1
|
Nasimi Shad A, Akhlaghipour I, Alshakarchi HI, Saburi E, Moghbeli M. Role of microRNA-363 during tumor progression and invasion. J Physiol Biochem 2024; 80:481-499. [PMID: 38691273 DOI: 10.1007/s13105-024-01022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Recent progresses in diagnostic and therapeutic methods have significantly improved prognosis in cancer patients. However, cancer is still considered as one of the main causes of human deaths in the world. Late diagnosis in advanced tumor stages can reduce the effectiveness of treatment methods and increase mortality rate of cancer patients. Therefore, investigating the molecular mechanisms of tumor progression can help to introduce the early diagnostic markers in these patients. MicroRNA (miRNAs) has an important role in regulation of pathophysiological cellular processes. Due to their high stability in body fluids, they are always used as the non-invasive markers in cancer patients. Since, miR-363 deregulation has been reported in a wide range of cancers, we discussed the role of miR-363 during tumor progression and metastasis. It has been reported that miR-363 has mainly a tumor suppressor function through the regulation of transcription factors, apoptosis, cell cycle, and structural proteins. MiR-363 also affected the tumor progression via regulation of various signaling pathways such as WNT, MAPK, TGF-β, NOTCH, and PI3K/AKT. Therefore, miR-363 can be introduced as a probable therapeutic target as well as a non-invasive diagnostic marker in cancer patients.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hawraa Ibrahim Alshakarchi
- Al-Zahra Center for Medical and Pharmaceutical Research Sciences (ZCMRS), Al-Zahraa University for Women, Karbala, Iraq
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Dakal TC, Dhabhai B, Pant A, Moar K, Chaudhary K, Yadav V, Ranga V, Sharma NK, Kumar A, Maurya PK, Maciaczyk J, Schmidt‐Wolf IGH, Sharma A. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (Beijing) 2024; 5:e582. [PMID: 38827026 PMCID: PMC11141506 DOI: 10.1002/mco2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome-autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Bhanupriya Dhabhai
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Anuja Pant
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kareena Moar
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kanika Chaudhary
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vikas Yadav
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vipin Ranga
- Dearptment of Agricultural BiotechnologyDBT‐NECAB, Assam Agricultural UniversityJorhatAssamIndia
| | | | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of Bioinformatics, International Technology ParkBangaloreIndia
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| |
Collapse
|
3
|
Joshi P, Ayyagari V, Kandel S, Modur V, Iqbal MF, Robinson K, Gao J, Rao K. Loss of RAB25 Cooperates with Oncogenes in the Transformation of Human Mammary Epithelial Cells (HMECs) to Give Rise to Claudin-Low Tumors. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8544837. [PMID: 38803515 PMCID: PMC11129910 DOI: 10.1155/2024/8544837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/10/2023] [Accepted: 03/30/2024] [Indexed: 05/29/2024]
Abstract
The loss of RAB25 expression-RAS superfamily of GTPase characteristic of numerous breast cancers-corresponds with H-RAS point mutations, particularly in triple-negative breast cancers (TNBC), a subtype associated with a poor prognosis. To address the poorly understood factors dictating the progression of TNBC tumors, we examine the cooperative effects that loss of RAB25 expression in human mammary epithelial cell (HMEC) lines with H-RAS mutations confers in tumorigenesis. HMECs were immortalized by transduction with LXSN CDK4 R24C, a mutant form of cyclin-dependent kinase, followed by transduction with hTERT, a catalytic subunit of the telomerase enzyme. We found that with the loss of RAB25 and overexpression of mutant H-RAS61L, immortal HMECs transformed toward anchorage-independent growth and acquired an increased ability to migrate. Furthermore, cells express low CD24, high CD44, and low claudin levels, indicating stem-like properties upon transformation. Besides, loss of RAB25 and overexpression of H-RAS61L resulted in increased expression of transcription factors Snail and Slug that drive these cells to lose E-cadherin and undergo epithelial-mesenchymal transition (EMT). This study confirms that loss of RAB25 and overexpression of mutant H-RAS can drive HMECs toward a mesenchymal stem-like state. Our findings reveal that RAB25 functions as a tumor suppressor gene, and loss of RAB25 could serve as a novel biomarker of the claudin-low type of TNBC.
