1
|
Dall GV, Hamilton A, Ratnayake G, Scott C, Barker H. Interrogating the Genomic Landscape of Uterine Leiomyosarcoma: A Potential for Patient Benefit. Cancers (Basel) 2022; 14:cancers14061561. [PMID: 35326717 PMCID: PMC8946513 DOI: 10.3390/cancers14061561] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
Uterine leiomyosarcoma (uLMS) is a rare and aggressive gynaecological malignancy. Surgical removal and chemotherapy are commonly used to treat uLMS, but recurrence rates are high. Over the last few decades, clarification of the genomic landscape of uLMS has revealed a number of recurring mutations, including TP53, RB1, ATRX, PTEN, and MED12. Such genomic aberrations are difficult to target therapeutically or are actively targeted in other malignancies, and their potential as targets for the treatment of uLMS remains largely unexplored. Recent identification of deficiencies in homologous recombination in a minority of these tumours, however, has provided a rationale for investigation of PARP inhibitors in this sub-set. Here, we review these mutations and the evidence for therapeutic avenues that may be applied in uLMS. We also provide a comprehensive background on diagnosis and current therapeutic strategies as well as reviewing preclinical models of uLMS, which may be employed not only in testing emerging therapies but also in understanding this challenging and deadly disease.
Collapse
Affiliation(s)
- Genevieve V. Dall
- Walter and Eliza Hall, Institute of Medical Research, Parkville, VIC 3052, Australia; (C.S.); (H.B.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
- Correspondence:
| | - Anne Hamilton
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| | | | - Clare Scott
- Walter and Eliza Hall, Institute of Medical Research, Parkville, VIC 3052, Australia; (C.S.); (H.B.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Royal Women’s Hospital, Parkville, VIC 3052, Australia;
| | - Holly Barker
- Walter and Eliza Hall, Institute of Medical Research, Parkville, VIC 3052, Australia; (C.S.); (H.B.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
2
|
Kannan S, Lock I, Ozenberger BB, Jones KB. Genetic drivers and cells of origin in sarcomagenesis. J Pathol 2021; 254:474-493. [DOI: 10.1002/path.5617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sarmishta Kannan
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Ian Lock
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| |
Collapse
|
3
|
Kasper B, Achee A, Schuster K, Wilson R, van Oortmerssen G, Gladdy RA, Hemming ML, Huang P, Ingham M, Jones RL, Pollack SM, Reinke D, Sanfilippo R, Schuetze SM, Somaiah N, Van Tine BA, Wilky B, Okuno S, Trent J. Unmet Medical Needs and Future Perspectives for Leiomyosarcoma Patients-A Position Paper from the National LeioMyoSarcoma Foundation (NLMSF) and Sarcoma Patients EuroNet (SPAEN). Cancers (Basel) 2021; 13:886. [PMID: 33672607 PMCID: PMC7924026 DOI: 10.3390/cancers13040886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
As leiomyosarcoma patients are challenged by the development of metastatic disease, effective systemic therapies are the cornerstone of outcome. However, the overall activity of the currently available conventional systemic treatments and the prognosis of patients with advanced or metastatic disease are still poor, making the treatment of this patient group challenging. Therefore, in a joint effort together with patient networks and organizations, namely Sarcoma Patients EuroNet (SPAEN), the international network of sarcoma patients organizations, and the National LeioMyoSarcoma Foundation (NLMSF) in the United States, we aim to summarize state-of-the-art treatments for leiomyosarcoma patients in order to identify knowledge gaps and current unmet needs, thereby guiding the community to design innovative clinical trials and basic research and close these research gaps. This position paper arose from a leiomyosarcoma research meeting in October 2020 hosted by the NLMSF and SPAEN.
Collapse
Affiliation(s)
- Bernd Kasper
- Mannheim University Medical Center, University of Heidelberg, 68167 Mannheim, Germany
| | - Annie Achee
- National LeioMyoSarcoma Foundation (NLMSF), Denver, CO 80222, USA;
| | - Kathrin Schuster
- Sarcoma Patients EuroNet, SPAEN, 61200 Wölfersheim, Germany; (K.S.); (R.W.); (G.v.O.)
| | - Roger Wilson
- Sarcoma Patients EuroNet, SPAEN, 61200 Wölfersheim, Germany; (K.S.); (R.W.); (G.v.O.)
| | | | - Rebecca A. Gladdy
- Department of Surgery, Mount Sinai Hospital, Toronto, ON M5G 1XS, Canada;
| | | | - Paul Huang
- Institute of Cancer Research, London SM2 5NG, UK; (P.H.); (R.L.J.)
| | - Matthew Ingham
- Department of Medicine, Columbia University School of Medicine, New York, NY 10032, USA;
| | - Robin L. Jones
- Institute of Cancer Research, London SM2 5NG, UK; (P.H.); (R.L.J.)
