1
|
DeMers HL, Nualnoi T, Thorkildson P, Hau D, Hannah EE, Green HR, Pandit SG, Gates-Hollingsworth MA, Boutthasavong L, Luangraj M, Woods KL, Dance D, AuCoin DP. Detection and Quantification of the Capsular Polysaccharide of Burkholderia pseudomallei in Serum and Urine Samples from Melioidosis Patients. Microbiol Spectr 2022; 10:e0076522. [PMID: 35924843 PMCID: PMC9430648 DOI: 10.1128/spectrum.00765-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a life-threatening disease common in Southeast Asia and northern Australia. Melioidosis often presents with nonspecific symptoms and has a fatality rate of upwards of 70% when left untreated. The gold standard for diagnosis is culturing B. pseudomallei from patient samples. Bacterial culture, however, can take up to 7 days, and its sensitivity is poor, at roughly 60%. The successful administration of appropriate antibiotics is reliant on rapid and accurate diagnosis. Hence, there is a genuine need for new diagnostics for this deadly pathogen. The Active Melioidosis Detect (AMD) lateral flow immunoassay (LFI) detects the capsular polysaccharide (CPS) of B. pseudomallei. The assay is designed for use on various clinical samples, including serum and urine; however, there are limited data to support which clinical matrices are the best candidates for detecting CPS. In this study, concentrations of CPS in paired serum and urine samples from melioidosis patients were determined using a quantitative antigen capture enzyme-linked immunosorbent assay. In parallel, samples were tested with the AMD LFI, and the results of the two immunoassays were compared. Additionally, centrifugal concentration was performed on a subset of urine samples to determine if this method may improve detection when CPS levels are initially low or undetectable. The results indicate that while CPS levels varied within the two matrices, there tended to be higher concentrations in urine. The AMD LFI detected CPS in 40.5% of urine samples, compared to 6.5% of serum samples, suggesting that urine is a preferable matrix for point-of-care diagnostic assays. IMPORTANCE Melioidosis is very challenging to diagnose. There is a clear need for a point-of-care assay for the detection of B. pseudomallei antigen directly from patient samples. The Active Melioidosis Detect lateral flow immunoassay detects the capsular polysaccharide (CPS) of B. pseudomallei and is designed for use on various clinical samples, including serum and urine. However, there are limited data regarding which clinical matrix is preferable for the detection of CPS. This study addresses this question by examining quantitative CPS levels in paired serum and urine samples and relating them to clinical parameters. Additionally, centrifugal concentration was performed on a subset of urine samples to determine whether this might enable the detection of CPS in samples in which it was initially present at low or undetectable levels. These results provide valuable insights into the detection of CPS in patients with melioidosis and suggest potential ways forward in the diagnosis and treatment of this challenging disease.
Collapse
Affiliation(s)
- Haley L. DeMers
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada, USA
| | - Teerapat Nualnoi
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada, USA
| | - Peter Thorkildson
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada, USA
| | - Derrick Hau
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada, USA
| | - Emily E. Hannah
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada, USA
| | - Heather R. Green
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada, USA
| | - Sujata G. Pandit
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada, USA
| | | | - Latsaniphone Boutthasavong
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Manophab Luangraj
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - Kate L. Woods
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
| | - David Dance
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People’s Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David P. AuCoin
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, Nevada, USA
| |
Collapse
|
2
|
Hantrakun V, Thaipadungpanit J, Rongkard P, Srilohasin P, Amornchai P, Langla S, Mukaka M, Chantratita N, Wuthiekanun V, Dance DAB, Day NPJ, Peacock SJ, Limmathurotsakul D. Presence of B. thailandensis and B. thailandensis expressing B. pseudomallei-like capsular polysaccharide in Thailand, and their associations with serological response to B. pseudomallei. PLoS Negl Trop Dis 2018; 12:e0006193. [PMID: 29364892 PMCID: PMC5809093 DOI: 10.1371/journal.pntd.0006193] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/12/2018] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Burkholderia pseudomallei is an environmental Gram-negative bacillus and the cause of melioidosis. B. thailandensis, some strains of which express a B. pseudomallei-like capsular polysaccharide (BTCV), is also commonly found in the environment in Southeast Asia but is considered non-pathogenic. The aim of the study was to determine the distribution of B. thailandensis and its capsular variant in Thailand and investigate whether its presence is associated with a serological response to B. pseudomallei. METHODOLOGY/PRINCIPAL FINDINGS We evaluated the presence of B. pseudomallei and B. thailandensis in 61 rice fields in Northeast (n = 21), East (n = 19) and Central (n = 21) Thailand. We found BTCV in rice fields in East and Central but not Northeast Thailand. Fourteen fields were culture positive for B. pseudomallei alone, 8 for B. thailandensis alone, 11 for both B. pseudomallei and B. thailandensis, 6 for both B. thailandensis and BTCV, and 5 for B. pseudomallei, B. thailandensis and BTCV. Serological testing using the indirect hemagglutination assay (IHA) of 96 farmers who worked in the study fields demonstrated that farmers who worked in B. pseudomallei-positive fields had higher IHA titers than those who worked in B. pseudomallei-negative fields (median 1:40 [range: <1:10-1:640] vs. <1:10 [range: <1:10-1:320], p = 0.002). In a multivariable ordered logistic regression model, IHA titers were significantly associated with the presence of B. pseudomallei (aOR = 3.7; 95% CI 1.8-7.8, p = 0.001) but were not associated with presence of B. thailandensis (p = 0.32) or BTCV (p = 0.32). One sequence type (696) was identified for the 27 BTCV isolates tested. CONCLUSIONS/SIGNIFICANCE This is the first report of BTCV in Thailand. The presence of B. pseudomallei and B. thailandensis in the same field was not uncommon. Our findings suggest that IHA positivity of healthy rice farmers in Thailand is associated with the presence of B. pseudomallei in rice fields rather than B. thailandensis or BTCV.