Collapse
Affiliation(s)
| | - Vijayalakshmi Ayyagari
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Samikshya Kandel
- Department of Medical Microbiology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | - Vishnu Modur
- Medpace, Inc., 5400 Medpace Way, Cincinnati, OH 45227, USA
| | - Muhammad F. Iqbal
- Cancer Specialists of North Florida, 80 Pinnacles Drive, Suite 700, Palm Coast, FL 32164, USA
| | - Kathy Robinson
- Simmons Cancer Institute at Southern Illinois University, 315 W Carpenter St., Springfield, IL 62702, USA
| | - John Gao
- Department of Pathology and Gastroenterology, Memorial Medical Center, Springfield, IL, USA
| | - Krishna Rao
- Department of Medical Microbiology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
- Simmons Cancer Institute at Southern Illinois University, 315 W Carpenter St., Springfield, IL 62702, USA
| |
Collapse
|
4
|
Uroog L, Zeya B, Imtiyaz K, Ahmad Wani R, Moshahid Alam Rizvi M. FBXW7 polymorphism asserts susceptibility to colorectal cancer. Gene 2024; 901:148181. [PMID: 38244948 DOI: 10.1016/j.gene.2024.148181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
FBXW7, belonging to the F-Box protein family, is considered a candidate cancer susceptibility gene. Our findings indicate that single nucleotide polymorphisms (SNPs) in the FBXW7 gene are linked to cancer risk, strengthening FBXW7's role in the pathogenesis of colorectal cancer. Our case-control study comprised of 450 patients diagnosed with colorectal cancer (CRC) and an equal number of 450 healthy subjects. FBXW7 SNPs rs2255137C>T and rs6842544C>T were genotyped using PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) and Single-Stranded Conformation Polymorphism (SSCP) techniques and further cross-checked by direct sequencing. Linkage disequilibrium and haplotype analyses of these SNPs were also assessed. The in-silico approach was used to reveal the functional analysis between the nonsynonymous variation (rs6842544) and CRC followed by its validation at the protein level by western blotting and reverse transcription-PCR. A significant association of colorectal cancer was detected with rs6842544 SNP. However, there was no association between FBXW7 rs2255137 polymorphism and CRC. The homozygous individuals carrying the C variant in FBXW7 rs6842544 showed a slightly higher risk for colorectal cancer (OR = 1.590, 95%CI = 0.39 ∼ 2.89, p = 0.011). The haplotype CC identified in this study seemed to be associated with good prognosis (OR = 1.22, 95% CI = 1.00 ∼ 1.47, p = 0.0013) whereas the TT haplotype was found to reduce the CRC risk (OR = 0.642, 95%CI = 0.48 ∼ 0.84, p = 0.039). In-silico prediction proposed that the variant R133G is responsible for the lower expression of FBXW7. Additionally, the expression profiling of FBXW7 nonsynonymous SNP was significantly lower in primary CRC tissues than in the paired non-cancerous tissues at protein and mRNA levels. The study indicates that the FBXW7 rs6842544 is associated with the risk of development of CRC and could serve as a molecular biological marker to screen high-risk groups for CRC.
Collapse
Affiliation(s)
- Laraib Uroog
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Bushra Zeya
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Imtiyaz
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rauf Ahmad Wani
- Department of General Surgery, SKIMS, Srinagar, Jammu and Kashmir, India
| | - M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
5
|
Nguyen VTC, Nguyen TH, Doan NNT, Pham TMQ, Nguyen GTH, Nguyen TD, Tran TTT, Vo DL, Phan TH, Jasmine TX, Nguyen VC, Nguyen HT, Nguyen TV, Nguyen THH, Huynh LAK, Tran TH, Dang QT, Doan TN, Tran AM, Nguyen VH, Nguyen VTA, Ho LMQ, Tran QD, Pham TTT, Ho TD, Nguyen BT, Nguyen TNV, Nguyen TD, Phu DTB, Phan BHH, Vo TL, Nai THT, Tran TT, Truong MH, Tran NC, Le TK, Tran THT, Duong ML, Bach HPT, Kim VV, Pham TA, Tran DH, Le TNA, Pham TVN, Le MT, Vo DH, Tran TMT, Nguyen MN, Van TTV, Nguyen AN, Tran TT, Tran VU, Le MP, Do TT, Phan TV, Nguyen HDL, Nguyen DS, Cao VT, Do TTT, Truong DK, Tang HS, Giang H, Nguyen HN, Phan MD, Tran LS. Multimodal analysis of methylomics and fragmentomics in plasma cell-free DNA for multi-cancer early detection and localization. eLife 2023; 12:RP89083. [PMID: 37819044 PMCID: PMC10567114 DOI: 10.7554/elife.89083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Despite their promise, circulating tumor DNA (ctDNA)-based assays for multi-cancer early detection face challenges in test performance, due mostly to the limited abundance of ctDNA and its inherent variability. To address these challenges, published assays to date demanded a very high-depth sequencing, resulting in an elevated price of test. Herein, we developed a multimodal assay called SPOT-MAS (screening for the presence of tumor by methylation and size) to simultaneously profile methylomics, fragmentomics, copy number, and end motifs in a single workflow using targeted and shallow genome-wide sequencing (~0.55×) of cell-free DNA. We applied SPOT-MAS to 738 non-metastatic patients with breast, colorectal, gastric, lung, and liver cancer, and 1550 healthy controls. We then employed machine learning to extract multiple cancer and tissue-specific signatures for detecting and locating cancer. SPOT-MAS successfully detected the five cancer types with a sensitivity of 72.4% at 97.0% specificity. The sensitivities for detecting early-stage cancers were 73.9% and 62.3% for stages I and II, respectively, increasing to 88.3% for non-metastatic stage IIIA. For tumor-of-origin, our assay achieved an accuracy of 0.7. Our study demonstrates comparable performance to other ctDNA-based assays while requiring significantly lower sequencing depth, making it economically feasible for population-wide screening.