- Royal Marsden Hospital, London SW3 6JJ, UK
| | - Seth M. Pollack
- Northwestern Medicine, Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Denise Reinke
- Sarcoma Alliance for Research through Collaboration (SARC), Ann Arbor, MI 48105, USA;
| | | | - Scott M. Schuetze
- Michigan Medicine Sarcoma Clinic, Rogel Cancer Center, Ann Arbor, MI 48109, USA;
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Care Center, Houston, TX 77030, USA;
| | - Brian A. Van Tine
- Barnes and Jewish Hospital, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Breelyn Wilky
- Department of Sarcoma Medical Oncology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Scott Okuno
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jonathan Trent
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
4
|
Lang F, Rajaxavier J, Singh Y, Brucker SY, Salker MS. The Enigmatic Role of Serum & Glucocorticoid Inducible Kinase 1 in the Endometrium. Front Cell Dev Biol 2020; 8:556543. [PMID: 33195190 PMCID: PMC7609842 DOI: 10.3389/fcell.2020.556543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/24/2020] [Indexed: 11/13/2022] Open
Abstract
The serum- and glucocorticoid-inducible kinase 1 (SGK1) is subject to genetic up-regulation by diverse stimulators including glucocorticoids, mineralocorticoids, dehydration, ischemia, radiation and hyperosmotic shock. To become active, the expressed kinase requires phosphorylation, which is accomplished by PI3K/PDK1 and mTOR dependent signaling. SGK1 enhances the expression/activity of various transport proteins including Na+/K+-ATPase as well as ion-, glucose-, and amino acid- carriers in the plasma membrane. SGK1 can further up-regulate diverse ion channels, such as Na+-, Ca2+-, K+- and Cl- channels. SGK1 regulates expression/activity of a wide variety of transcription factors (such as FKHRL1/Foxo3a, β-catenin, NFκB and p53). SGK1 thus contributes to the regulation of transport, glycolysis, angiogenesis, cell survival, immune regulation, cell migration, tissue fibrosis and tissue calcification. In this review we summarized the current findings that SGK1 plays a crucial function in the regulation of endometrial function. Specifically, it plays a dual role in the regulation of endometrial receptivity necessary for implantation and, subsequently in pregnancy maintenance. Furthermore, fetal programming of blood pressure regulation requires maternal SGK1. Underlying mechanisms are, however, still ill-defined and there is a substantial need for additional information to fully understand the role of SGK1 in the orchestration of embryo implantation, embryo survival and fetal programming.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard-Karls University, Tübingen, Germany
| | - Janet Rajaxavier
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| | - Yogesh Singh
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University, Tübingen, Germany
| | - Sara Y. Brucker
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| | - Madhuri S. Salker
- Research Institute of Women’s Health, Eberhard-Karls University, Tübingen, Germany
| |
Collapse
|
5
|
Suzuki Y, Ii M, Saito T, Terai Y, Tabata Y, Ohmichi M, Asahi M. Establishment of a novel mouse xenograft model of human uterine leiomyoma. Sci Rep 2018; 8:8872. [PMID: 29891843 PMCID: PMC5995841 DOI: 10.1038/s41598-018-27138-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 05/15/2018] [Indexed: 11/22/2022] Open
Abstract
Uterine leiomyoma is the most common benign tumour in women, and an appropriate animal model for leiomyoma would be useful for exploring new therapeutic strategies. Therefore, we have been challenged to develop a new simple mouse model for human leiomyoma. Leiomyoma tissues were harvested from myomas resected by different surgical procedures with or without gonadotropin-releasing hormone agonist (GnRHa) treatment and were subcutaneously implanted into BALB/c nude mice with an estradiol/progesterone-releasing pellet. The implanted leiomyoma tissues that were obtained from the marginal site of large myomas resected by abdominal myomectomy with GnRHa treatment exhibited sufficient tumour growth in the transplanted mice. The leiomyomas that were treated with GnRHa highly expressed the estrogen/progesterone receptor genes, insulin-like growth factor 2 (IGF2) and embryonic smooth muscle myosin heavy chain (SMemb), which suggests that these factors are critical in the establishment of a mouse model of growing leiomyoma. As a result, this model will be useful for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Yusuke Suzuki
- Department of Obstetrics and Gynecology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Masaaki Ii
- Division of Research Animal Laboratory and Translational Medicine, Research and Development Center, Osaka Medical College, Osaka, Japan. .,Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan.