Collapse
Affiliation(s)
- Viriya Hantrakun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Janjira Thaipadungpanit
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patpong Rongkard
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Prapaporn Srilohasin
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Premjit Amornchai
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sayan Langla
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mavuto Mukaka
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Narisara Chantratita
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - David A. B. Dance
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao People's Democratic Republic
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
| | - Sharon J. Peacock
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Old Road Campus, University of Oxford, Oxford, United Kingdom
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Abstract
Detection of microbial antigens in clinical samples can lead to rapid diagnosis of an infection and administration of appropriate therapeutics. A major barrier in diagnostics development is determining which of the potentially hundreds or thousands of antigens produced by a microbe are actually present in patient samples in detectable amounts against a background of innumerable host proteins. In this report, we describe a strategy, termed in vivo microbial antigen discovery (InMAD), that we used to identify circulating bacterial antigens. This technique starts with “InMAD serum,” which is filtered serum that has been harvested from BALB/c mice infected with a bacterial pathogen. The InMAD serum, which is free of whole bacterial cells, is used to immunize syngeneic BALB/c mice. The resulting “InMAD immune serum” contains antibodies specific for the soluble microbial antigens present in sera from the infected mice. The InMAD immune serum is then used to probe blots of bacterial lysates or bacterial proteome arrays. Bacterial antigens that are reactive with the InMAD immune serum are precisely the antigens to target in an antigen immunoassay. By employing InMAD, we identified multiple circulating antigens that are secreted or shed during infection using Burkholderia pseudomallei and Francisella tularensis as model organisms. Potential diagnostic targets identified by the InMAD approach included bacterial proteins, capsular polysaccharide, and lipopolysaccharide. The InMAD technique makes no assumptions other than immunogenicity and has the potential to be a broad discovery platform to identify diagnostic targets from microbial pathogens. Effective treatment of microbial infection is critically dependent on early diagnosis and identification of the etiological agent. One means for rapid diagnosis is immunoassay for antigens that are shed into body fluids during infection. Immunoassays can be inexpensive, rapid, and adaptable to a point-of-care format. A major impediment to immunoassay for diagnosis of infectious disease is identification of appropriate antigen targets. This report describes a strategy that can be used for identification of microbial antigens that are shed into serum during infection by the biothreats Burkholderia pseudomallei and Francisella tularensis. Termed InMAD (in vivo microbial antigen discovery), the strategy has the potential for application to a broad spectrum of microbial pathogens.