Collapse
|
6
|
Deng Z, Richardson DR. The Myc Family and the Metastasis Suppressor NDRG1: Targeting Key Molecular Interactions with Innovative Therapeutics. Pharmacol Rev 2023; 75:1007-1035. [PMID: 37280098 DOI: 10.1124/pharmrev.122.000795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Cancer is a leading cause of death worldwide, resulting in ∼10 million deaths in 2020. Major oncogenic effectors are the Myc proto-oncogene family, which consists of three members including c-Myc, N-Myc, and L-Myc. As a pertinent example of the role of the Myc family in tumorigenesis, amplification of MYCN in childhood neuroblastoma strongly correlates with poor patient prognosis. Complexes between Myc oncoproteins and their partners such as hypoxia-inducible factor-1α and Myc-associated protein X (MAX) result in proliferation arrest and pro-proliferative effects, respectively. Interactions with other proteins are also important for N-Myc activity. For instance, the enhancer of zest homolog 2 (EZH2) binds directly to N-Myc to stabilize it by acting as a competitor against the ubiquitin ligase, SCFFBXW7, which prevents proteasomal degradation. Heat shock protein 90 may also be involved in N-Myc stabilization since it binds to EZH2 and prevents its degradation. N-Myc downstream-regulated gene 1 (NDRG1) is downregulated by N-Myc and participates in the regulation of cellular proliferation via associating with other proteins, such as glycogen synthase kinase-3β and low-density lipoprotein receptor-related protein 6. These molecular interactions provide a better understanding of the biologic roles of N-Myc and NDRG1, which can be potentially used as therapeutic targets. In addition to directly targeting these proteins, disrupting their key interactions may also be a promising strategy for anti-cancer drug development. This review examines the interactions between the Myc proteins and other molecules, with a special focus on the relationship between N-Myc and NDRG1 and possible therapeutic interventions. SIGNIFICANCE STATEMENT: Neuroblastoma is one of the most common childhood solid tumors, with a dismal five-year survival rate. This problem makes it imperative to discover new and more effective therapeutics. The molecular interactions between major oncogenic drivers of the Myc family and other key proteins; for example, the metastasis suppressor, NDRG1, may potentially be used as targets for anti-neuroblastoma drug development. In addition to directly targeting these proteins, disrupting their key molecular interactions may also be promising for drug discovery.
Collapse
Affiliation(s)
- Zhao Deng
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| | - Des R Richardson
- Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia (Z.D., D.R.R.), and Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Japan (D.R.R.)
| |
Collapse
|
7
|
Pham TMQ, Phan TH, Jasmine TX, Tran TTT, Huynh LAK, Vo TL, Nai THT, Tran TT, Truong MH, Tran NC, Nguyen VTC, Nguyen TH, Nguyen THH, Le NDK, Nguyen TD, Nguyen DS, Truong DK, Do TTT, Phan MD, Giang H, Nguyen HN, Tran LS. Multimodal analysis of genome-wide methylation, copy number aberrations, and end motif signatures enhances detection of early-stage breast cancer. Front Oncol 2023; 13:1127086. [PMID: 37223690 PMCID: PMC10200909 DOI: 10.3389/fonc.2023.1127086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Breast cancer causes the most cancer-related death in women and is the costliest cancer in the US regarding medical service and prescription drug expenses. Breast cancer screening is recommended by health authorities in the US, but current screening efforts are often compromised by high false positive rates. Liquid biopsy based on circulating tumor DNA (ctDNA) has emerged as a potential approach to screen for cancer. However, the detection of breast cancer, particularly in early stages, is challenging due to the low amount of ctDNA and heterogeneity of molecular subtypes. Methods Here, we employed a multimodal approach, namely Screen for the Presence of Tumor by DNA Methylation and Size (SPOT-MAS), to simultaneously analyze multiple signatures of cell free DNA (cfDNA) in plasma samples of 239 nonmetastatic breast cancer patients and 278 healthy subjects. Results We identified distinct profiles of genome-wide methylation changes (GWM), copy number alterations (CNA), and 4-nucleotide oligomer (4-mer) end motifs (EM) in cfDNA of breast cancer patients. We further used all three signatures to construct a multi-featured machine learning model and showed that the combination model outperformed base models built from individual features, achieving an AUC of 0.91 (95% CI: 0.87-0.95), a sensitivity of 65% at 96% specificity. Discussion Our findings showed that a multimodal liquid biopsy assay based on analysis of cfDNA methylation, CNA and EM could enhance the accuracy for the detection of early- stage breast cancer.
Collapse
Affiliation(s)
- Thi Mong Quynh Pham
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Thanh Hai Phan
- Ultrasound Department Medic Medical Center, Ho Chi Minh, Vietnam
| | | | - Thuy Thi Thu Tran
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Le Anh Khoa Huynh
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Department of Biostatistics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Thi Loan Vo
- Ultrasound Department Medic Medical Center, Ho Chi Minh, Vietnam
| | | | - Thuy Trang Tran
- Ultrasound Department Medic Medical Center, Ho Chi Minh, Vietnam
| | - My Hoang Truong
- Ultrasound Department Medic Medical Center, Ho Chi Minh, Vietnam
| | - Ngan Chau Tran
- Ultrasound Department Medic Medical Center, Ho Chi Minh, Vietnam
| | - Van Thien Chi Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Trong Hieu Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Thi Hue Hanh Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Nguyen Duy Khang Le
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Thanh Dat Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Duy Sinh Nguyen
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
- Faculty of Medicine Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | | | | | - Minh-Duy Phan
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Hoa Giang
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Hoai-Nghia Nguyen
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| | - Le Son Tran
- Medical Genetics Institute, Ho Chi Minh, Vietnam
- Research and Development Department Gene Solutions, Ho Chi Minh, Vietnam
| |
Collapse
|
8
|
DNA Copy Number Aberrations and Expression of ABC Transporter Genes in Breast Tumour: Correlation with the Effect of Neoadjuvant Chemotherapy and Prognosis of the Disease. Pharmaceutics 2022; 14:pharmaceutics14050948. [PMID: 35631534 PMCID: PMC9146568 DOI: 10.3390/pharmaceutics14050948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
One of the important reasons for the ineffectiveness of chemotherapy in breast cancer (BC) is considered to be the formation of a multidrug resistance phenotype in tumour cells, which is caused by the expression of energy-dependent ABC transporters. The aim of this work was to assess chromosomal aberrations and the level of transcripts of all 49 known ABC transporter genes in breast tumours. Materials and Methods. The study included 129 patients with breast cancer. A microarray study of all tumour samples was carried out on microchips. Results. This study established that the presence of a deletion in genes ABCB1, ABCB4, ABCB8, ABCC7, ABCC11, ABCC12, ABCF2, and ABCG4 is associated with an objective response to treatment (p ≤ 0.05). A decrease in the expression of genes was associated with a good response to chemotherapy, whereas an increase in expression caused the progression and stabilization of the tumour. Analysis of metastatic-free survival rates showed that the presence of ABCB1/4 and ABCC1/6 deletions was associated with 100% survival (log-rank test p = 0.01 and p = 0.03). Conclusions. The study showed that the aberrant state of ABC transporter genes, as well as a decrease in the expression of these genes, is a predictor of the effectiveness of therapeutic treatment and a potential prognostic marker of metastatic survival.