| | - Takashi Saito
- Department of Legal Medicine, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Yoshito Terai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| |
Collapse
|
6
|
Chinyengetere F, Sekula DJ, Lu Y, Giustini AJ, Sanglikar A, Kawakami M, Ma T, Burkett SS, Eisenberg BL, Wells WA, Hoopes PJ, Demicco EG, Lazar AJ, Torres KE, Memoli V, Freemantle SJ, Dmitrovsky E. Mice null for the deubiquitinase USP18 spontaneously develop leiomyosarcomas. BMC Cancer 2015; 15:886. [PMID: 26555296 PMCID: PMC4640382 DOI: 10.1186/s12885-015-1883-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 10/30/2015] [Indexed: 11/10/2022] Open
Abstract
Background USP18 (ubiquitin-specific protease 18) removes ubiquitin-like modifier interferon stimulated gene 15 (ISG15) from conjugated proteins. USP18 null mice in a FVB/N background develop tumors as early as 2 months of age. These tumors are leiomyosarcomas and thus represent a new murine model for this disease. Methods Heterozygous USP18 +/− FVB/N mice were bred to generate wild-type, heterozygous and homozygous cohorts. Tumors were characterized immunohistochemically and two cell lines were derived from independent tumors. Cell lines were karyotyped and their responses to restoration of USP18 activity assessed. Drug testing and tumorigenic assays were also performed. USP18 immunohistochemical staining in a large series of human leiomyosacomas was examined. Results USP18 −/− FVB/N mice spontaneously develop tumors predominantly on the back of the neck with most tumors evident between 6–12 months (80 % penetrance). Immunohistochemical characterization of the tumors confirmed they were leiomyosarcomas, which originate from smooth muscle. Restoration of USP18 activity in sarcoma-derived cell lines did not reduce anchorage dependent or independent growth or xenograft tumor formation demonstrating that these cells no longer require USP18 suppression for tumorigenesis. Karyotyping revealed that both tumor-derived cell lines were aneuploid with extra copies of chromosomes 3 and 15. Chromosome 15 contains the Myc locus and MYC is also amplified in human leiomyosarcomas. MYC protein levels were elevated in both murine leiomyosarcoma cell lines. Stabilized P53 protein was detected in a subset of these murine tumors, another feature of human leiomyosarcomas. Immunohistochemical analyses of USP18 in human leiomyosarcomas revealed a range of staining intensities with the highest USP18 expression in normal vascular smooth muscle. USP18 tissue array analysis of primary leiomyosarcomas from 89 patients with a clinical database revealed cases with reduced USP18 levels had a significantly decreased time to metastasis (P = 0.0441). Conclusions USP18 null mice develop leiomyosarcoma recapitulating key features of clinical leiomyosarcomas and patients with reduced-USP18 tumor levels have an unfavorable outcome. USP18 null mice and the derived cell lines represent clinically-relevant models of leiomyosarcoma and can provide insights into both leiomyosarcoma biology and therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1883-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fadzai Chinyengetere
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - David J Sekula
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Yun Lu
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Andrew J Giustini
- Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA. .,Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | | | - Masanori Kawakami
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Tian Ma
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Sandra S Burkett
- Comparative Molecular Cytogenetics Core, Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA.
| | - Burton L Eisenberg
- Department of Surgery, Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Lebanon, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Wendy A Wells
- Department of Pathology, Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Lebanon, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Paul J Hoopes
- Department of Surgery, Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Lebanon, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA. .,Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | | | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Keila E Torres
- Sarcoma Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Vincent Memoli
- Department of Pathology, Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Lebanon, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Sarah J Freemantle
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| | - Ethan Dmitrovsky
- Department of Pharmacology and Toxicology, Dartmouth, Hanover, NH, USA. .,Department of Medicine, Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Lebanon, NH, USA. .,Geisel School of Medicine, Dartmouth, Hanover, NH, USA. .,Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA. .,Present address: MD Anderson Cancer Center, Houston, TX, 77030-4009, USA.
| |
Collapse
|
7
|
Kawabe S, Mizutani T, Ishikane S, Martinez ME, Kiyono Y, Miura K, Hosoda H, Imamichi Y, Kangawa K, Miyamoto K, Yoshida Y. Establishment and characterization of a novel orthotopic mouse model for human uterine sarcoma with different metastatic potentials. Cancer Lett 2015; 366:182-90. [PMID: 26164209 DOI: 10.1016/j.canlet.2015.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
Abstract
Uterine sarcomas are rare and aggressive gynecologic tumors with a poor prognosis because of recurrence and metastasis. However, the mechanisms of uterine sarcoma metastasis are largely unknown. To investigate this mechanism, we developed a novel uterine sarcoma tissue-derived orthotopic and metastatic model in KSN nude mice using a green fluorescent protein stably expressed uterine sarcoma cell line, MES-SA. Histological analysis showed that all orthotopic primary tumors were undifferentiated sarcoma. Primary tumors were characterized by high (18)F-fluorodeoxyglucose uptake with a positive correlation to the number of pulmonary metastases. In addition, we generated uterine sarcoma cell sublines with high or low metastatic potentials by serial in vivo selection. Microarray analysis between orthotopic tumors with high and low metastatic potentials revealed differential expression of genes related to cell proliferation and migration (TNNT1, COL1A2, and ZIC1). Our model would be useful to compensate for the limited clinical cases of uterine sarcoma and to investigate the molecular mechanisms of metastatic uterine sarcoma.
