectively, whereas thin and flat LNs were observed in the HSLF and transverse colon, respectively. Regarding sex-related differences, adult females had a significantly longer AC with a higher number of SLLFs compared to males. The SLMF length and LN number were also longer and higher, respectively, in adult females compared to adult males. These are crucial findings, indicating the presence of sex-related differences in the morphology of the LI in cotton rats, and ours is the first study to discover a sex difference in the mammalian LI lining. Our study clarified the unique morphology of the LI in cotton rats, which could serve as the principal model for elucidating species-specific digestive tract functions and gastrointestinal disorders.
Collapse
Affiliation(s)
- Tsolmon Chuluunbaatar
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Basic Science of Veterinary Medicine, School of Veterinary Medicine, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - Takao Irie
- Medical Zoology Group, Department of Infectious Diseases, Hokkaido Institute of Public Health, Sapporo, Japan.,Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Md Rashedul Islam
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Surgery and Theriogenology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|