Collapse
|
9
|
Shieh TM, Liu CJ, Hsia SM, Ningrum V, Liao CC, Lan WC, Shih YH. Lack of Salivary Long Non-Coding RNA XIST Expression Is Associated with Increased Risk of Oral Squamous Cell Carcinoma: A Cross-Sectional Study. J Clin Med 2021; 10:4622. [PMID: 34640640 PMCID: PMC8509565 DOI: 10.3390/jcm10194622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
Studies have shown that there is a disparity between males and females in south-east Asia with regard to oral cancer morbidity. A previous study found that oral cancer tissue showed loss of heterozygosity of the X-linked lncRNA XIST gene. We suggest that XIST may play an important role in oral cancer morbidity when associated with sex. Saliva contains proteins and RNAs that are potential biomarkers for the diagnosis of diseases. This study investigated salivary XIST expression and the correlation to clinical-pathological data among oral squamous cell carcinoma patients. Salivary XIST expression was only observed in females, and a high proportion of females with OSCC lack salivary lncRNA XIST expression (88%). The expression showed no correlation with alcohol consumption, betel quid chewing, or cigarette smoking habits. People lacking salivary lncRNA XIST expression had a significantly increased odds ratio of suffering from OSCC (OR = 19.556, p < 0.001), particularly females (OR = 33.733, p < 0.001). The ROC curve showed that salivary lncRNA XIST expression has acceptable discrimination accuracy to predict the risk of OSCC (AUC = 0.73, p < 0.01). Lack of salivary lncRNA XIST expression was associated with an increased risk of OSCC. We provided an insight into the role of salivary lncRNA XIST as a biomarker to predict the morbidity of OSCC.
Collapse
Affiliation(s)
- Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan;
| | - Chung-Ji Liu
- Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei 104217, Taiwan;
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan;
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110301, Taiwan
| | - Valendriyani Ningrum
- School of Dentistry, Baiturrahmah University, by Pass km 15 Aie Pacah, Padang 25586, West Sumatra, Indonesia;
| | - Chiu-Chu Liao
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan; (C.-C.L.); (W.-C.L.)
| | - Wan-Chen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan; (C.-C.L.); (W.-C.L.)
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan; (C.-C.L.); (W.-C.L.)
| |
Collapse
|
10
|
Razumova Z, Oda H, Govorov I, Lundin E, Östensson E, Lindquist D, Mints M. The Prognostic Role of LRIG Proteins in Endometrial Cancer. Cancers (Basel) 2021; 13:1361. [PMID: 33802837 PMCID: PMC8002727 DOI: 10.3390/cancers13061361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in Sweden and it has various prognostic factors. The LRIG family is a group of three integral surface proteins with a similar domain organization. The study aimed to explore LRIG family as prognostic factor proteins in EC. The initial study cohort included 100 women with EC who were treated at the Department of Women's and Children's Health, Karolinska University Hospital Solna, between 2007 and 2012. We assessed the associations between LRIG protein expression and type, grade, and stage of EC, as well as progression-free and overall survival. Immunohistochemistry results revealed that most women in the analytical sample had >50% LRIG1-, LRIG2- and LRIG3-positive cells. A statistically significant association was observed between having a high number of LRIG3-positive cells and superior overall survival (incidence rate ratio = 0.977; 95% confidence interval: 0.958-0.996, p = 0.019). Moreover, positive LRIG3 staining of the cell membrane was associated with reducing in the risk of death (hazard ratio = 0.23; 95% confidence interval: 0.09-0.57). Our results show that LRIG3 expression might be a prognostic factor in EC. The role of LRIG1 and LRIG2 expression remains to be further investigated.
Collapse
Affiliation(s)
- Zoia Razumova
- Division of Neonatology, Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (I.G.); (E.Ö.); (M.M.)
| | - Husam Oda
- Unit of Pathology, Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden; (H.O.); (E.L.)
| | - Igor Govorov
- Division of Neonatology, Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (I.G.); (E.Ö.); (M.M.)
- Institute of Perinatology and Paediatrics, Almazov National Medical Research Centre, 197 341 St. Petersburg, Russia
| | - Eva Lundin
- Unit of Pathology, Department of Medical Biosciences, Umeå University, 901 87 Umeå, Sweden; (H.O.); (E.L.)
| | - Ellinor Östensson
- Division of Neonatology, Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (I.G.); (E.Ö.); (M.M.)
| | - David Lindquist
- Unit of Professional Development, Department of Clinical Sciences, Umeå University, 901 87 Umeå, Sweden;
| | - Miriam Mints
- Division of Neonatology, Obstetrics and Gynecology, Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden; (I.G.); (E.Ö.); (M.M.)