Collapse
Affiliation(s)
- Shinya Kawabe
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan; Organization for Life Science Advancement Programs, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Tetsuya Mizutani
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan; Organization for Life Science Advancement Programs, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan.
| | - Shin Ishikane
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Miguel Ernesto Martinez
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Yasushi Kiyono
- Organization for Life Science Advancement Programs, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan; Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Koichi Miura
- National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Hiroshi Hosoda
- National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Yoshitaka Imamichi
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan; Organization for Life Science Advancement Programs, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Kaoru Miyamoto
- Department of Biochemistry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan; Organization for Life Science Advancement Programs, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| | - Yoshio Yoshida
- Organization for Life Science Advancement Programs, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan; Department of Obstetrics and Gynecology, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji, Fukui 910-1193, Japan
| |
Collapse
|
8
|
Kobayashi H, Uekuri C, Akasaka J, Ito F, Shigemitsu A, Koike N, Shigetomi H. The biology of uterine sarcomas: A review and update. Mol Clin Oncol 2013; 1:599-609. [PMID: 24649216 PMCID: PMC3916197 DOI: 10.3892/mco.2013.124] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 04/08/2013] [Indexed: 12/31/2022] Open
Abstract
Uterine sarcoma is a rare neoplasm, accounting for only 5% of uterine malignancies. The pathogenesis of uterine sarcoma remains largely unknown, although recent basic science and pre-clinical animal models have provided a better understanding of tumor biology. The aim of this study was to review the clinical features, imaging characteristics, genetic aberrations and therapeutic approaches in uterine sarcoma. This study reviewed the English-language literature on clinical and basic studies on uterine sarcoma. The common variants of uterine sarcoma are carcinosarcoma, leiomyosarcoma and endometrial stromal sarcoma (ESS). Genetic profiling efforts have identified amplification, overexpression and mutation, while the molecular mechanisms of tumorigenesis driven by these genomic and genetic aberrations have yet to be fully elucidated yet. Recent genome-wide studies have also identified complex chromosomal rearrangements as oncogenic mechanisms. The cell cycle regulators, p16 and p53, are frequently over-expressed and appear to be involved in key modifications of sarcomagenesis. Molecular-targeted therapy has now been evaluated in clinical trials for certain subtypes. In conclusion, aberrations of cell cycle control would be a critical step in the development of uterine sarcoma. This review has provided new areas of study targeting molecular and genetic pathways.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Chiaki Uekuri
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Juria Akasaka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Fuminori Ito
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Aiko Shigemitsu
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Natsuki Koike
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara 634-8522, Japan
| |
Collapse
|
9
|
Drosch M, Bullerdiek J, Zollner TM, Prinz F, Koch M, Schmidt N. A novel mouse model that closely mimics human uterine leiomyomas. Fertil Steril 2012; 99:927-935.e6. [PMID: 23260859 DOI: 10.1016/j.fertnstert.2012.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 11/15/2012] [Accepted: 11/16/2012] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To develop a predictive mouse model for uterine fibroids. DESIGN Human fibroid cells xenografted to immunodeficient mice. SETTING University and industrial research center. ANIMAL(S) Immunodeficient scid/beige mice. INTERVENTION(S) Subcutaneous and intrauterine injection of fibroid-derived cells, SV40 transformation of primary cells by lentiviral transduction, proliferation determined by immunohistochemistry, FISH. MAIN OUTCOME MEASURE(S) Characterization of primary and immortalized cells by Western blot and soft agar assay, determination of in vivo tumorigenicity, comparative histology and immunohistochemistry, fluorescence in situ hybridization. RESULT(S) Tumorigenicity of primary myoma cells disappears upon in vitro culture. Transformation and immortalization does not restore or conserve the in vivo growth potential of cultured cells. Injection of primary cells into myometrium of mice leads to xenografts with a leiomyoma-like histology. CONCLUSION(S) Primary myoma cells are suited to generate fibroid-like xenografts for studying pathogenesis without genetic modifications. In contrast, in vitro culture abolishes transplantability, and neither transformation nor immortalization is sufficient to restore tumorigenic capacity.
Collapse
Affiliation(s)
- Michael Drosch
- Center of Human Genetics, University of Bremen, Bremen, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Landman AS, Danielian PS, Lees JA. Loss of pRB and p107 disrupts cartilage development and promotes enchondroma formation. Oncogene 2012; 32:4798-805. [PMID: 23146901 DOI: 10.1038/onc.2012.496] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/22/2012] [Accepted: 08/30/2012] [Indexed: 01/20/2023]
Abstract
The pocket proteins pRB, p107 and p130 have established roles in regulating the cell cycle through the control of E2F activity. The pocket proteins regulate differentiation of a number of tissues in both cell cycle-dependent and -independent manners. Prior studies showed that mutation of p107 and p130 in the mouse leads to defects in cartilage development during endochondral ossification, the process by which long bones form. Despite evidence of a role for pRB in osteoblast differentiation, it is unknown whether it functions during cartilage development. Here, we show that mutation of Rb in the early mesenchyme of p107-mutant mice results in severe cartilage defects in the growth plates of long bones. This is attributable to inappropriate chondrocyte proliferation that persists after birth and leads to the formation of enchondromas in the growth plates as early as 8 weeks of age. Genetic crosses show that development of these tumorigenic lesions is E2f3 dependent. These results reveal an overlapping role for pRB and p107 in cartilage development, endochondral ossification and enchondroma formation that reflects their coordination of cell-cycle exit at appropriate developmental stages.