Collapse
|
4
|
Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 2006; 4:272-82. [PMID: 16541135 DOI: 10.1038/nrmicro1385] [Citation(s) in RCA: 451] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Burkholderia pseudomallei is a potential bioterror agent and the causative agent of melioidosis, a severe disease that is endemic in areas of Southeast Asia and Northern Australia. Infection is often associated with bacterial dissemination to distant sites, and there are many possible disease manifestations, with melioidosis septic shock being the most severe. Eradication of the organism following infection is difficult, with a slow fever-clearance time, the need for prolonged antibiotic therapy and a high rate of relapse if therapy is not completed. Mortality from melioidosis septic shock remains high despite appropriate antimicrobial therapy. Prevention of disease and a reduction in mortality and the rate of relapse are priority areas for future research efforts. Studying how the disease is acquired and the host-pathogen interactions involved will underpin these efforts; this review presents an overview of current knowledge in these areas, highlighting key topics for evaluation.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Academic Medical Centre, Centre for Infection and Immunity Amsterdam (CINIMA), Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
5
|
Reckseidler-Zenteno SL, DeVinney R, Woods DE. The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. Infect Immun 2005; 73:1106-15. [PMID: 15664954 PMCID: PMC547107 DOI: 10.1128/iai.73.2.1106-1115.2005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei produces an extracellular polysaccharide capsule -3)-2-O-acetyl-6-deoxy-beta-D-manno-heptopyranose-(1- which has been shown to be an essential virulence determinant. The addition of purified capsule was shown to increase the virulence of a capsule mutant strain in the Syrian hamster model of acute melioidosis. An increase in the number of wild-type B. pseudomallei cells in the blood was seen by 48 h, while the number of capsule mutant cells in the blood declined by 48 h. Capsule expression was shown to be induced in the presence of serum using a lux reporter fusion to the capsule gene wcbB. The addition of purified B. pseudomallei capsule to serum bactericidal assays increased the survival of B. pseudomallei SLR5, a serum-sensitive strain, by 1,000-fold in normal human serum. Capsule production by B. pseudomallei contributed to reduced activation of the complement cascade by reducing the levels of complement factor C3b deposition. An increase in phagocytosis of the capsule mutant compared to the wild type was observed in the presence of normal human serum. These results suggest that the production of this capsule contributes to resistance to phagocytosis by reducing C3b deposition on the surface of the bacterium, thereby contributing to the persistence of bacteria in the blood of the infected host. Continued studies to characterize this capsule are essential for understanding the pathogenesis of B. pseudomallei infections and the development of preventive strategies for treatment of this disease.
Collapse
Affiliation(s)
- Shauna L Reckseidler-Zenteno
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Center, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
6
|
Kespichayawattana W, Intachote P, Utaisincharoen P, Sirisinha S. Virulent Burkholderia pseudomallei is more efficient than avirulent Burkholderia thailandensis in invasion of and adherence to cultured human epithelial cells. Microb Pathog 2004; 36:287-92. [PMID: 15043863 DOI: 10.1016/j.micpath.2004.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 01/07/2004] [Accepted: 01/15/2004] [Indexed: 10/26/2022]
Abstract
Burkholderia pseudomallei, a causative agent of melioidosis, is a facultative intracellular gram-negative bacillus that is closely related to its avirulent counterpart, Burkholderia thailandensis. However, pathogenic mechanisms and virulence factors of B. pseudomallei remain elusive. In the present study, we compared the invasiveness, adherence, and replication of B. pseudomallei and B. thailandensis in human respiratory epithelial cells A549. Invasion was determined after 4 h of coculturing using antibiotic protection assay. Adherence was demonstrated by coculturing the cells with fluorescein-labeled bacteria for 1 h and the number of positive cells was analyzed by flow cytometry. The results obtained with this in vitro study demonstrated that compared with its avirulent counterpart, B. pseudomallei is significantly more efficient (P<0.01) in invasion, adherence and inducing cellular damage, as represented by plaque formation.
Collapse
|
7
|
Anuntagool N, Sirisinha S. Antigenic relatedness between Burkholderia pseudomallei and Burkholderia mallei. Microbiol Immunol 2002; 46:143-50. [PMID: 12008922 DOI: 10.1111/j.1348-0421.2002.tb02679.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Burkholderia pseudomallei and Burkholderia mallei are causative agents of distinct diseases, namely, melioidosis and glanders, respectively. The two species are very closely related, based on DNA-DNA homology, base sequence of the 16S rRNA, and phenotypic characteristics. Based on the use of polyclonal antisera, B. pseudomallei and B. mallei are also found to be antigenically closely related to one another. We previously reported the production of monoclonal antibodies (MAbs) against B. pseudomallei antigens; one group was specific for the 200-kDa exopolysaccharide present on the surface of all B. pseudomallei isolates, and the other was specific for the lipopolysaccharide (LPS) structure present on more than 95% of the B. pseudomallei tested. In the present study, we showed that the MAbs against 200-kDa antigen of B. pseudomallei cross-reacted with a component present also in some B. mallei isolates (3/6), but the positive immunoblot reaction was noted below the 200-kDa position. On the other hand, none of the six B. mallei isolates reacted with the MAb specific for B. pseudomallei LPS. It was of interest to observe that only the 3 exopolysaccharide-positive B. mallei isolates reacted with a commercial MAb against B. mallei LPS. The data presented suggest that B. mallei can be classified antigenically into two types based on their reactivities with different MAbs, i.e., the presence or absence of exopolysaccharide and the types of lipopolysaccharide. The heterogeneity of the LPS from these two closely related organisms is most likely related to the differences in its O-polysaccharide side chain.
Collapse
|
8
|
|