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden
| |
Collapse
|
11
|
Naderi A. Genomic and epigenetic aberrations of chromosome 1p36.13 have prognostic implications in malignancies. Chromosome Res 2020; 28:307-330. [PMID: 32816122 DOI: 10.1007/s10577-020-09638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
Deletions of chromosome 1p36 are common in malignancies; however, there is limited information regarding the biological and prognostic implications of 1p36 in cancer. Steroid Receptor-Associated and Regulated Protein (SRARP) is a tumor suppressor on chromosome 1p36.13 that its inactivation predicts poor cancer outcome, indicating that the 1p36.13 segment requires further studies. Therefore, a comprehensive multi-omics analysis of The Cancer Genome Atlas (TCGA), the Pan-Cancer Analysis of Whole Genomes (PCAWD), the International Cancer Genome Consortium (ICGC), and the Genomic Data Commons (GDC) Pan-Cancer datasets was conducted to investigate the prognostic implications of 1p36.13 in malignancies. This study revealed that expression and DNA methylation of multiple genes on 1p36.13 are significantly associated with survival in primary tumors and normal adjacent tissues. In addition, copy-number loss in every gene on 1p36.13 predicts poor cancer outcome. Importantly, copy-number loss and somatic mutations of chromosome 1p36.13 segment are associated with worse survival in primary tumors, and DNA hypermethylation of 1p36.13 predicts poor outcome in normal adjacent tissues. Therefore, genomic and epigenetic aberrations of chromosome 1p36.13 have promising prognostic implications in cancer.
Collapse
Affiliation(s)
- Ali Naderi
- Cancer Biology Program, University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI, 96813, USA. .,Queensland University of Technology, Gardens Point, Brisbane, Queensland, 4001, Australia.
| |
Collapse
|
12
|
Sriratanasak N, Petsri K, Laobuthee A, Wattanathana W, Vinayanuwattikun C, Luanpitpong S, Chanvorachote P. Novel c-Myc-Targeting Compound N, N-Bis (5-Ethyl-2-Hydroxybenzyl) Methylamine for Mediated c-Myc Ubiquitin-Proteasomal Degradation in Lung Cancer Cells. Mol Pharmacol 2020; 98:130-142. [PMID: 32487733 DOI: 10.1124/mol.120.119719] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/13/2020] [Indexed: 02/05/2023] Open
Abstract
Aberrant cellular Myc (c-Myc) is a common feature in the majority of human cancers and has been linked to oncogenic malignancies. Here, we developed a novel c-Myc-targeting compound, N, N-bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD), and present evidence demonstrating its effectiveness in targeting c-Myc for degradation in human lung carcinoma. EMD exhibited strong cytotoxicity toward various human lung cancer cell lines, as well as chemotherapeutic-resistant patient-derived lung cancer cells, through apoptosis induction in comparison with chemotherapeutic drugs. The IC50 of EMD against lung cancer cells was approximately 60 µM. Mechanistically, EMD eliminated c-Myc in the cells and initiated caspase-dependent apoptosis cascade. Cycloheximide chase assay revealed that EMD tended to shorten the half-life of c-Myc by approximately half. The cotreatment of EMD with the proteasome inhibitor MG132 reversed its c-Myc-targeting effect, suggesting the involvement of ubiquitin-mediated proteasomal degradation in the process. We further verified that EMD strongly induced the ubiquitination of c-Myc and promoted protein degradation. c-Myc inhibition and apoptosis induction were additionally shown in hematologic malignant K562 cells, indicating the generality of the observed EMD effects. Altogether, we identified EMD as a novel potent compound targeting oncogenic c-Myc that may offer new opportunities for lung cancer treatment. SIGNIFICANCE STATEMENT: The deregulation of c-Myc is frequently associated with cancer progression. This study examined the effect of a new compound, N, N-bis (5-ethyl-2-hydroxybenzyl) methylamine (EMD), in targeting c-Myc in several lung cancer cell lines and drug-resistant primary lung cancer cells. EMD induced dramatic c-Myc degradation through a ubiquitin-proteasomal mechanism. The promising anticancer and c-Myc-targeted activities of EMD support its use in potential new approaches to treat c-Myc-driven cancer.
Collapse
Affiliation(s)
- Nicharat Sriratanasak
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Korrakod Petsri
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Apirat Laobuthee
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Worawat Wattanathana
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Chanida Vinayanuwattikun
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Sudjit Luanpitpong
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology and Cell-based Drug and Health Products Development Research Unit (N.S., K.P., P.C.), Faculty of Pharmaceutical Sciences and Doctor of Philosophy Program in Interdisciplinary Pharmacology, Graduate School (K.P.), Chulalongkorn University, Bangkok, Thailand; Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok, Thailand (A.L., W.W.); ivision of Medical Oncology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University and the King Chulalongkorn Memorial Hospital, Bangkok, Thailand (C.V.); and Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand (S.L.)
| |
Collapse
|
13
|
Abstract
MYC is a master transcriptional regulator that controls almost all cellular processes. Over the last several decades, researchers have strived to define the context-dependent transcriptional gene programs that are controlled by MYC, as well as the mechanisms that regulate MYC function, in an effort to better understand the contribution of this oncoprotein to cancer progression. There are a wealth of data indicating that deregulation of MYC activity occurs in a large number of cancers and significantly contributes to disease progression, metastatic potential, and therapeutic resistance. Although the therapeutic targeting of MYC in cancer is highly desirable, there remain substantial structural and functional challenges that have impeded direct MYC-targeted drug development and efficacy. While efforts to drug the ‘undruggable’ may seem futile given these challenges and considering the broad reach of MYC, significant strides have been made to identify points of regulation that can be exploited for therapeutic purposes. These include targeting the deregulation of MYC transcription in cancer through small-molecule inhibitors that induce epigenetic silencing or that regulate the G-quadruplex structures within the MYC promoter. Alternatively, compounds that disrupt the DNA-binding activities of MYC have been the long-standing focus of many research groups, since this method would prevent downstream MYC oncogenic activities regardless of upstream alterations. Finally, proteins involved in the post-translational regulation of MYC have been identified as important surrogate targets to reduce MYC activity downstream of aberrant cell stimulatory signals. Given the complex regulation of the MYC signaling pathway, a combination of these approaches may provide the most durable response, but this has yet to be shown. Here, we provide a comprehensive overview of the different therapeutic strategies being employed to target oncogenic MYC function, with a focus on post-translational mechanisms.