Collapse
Affiliation(s)
- A S Landman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | |
Collapse
|
11
|
Xing D, Scangas G, Nitta M, He L, Xu X, Ioffe YJM, Aspuria PJ, Hedvat CY, Anderson ML, Oliva E, Karlan BY, Mohapatra G, Orsulic S. A role for BRCA1 in uterine leiomyosarcoma. Cancer Res 2009; 69:8231-5. [PMID: 19843854 DOI: 10.1158/0008-5472.can-09-2543] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Uterine leiomyosarcoma (ULMS) is a rare gynecologic malignancy with a low survival rate. Currently, there is no effective treatment for ULMS. Infrequent occurrences of human ULMS hamper the understanding of the initiation and progression of the disease, thereby limiting the ability to develop efficient therapies. To elucidate the roles of the p53 and BRCA1 tumor suppressor genes in gynecologic malignancies, we generated mice in which p53 and/or BRCA1 can be conditionally deleted using anti-Müllerian hormone type II receptor (Amhr2)-driven Cre recombinase. We showed that conditional deletion of p53 in mice results in the development of uterine tumors that resemble human ULMS and that concurrent deletion of p53 and BRCA1 significantly accelerates the progression of these tumors. This finding led to our hypothesis that BRCA1 may play a role in human ULMS development. Consistent with this hypothesis, we showed that the BRCA1 protein is absent in 29% of human ULMS and that BRCA1 promoter methylation is the likely mechanism of BRCA1 downregulation. These data indicate that the loss of BRCA1 function may be an important step in the progression of ULMS. Our findings provide a rationale for investigating therapies that target BRCA1 deficiency in ULMS.
Collapse
Affiliation(s)
- Deyin Xing
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Crabtree JS, Jelinsky SA, Harris HA, Choe SE, Cotreau MM, Kimberland ML, Wilson E, Saraf KA, Liu W, McCampbell AS, Dave B, Broaddus RR, Brown EL, Kao W, Skotnicki JS, Abou-Gharbia M, Winneker RC, Walker CL. Comparison of human and rat uterine leiomyomata: identification of a dysregulated mammalian target of rapamycin pathway. Cancer Res 2009; 69:6171-8. [PMID: 19622772 DOI: 10.1158/0008-5472.can-08-4471] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uterine leiomyomata, or fibroids, are benign tumors of the uterine myometrium that significantly affect up to 30% of reproductive-age women. Despite being the primary cause of hysterectomy in the United States, accounting for up to 200,000 procedures annually, the etiology of leiomyoma remains largely unknown. As a basis for understanding leiomyoma pathogenesis and identifying targets for pharmacotherapy, we conducted transcriptional profiling of leiomyoma and unaffected myometrium from humans and Eker rats, the best characterized preclinical model of leiomyomata. A global comparison of mRNA from leiomyoma versus myometrium in human and rat identified a highly significant overlap of dysregulated gene expression in leiomyomata. An unbiased pathway analysis using a method of gene-set enrichment based on the sigPathway algorithm detected the mammalian target of rapamycin (mTOR) pathway as one of the most highly up-regulated pathways in both human and rat tumors. To validate this pathway as a therapeutic target for uterine leiomyomata, preclinical studies were conducted in Eker rats. These rats develop uterine leiomyomata as a consequence of loss of Tsc2 function and up-regulation of mTOR signaling. Inhibition of mTOR in female Eker rats with the rapamycin analogue WAY-129327 for 2 weeks decreased mTOR signaling and cell proliferation in tumors, and treatment for 4 months significantly decreased tumor incidence, multiplicity, and size. These results identify dysregulated mTOR signaling as a component of leiomyoma etiology across species and directly show the dependence of uterine leiomyomata with activated mTOR on this signaling pathway for growth.
Collapse
Affiliation(s)
- Judy S Crabtree
- Endocrinology & Reproductive Disorders Division, Women's Health and Musculoskeletal Biology, Wyeth Research, Collegeville, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Di Cello F, Hillion J, Kowalski J, Ronnett BM, Aderinto A, Huso DL, Resar LMS. Cyclooxygenase inhibitors block uterine tumorigenesis in HMGA1a transgenic mice and human xenografts. Mol Cancer Ther 2008; 7:2090-5. [PMID: 18645019 DOI: 10.1158/1535-7163.mct-07-2282] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uterine cancer is a common cause for cancer death in women and there is no effective therapy for metastatic disease. Thus, research is urgently needed to identify new therapeutic agents. We showed previously that all female HMGA1a transgenic mice develop malignant uterine tumors, indicating that HMGA1a causes uterine cancer in vivo. We also demonstrated that HMGA1a up-regulates cyclooxygenase-2 (COX-2) during tumorigenesis in this model. Similarly, we found that HMGA1a and COX-2 are overexpressed in human leiomyosarcomas, a highly malignant uterine cancer. Although epidemiologic studies indicate that individuals who take COX inhibitors have a lower incidence of some tumors, these inhibitors have not been evaluated in uterine cancer. Here, we show that HMGA1a mice on sulindac (a COX-1/COX-2 inhibitor) have significantly smaller uterine tumors than controls. To determine if COX inhibitors are active in human uterine cancers that overexpress HMGA1a, we treated cultured cells with sulindac sulfide or celecoxib (a specific COX-2 inhibitor). Both drugs block anchorage-independent growth in high-grade human uterine cancer cells that overexpress HMGA1a (MES-SA cells). In contrast, neither inhibitor blocked transformation in cells that do not overexpress HMGA1a. Moreover, xenograft tumors from MES-SA cells were significantly inhibited in mice on sulindac. More strikingly, no tumors formed in mice on celecoxib. These preclinical studies suggest that COX inhibitors could play a role in preventing tumor onset or progression in uterine cancers with dysregulation of the HMGA1a-COX-2 pathway. Importantly, these drugs have lower toxicity than chemotherapeutic agents used to treat advanced-stage uterine cancers.
Collapse
Affiliation(s)
- Francescopaolo Di Cello
- Hematology Division, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Dimitrova IK, Richer JK, Rudolph MC, Spoelstra NS, Reno EM, Medina TM, Bradford AP. Gene expression profiling of multiple leiomyomata uteri and matched normal tissue from a single patient. Fertil Steril 2008; 91:2650-63. [PMID: 18672237 DOI: 10.1016/j.fertnstert.2008.03.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 03/24/2008] [Accepted: 03/24/2008] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To identify differentially expressed genes between fibroid and adjacent normal myometrium in an identical hormonal and genetic background. DESIGN Array analysis of three leiomyomata and matched adjacent normal myometrium in a single patient. SETTING University of Colorado Hospital. PATIENT(S) A single female undergoing medically indicated hysterectomy for symptomatic fibroids. INTERVENTIONS(S) mRNA isolation and microarray analysis, reverse-transcriptase polymerase chain reaction, Western blotting, and immunohistochemistry. MAIN OUTCOME MEASURE(S) Changes in mRNA and protein levels in leiomyomata and matched normal myometrium. RESULT(S) Expression of 197 genes was increased and 619 decreased significantly by at least twofold, in leiomyomata relative to normal myometrium. Expression profiles between tumors were similar and normal myometrial samples showed minimal variation. Changes in, and variation of, expression of selected genes were confirmed in additional normal and leiomyoma samples from multiple patients. CONCLUSION(S) Analysis of multiple tumors from a single patient confirmed changes in expression of genes described in previous, apparently disparate, studies, and identified novel targets. Gene expression profiles in leiomyomata are consistent with increased activation of mitogenic pathways and inhibition of apoptosis. Down-regulation of genes implicated in invasion and metastasis, of cancers, was observed in fibroids. This expression pattern may underlie the benign nature of uterine leiomyomata and may aid in the differential diagnosis of leiomyosarcoma.
Collapse
Affiliation(s)
- Irina K Dimitrova
- Department of Obstetrics and Gynecology, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Uterine fibroids are the most common benign tumour of the female genital tract. However, their true prevalence is probably under-estimated, as the incidence at histology is more than double the clinical incidence. Recent longitudinal studies have estimated that the lifetime risk of fibroids in a woman over the age of 45 years is more than 60%, with incidence higher in blacks than in whites. The cause of fibroids remains unclear and their biology poorly understood. No single candidate gene has been detected for commonly occurring uterine fibroids. However, the occurrence of rare uterine fibroid syndromes, such as multiple cutaneous and uterine leiomyomatosis, has been traced to the gene that codes for the mitochondrial enzyme, fumarate hydratase. Cytogenetic abnormalities, particularly deletions of chromosome 7, which are found in up to 50% of fibroid specimens, seem to be secondary rather than primary events, and investigations into the role of tumour suppressor genes have yielded conflicting results. The key regulators of fibroid growth are ovarian steroids, both oestrogen and progestogen, growth factors and angiogenesis, and the process of apoptosis. Black race, heredity, nulliparity, obesity, polycystic ovary syndrome, diabetes and hypertension are associated with increased risk of fibroids, and there is emerging evidence that familial predisposition to fibroids is associated with a distinct pattern of clinical and molecular features compared with fibroids in families without this prevalence.