Collapse
|
14
|
Chang SL, Lee SW, Yang SF, Chien CC, Chan TC, Chen TJ, Yang CC, Li CF, Wei YC. Expression and prognostic utility of SSX2IP in patients with nasopharyngeal carcinoma. APMIS 2020; 128:287-297. [PMID: 31837171 DOI: 10.1111/apm.13023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/10/2019] [Indexed: 01/20/2023]
Abstract
Cell adhesion affects carcinogenesis, tumor progression, and metastasis. We datamined a published transcriptome (GSE12452) of nasopharyngeal carcinoma (NPC) and identified SSX2IP as a significantly upregulated gene in NPC carcinogenesis among genes associated with cell adhesion (GO:0007155). Consequently, we assessed SSX2IP protein expression and its prognostic significance in 124 patients with NPC using immunohistochemistry and the H-score method. The status of SSX2IP immunoexpression correlated with clinical and pathological characteristics, as well as oncological outcomes. High levels of SSX2IP expression were significantly associated with more advanced primary tumor and TNM stages. Kaplan-Meier and log-rank analyses revealed that high levels of SSX2IP expression, and advanced tumor stage and lymph node metastasis were significantly associated with lower rates of local recurrence-free survival (LRFS), distant metastasis-free survival (DMeFS), and disease-specific (DSS) survival. Multivariate analysis showed that high levels of SSX2IP expression significantly predicted DSS (hazard ratio [HR], 4.290; 95% confidence interval [CI], 2.271-8.102; p < 0.001), DMeFS (HR, 4.159' 95% CI, 2.072-8.345; p < 0.001), and LRFS (HR, 3.007' 95% CI,: 1.418-6.378; p = 0.004). We associated high levels of SSX2IP immunoexpression with aggressive pathological features and worse oncological outcomes, suggesting its potential therapeutic value for patients with NPC.
Collapse
Affiliation(s)
- Shih-Lun Chang
- Department of Otolaryngology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Taiwan
| | - Sheau-Fang Yang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chu-Chun Chien
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan.,Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ching-Chieh Yang
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institute, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yu-Ching Wei
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Downregulation of specific FBXW7 isoforms with differential effects in T-cell lymphoblastic lymphoma. Oncogene 2019; 38:4620-4636. [DOI: 10.1038/s41388-019-0746-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/26/2018] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
|
16
|
Zhao T, Huo X, Chen J. Genetic polymorphism of rs9564966 G > A on 13q22.1 predicts poor survival for Chinese patients with gastric cancer. Cancer Med 2018; 8:428-436. [PMID: 30537204 PMCID: PMC6346249 DOI: 10.1002/cam4.1693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/12/2018] [Accepted: 06/28/2018] [Indexed: 12/20/2022] Open
Abstract
Two genomewide association studies on pancreatic cancer have identified a novel single‐nucleotide polymorphism of rs9564966 G > A on 13q22.1 region. However, the associations between the rs9564966 G > A polymorphism and the survival of Chinese patients with gastric cancer (GC) were unknown. In our present investigation, we adopted the Kaplan‐Meier plots, Cox regression analyses, and the log‐rank tests to explore the associations between rs9564966 G > A polymorphism and the prognosis of 911 Chinese patients with GC. Our results revealed that, compared with GG genotype, patients with GA + AA genotypes had poorer outcomes (HR = 1.348, 95% CI = 1.084‐1.675, P = 0.007), especially in the subgroups of age ≤60 years, male, nondrinker, tumor size >5 cm, tumor site in Noncardia, intestinal‐type tumor, T3/T4 level depth of invasion, N1/N2/N3 level lymph node metastasis, no distant metastasis, III/IV level TNM stages, and no chemotherapy. Our findings suggested that the rs9564966 G > A polymorphism may be a potential biomarker to predict the survival of Chinese patients with GC.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xinying Huo
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Naderi A. SRARP and HSPB7 are epigenetically regulated gene pairs that function as tumor suppressors and predict clinical outcome in malignancies. Mol Oncol 2018; 12:724-755. [PMID: 29577611 PMCID: PMC5928383 DOI: 10.1002/1878-0261.12195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 03/10/2018] [Indexed: 12/16/2022] Open
Abstract
Deletions of chromosome 1p36 are common in cancers; however, despite extensive studies, there has been limited success for discovering candidate tumor suppressors in this region. SRARP has recently been identified as a novel corepressor of the androgen receptor (AR) and is located on chromosome 1p36. Here, bioinformatics analysis of large tumor datasets was performed to study SRARP and its gene pair, HSPB7. In addition, using cancer cell lines, mechanisms of SRARP and HSPB7 regulation and their molecular functions were investigated. This study demonstrated that SRARP and HSPB7 are a gene pair located 5.2 kb apart on 1p36.13 and are inactivated by deletions and epigenetic silencing in malignancies. Importantly, SRARP and HSPB7 have tumor suppressor functions in clonogenicity and cell viability associated with the downregulation of Akt and ERK. SRARP expression is inversely correlated with genes that promote cell proliferation and signal transduction, which supports its functions as a tumor suppressor. In addition, AR exerts dual regulatory effects on SRARP, and although an increased AR activity suppresses SRARP transcription, a minimum level of AR activity is required to maintain baseline SRARP expression in AR+ cancer cells. Furthermore, as observed with SRARP, HSPB7 interacts with the 14-3-3 protein, presenting a shared molecular feature between SRARP and HSPB7. Of note, genome- and epigenome-wide associations of SRARP and HSPB7 with survival strongly support their tumor suppressor functions. In particular, DNA hypermethylation, lower expression, somatic mutations, and lower copy numbers of SRARP are associated with worse cancer outcome. Moreover, DNA hypermethylation and lower expression of SRARP in normal adjacent tissues predict poor survival, suggesting that SRARP inactivation is an early event in carcinogenesis. In summary, SRARP and HSPB7 are tumor suppressors that are commonly inactivated in malignancies. SRARP inactivation is an early event in carcinogenesis that is strongly associated with worse survival, presenting potential translational applications.