Collapse
Affiliation(s)
- Stanley Okolo
- North Middlesex University Hospital, Sterling Way, London, UK.
| |
Collapse
|
16
|
Hernando E, Charytonowicz E, Dudas ME, Menendez S, Matushansky I, Mills J, Socci ND, Behrendt N, Ma L, Maki RG, Pandolfi PP, Cordon-Cardo C. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med 2007; 13:748-53. [PMID: 17496901 DOI: 10.1038/nm1560] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 02/02/2007] [Indexed: 02/03/2023]
Abstract
We analyzed the PI3K-AKT signaling cascade in a cohort of sarcomas and found a marked induction of insulin receptor substrate-2 (IRS2) and phosphorylated AKT and a concomitant upregulation of downstream effectors in most leiomyosarcomas. To determine the role of aberrant PI3K-AKT signaling in leiomyosarcoma pathogenesis, we genetically inactivated Pten in the smooth muscle cell lineage by cross-breeding Pten(loxP/loxP) mice with Tagln-cre mice. Mice carrying homozygous deletion of Pten alleles developed widespread smooth muscle cell hyperplasia and abdominal leiomyosarcomas, with a very rapid onset and elevated incidence (approximately 80%) compared to other animal models. Constitutive mTOR activation was restricted to the leiomyosarcomas, revealing the requirement for additional molecular events besides Pten loss. The rapamycin derivative everolimus substantially decelerated tumor growth on Tagln-cre/Pten(loxP/loxP) mice and prolonged their lifespan. Our data show a new and critical role for the AKT-mTOR pathway in smooth muscle transformation and leiomyosarcoma genesis, and support treatment of selected sarcomas by the targeting of this pathway with new compounds or combinations of these with conventional chemotherapy agents.
Collapse
Affiliation(s)
- Eva Hernando
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Leppert PC, Catherino WH, Segars JH. A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays. Am J Obstet Gynecol 2006; 195:415-20. [PMID: 16635466 PMCID: PMC4143906 DOI: 10.1016/j.ajog.2005.12.059] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/13/2005] [Accepted: 12/31/2005] [Indexed: 11/17/2022]
Abstract
This article will discuss some recent insights based on our microarray studies that have emphasized the role the extracellular matrix, transforming growth factor beta, and collagen structure in fibroid formation. These studies led to appreciation of molecular similarities between fibroids and keloids. Collectively, these observations suggest a model of fibroid development based on an abnormal response to tissue repair, resulting in disordered healing and formation of an altered extracellular matrix.
Collapse
Affiliation(s)
- Phyllis C Leppert
- Reproductive Biology and Medicine Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
18
|
Klinakis A, Szabolcs M, Politi K, Kiaris H, Artavanis-Tsakonas S, Efstratiadis A. Myc is a Notch1 transcriptional target and a requisite for Notch1-induced mammary tumorigenesis in mice. Proc Natl Acad Sci U S A 2006; 103:9262-7. [PMID: 16751266 PMCID: PMC1570422 DOI: 10.1073/pnas.0603371103] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To explore the potential involvement of aberrant Notch1 signaling in breast cancer pathogenesis, we have used a transgenic mouse model. In these animals, mouse mammary tumor virus LTR-driven expression of the constitutively active intracellular domain of the Notch1 receptor (N1(IC)) causes development of lactation-dependent mammary tumors that regress upon gland involution but progress to nonregressing, invasive adenocarcinomas in subsequent pregnancies. Up-regulation of Myc in these tumors prompted a genetic investigation of a potential Notch1/Myc functional relationship in breast carcinogenesis. Conditional ablation of Myc in the mammary epithelium prevented the induction of regressing N1(IC) neoplasms and also reduced the incidence of nonregressing carcinomas, which developed with significantly increased latency. Molecular analyses revealed that both the mouse and human Myc genes are direct transcriptional targets of N1(IC) acting through its downstream Cbf1 transcriptional effector. Consistent with this mechanistic link, Notch1 and Myc expression is positively correlated by immunostaining in 38% of examined human breast carcinomas.