Collapse
Affiliation(s)
- Ali Naderi
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| |
Collapse
|
18
|
Jang SM, Redon CE, Aladjem MI. Chromatin-Bound Cullin-Ring Ligases: Regulatory Roles in DNA Replication and Potential Targeting for Cancer Therapy. Front Mol Biosci 2018; 5:19. [PMID: 29594129 PMCID: PMC5859106 DOI: 10.3389/fmolb.2018.00019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Cullin-RING (Really Interesting New Gene) E3 ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases, are functional multi-subunit complexes including substrate receptors, adaptors, cullin scaffolds, and RING-box proteins. CRLs are responsible for ubiquitination of ~20% of cellular proteins and are involved in diverse biological processes including cell cycle progression, genome stability, and oncogenesis. Not surprisingly, cullins are deregulated in many diseases and instances of cancer. Recent studies have highlighted the importance of CRL-mediated ubiquitination in the regulation of DNA replication/repair, including specific roles in chromatin assembly and disassembly of the replication machinery. The development of novel therapeutics targeting the CRLs that regulate the replication machinery and chromatin in cancer is now an attractive therapeutic strategy. In this review, we summarize the structure and assembly of CRLs and outline their cellular functions and their diverse roles in cancer, emphasizing the regulatory functions of nuclear CRLs in modulating the DNA replication machinery. Finally, we discuss the current strategies for targeting CRLs against cancer in the clinic.
Collapse
Affiliation(s)
| | | | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
19
|
Li Y, Hu K, Xiao X, Wu W, Yan H, Chen H, Chen Z, Yin D. FBW7 suppresses cell proliferation and G2/M cell cycle transition via promoting γ-catenin K63-linked ubiquitylation. Biochem Biophys Res Commun 2018; 497:473-479. [PMID: 29408378 DOI: 10.1016/j.bbrc.2018.01.192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 11/25/2022]
|
20
|
Lu H, Bhoopatiraju S, Wang H, Schmitz NP, Wang X, Freeman MJ, Forster CL, Verneris MR, Linden MA, Hallstrom TC. Loss of UHRF2 expression is associated with human neoplasia, promoter hypermethylation, decreased 5-hydroxymethylcytosine, and high proliferative activity. Oncotarget 2018; 7:76047-76061. [PMID: 27738314 PMCID: PMC5340178 DOI: 10.18632/oncotarget.12583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 09/24/2016] [Indexed: 12/31/2022] Open
Abstract
Ubiquitin-like with PHD and ring finger domains 2 (UHRF2) binds to 5-hydroxymethylcytosine (5hmC), a DNA base involved in tissue development, but it is unknown how their distribution compares with each other in normal and malignant human tissues. We used IHC on human tumor specimens (160 from 19 tumor types) or normal tissue to determine the expression and distribution of UHRF2, Ki-67, and 5hmC. We also examined UHRF2 expression in cord blood progenitors and compared its expression to methylation status in 6 leukemia cell lines and 15 primary human leukemias. UHRF2 is highly expressed, paralleling that of 5hmC, in most non-neoplastic, differentiated tissue with low Ki-67 defined proliferative activity. UHRF2 is expressed in common lymphoid progenitors and mature lymphocytes but not common myeloid progenitors or monocytes. In contrast, UHRF2 immunostaining in human cancer tissues revealed widespread reduction or abnormal cytoplasmic localization which correlated with a higher Ki-67 and reduced 5hmC. UHRF2 expression is reduced in some leukemia cell lines, this correlates with promoter hypermethylation, and similar UHRF2 methylation profiles are seen in primary human leukemia samples. Thus, UHRF2 and 5hmC are widely present in differentiated human tissues, and UHRF2 protein is poorly expressed or mislocalized in diverse human cancers.