Collapse
Affiliation(s)
| | | | | | - Hippokratis Kiaris
- Department of Cell Biology, Harvard Medical School, Massachusetts General Hospital Center for Cancer Research, Building 149, 13th Street, Charlestown, MA 02129
| | - Spyros Artavanis-Tsakonas
- Department of Cell Biology, Harvard Medical School, Massachusetts General Hospital Center for Cancer Research, Building 149, 13th Street, Charlestown, MA 02129
| | - Argiris Efstratiadis
- Departments of *Genetics and Development and
- Institute for Cancer Genetics, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032; and
- **To whom correspondence should be addressed at: Department of Genetics and Development, Columbia University, Berrie Medical Science Pavilion, 1150 St. Nicholas Avenue, New York, NY 10032. E-mail:
| |
Collapse
|
19
|
Schneider MR, Dahlhoff M, Herbach N, Renner-Mueller I, Dalke C, Puk O, Graw J, Wanke R, Wolf E. Betacellulin overexpression in transgenic mice causes disproportionate growth, pulmonary hemorrhage syndrome, and complex eye pathology. Endocrinology 2005; 146:5237-46. [PMID: 16179416 DOI: 10.1210/en.2005-0418] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The EGF family comprises a network of ligands and receptors that regulate proper development and elicit diverse functions in physiology and pathology. Betacellulin (BTC) is a rather poorly characterized member of the EGF family whose in vivo effects have been linked mainly to endocrine pancreas, intestine, and mammary gland function. In vitro studies revealed that this growth factor is a potent mitogen for diverse cell types and suggested unique receptor-binding properties. Genetic ablation of BTC in mice yielded a mild phenotype, probably because of opportunistic compensation by other EGF receptor ligands. To study the biological capabilities of BTC in vivo, we generated transgenic mice overexpressing BTC ubiquitously, with highest expression levels in heart, lung, brain, and pancreas. Mice overexpressing BTC exhibit high early postnatal mortality, reduced body weight gain, and impaired longitudinal growth. In addition, a variety of pathological alterations were observed. Cataract and abnormally shaped retinal layers as well as bone alterations leading to a dome-shaped, round head form were hallmarks of BTC transgenic mice. The most important finding and the cause of reduced life expectancy of BTC transgenic mice were severe alterations of the lung. Pulmonary pathology was primarily characterized by alveolar hemorrhage, thickening of the alveolar septa, intraalveolar accumulation of hemosiderin-containing macrophages, and nodular pulmonary remodeling. Thus, our model uncovers multiple consequences of BTC overexpression in vivo. These transgenic mice provide a useful model for examining the effects of BTC excess on different organs.
Collapse
Affiliation(s)
- Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, University of Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
We have developed and tested successfully a general method based on Cre-mediated recombination that can be used for ubiquitous or tissue-specific expression of protein products, including tumor-inducing oncoproteins. Depending on the specificity of a chosen promoter driving cre expression, tumors develop by design in bitransgenic mouse progeny derived by crossing Cre-producing mice with partners carrying a dormant oncogenic transgene (targeted into the 3' noncoding region of the cytoplasmic beta-actin locus) that becomes functional after excision of a 'floxed' DNA segment. To provide proof-of-principle, we have used as models transgenes encoding the polyomavirus middle T antigen (PVMT) and the T antigens of the SV40 early region (SVER). Cre-dependent activation of widespread SVER expression resulted in hyperplasias or invasive tumors affecting particular visceral smooth muscles, whereas Cre-dependent, mammary gland-specific expression of PVMT-induced adenocarcinomas, according to plan. Unexpectedly, we also encountered spontaneous (Cre-independent) oncogene expression occurring as a rare event, which simulates the initiation of sporadic tumors and leads to PVMT-induced hemangiomas and mammary carcinomas or SVER-induced disseminated sarcomas, thus, revealing particular tissue susceptibilities to the actions of these oncoproteins.
Collapse
Affiliation(s)
- Katerina Politi
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
21
|
Tsibris JCM, Maas S, Segars JH, Nicosia SV, Enkemann SA, O'Brien WF, Spellacy WN. New potential regulators of uterine leiomyomata from DNA arrays: the ionotropic glutamate receptor GluR2. Biochem Biophys Res Commun 2003; 312:249-54. [PMID: 14630051 DOI: 10.1016/j.bbrc.2003.09.189] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the post-Genome era, new concepts emerge about the growth regulation of uterine leiomyomata. Screening of leiomyoma and myometrial tissues with DNA arrays revealed numerous genes up-regulated in leiomyomata that were not known to be expressed in the human uterus. GluR2, a subunit of a ligand-gated cation channel, is up-regulated in leiomyomata relative to myometrium by 15- to 30-fold at the protein and mRNA level and is localized in endothelial cells. GluR2 pre-mRNA in leiomyoma and myometrial tissues is nearly 100% edited at the Q/R site, indicative of low Ca(2+) permeability of the ion channels. In spontaneous leiomyomata in women or leiomyomata induced in the guinea pig model, there is a likely synergism linking increased production of estradiol and all-trans retinoic acid with up-regulation of nuclear receptor PPARgamma and RXRalpha proteins to support tumor growth. GluR2 might be coupled to this synergism directly or via interleukin-17B, kinesin KIF5 or related genes also up-regulated in leiomyomata. GluR antagonists should be tested as inhibitors of leiomyoma growth.
Collapse
Affiliation(s)
- John C M Tsibris
- Department of Obstetrics and Gynecology, University of South Florida, 4 Columbia Drive, Room 524, Tampa, FL 33606, USA.
| | | | | | | | | | | | | |
Collapse
|