Collapse
Affiliation(s)
- Huarui Lu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sweta Bhoopatiraju
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hongbo Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nolan P Schmitz
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xiaohong Wang
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Matthew J Freeman
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Colleen L Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael R Verneris
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael A Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Timothy C Hallstrom
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
LRIG2 is a growth suppressor of Hec-1A and Ishikawa endometrial adenocarcinoma cells by regulating PI3K/AKT- and EGFR-mediated apoptosis and cell-cycle. Oncogenesis 2018; 7:3. [PMID: 29358688 PMCID: PMC5833696 DOI: 10.1038/s41389-017-0019-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/22/2017] [Indexed: 01/07/2023] Open
Abstract
Although endometrial cancer is the most common type of gynecological malignancy in developed countries, its molecular etiology is not well understood. Leucine-rich repeat and immunoglobulin-like domain 2 (LRIG2) is an evolutionarily conserved gene, but its functions in the endometrium are unknown. In this study, we found that LRIG2 is highly downregulated in endometrial adenocarcinoma patients and that it functions as a tumor suppressor. LRIG2 induced the mitochondrion-mediated apoptotic pathways by regulating stoichiometric balance among BCL-2 family proteins, whereby pro-survival members, MCL-1 and BCL-xL, were downregulated and pro-apoptotic BAK and BAX were upregulated. LRIG2 also inhibited proliferation of the Hec-1A and Ishikawa endometrial adenocarcinoma cells by upregulating p21. LRIG2 induced BAX- and BAK-dependent cell death that was efficiently prevented by MCL-1 overexpression. Furthermore, we found that LRIG2 unexpectedly phosphor-activates phosphoinositide 3-kinase (PI3K)/AKT and epidermal growth factor receptor (EGFR), which are conventionally accepted as survival signaling cues in diverse types of cancer. We observed that PI3K/AKT and EGFR serve as key kinases that have roles as growth suppressors of Hec-1A endometrial cancer cells by mediating the LRIG2-induced modulation of the BCL-2 family of proteins and p21. In vivo delivery of antisense DNAs against LRIG2 promoted the Hec-1A endometrial tumor growth in a xenograft mouse model, and immunoblotting of these tumor extracts showed consistent modulation of AKT, EGFR, the BCL-2 family members, and p21. Thus, our results demonstrated that LRIG2 is a growth suppressor of endometrial adenocarcinoma cells.
Collapse
|
22
|
Zhang PF, Sheng LL, Wang G, Tian M, Zhu LY, Zhang R, Zhang J, Zhu JS. miR-363 promotes proliferation and chemo-resistance of human gastric cancer via targeting of FBW7 ubiquitin ligase expression. Oncotarget 2018; 7:35284-92. [PMID: 27167197 PMCID: PMC5085228 DOI: 10.18632/oncotarget.9169] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/11/2016] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of microRNA expression is involved in several pathological activities associated with gastric cancer progression and chemo-resistance. However, the role and molecular mechanisms of miR-363 in the progression and chemo-resistance of gastric cancer remain enigmatic. In this study, we validated that miR-363 expression was higher in gastric cancer tissues than in adjacent normal tissues. Multivariate analysis identifies high levels of miR-363 expression as an independent predictor for postoperative recurrence and lower overall survival. Increased miR-363 expression promotes gastric cancer cell proliferation and chemo-resistance through directly targeting the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7). Clinically, our data reveal that overexpression of miR-363 correlates with the poor survival outcomes in patients with gastric cancer, and docetaxel + cisplatin + 5-FU (DCF) regimen response is impaired in patients with miR-363 overexpression. These data suggest that miR-363 may be a potential therapeutic target for gastric cancer and serve as a biomarker for predicting response to DCF regimen treatment.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Lu-Lu Sheng
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Ge Wang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Mi Tian
- Department of Emergency Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Ling-Yin Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Rui Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
23
|
Zhou Y, Ji C, Cao M, Guo M, Huang W, Ni W, Meng L, Yang H, Wei JF. Inhibitors targeting the SUMOylation pathway: A patent review 2012‑2015 (Review). Int J Mol Med 2017; 41:3-12. [PMID: 29115401 DOI: 10.3892/ijmm.2017.3231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 10/27/2017] [Indexed: 11/06/2022] Open
Abstract
Small ubiquitin‑related modifier (SUMO) proteins bind to the lysine residue of target proteins to produce functionally mature proteins. The abnormal SUMOylation of certain target proteins is associated with diseases including cancer, heart disease, diabetes, arthritis, degenerative diseases and brain ischemia/stroke. Thus, there has been growing appreciation for the potential importance of the SUMO conjugation pathway as a target for treating these diseases. This review introduces the important steps in the reversible SUMOylation pathway. The SUMO inhibitors disclosed in the patents between 2012 and 2015 are divided into different categories according to their mechanisms of action. Certain compounds disclosed in this review have also been reported in other articles for their inhibition of the SUMOylation pathway following screening in cell lines. Although there are few studies using animal models or clinical trials that have used these compounds, the application of bortezomin, a ubiquitylation inhibitor, for treating cancer indicates that SUMO inhibitors may be clinically successful.
Collapse
Affiliation(s)
- Yanjun Zhou
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Chunmei Ji
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Mengda Cao
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Miao Guo
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Weiwei Ni
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Ling Meng
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Haiwei Yang
- Department of Urology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Ji-Fu Wei
- Research Division of Clinical Pharmacology, Jiangsu Province People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
24
|
Mao F, Wang B, Xiao Q, Cheng F, Lei T, Guo D. LRIG proteins in glioma: Functional roles, molecular mechanisms, and potential clinical implications. J Neurol Sci 2017; 383:56-60. [PMID: 29246624 DOI: 10.1016/j.jns.2017.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 12/26/2022]
Abstract
Gliomas are the most common intracranial tumors of the nervous system. These tumors are characterized by unlimited cell proliferation and excessive invasiveness. Despite the advances in diagnostic imaging, microneurosurgical techniques, radiation therapy, and chemotherapy, significant increases in the progression free survival of glioma patients have not been achieved. Improvements in our understanding of the molecular subtypes of gliomas and the underlying alterations in specific signaling pathways may impact both the diagnosis and the treatment strategies for patients with gliomas. Growth factors and their corresponding receptor tyrosine kinases are associated with oncogenesis and development of tumors in numerous human cancer types, including glioma. Leucine-rich repeats and immunoglobulin-like domains (LRIG) are integral membrane proteins which contain three vertebrate members including LRIG1, LRIG2 and LRIG3. They mainly function as regulators of growth factor signaling. Specifically, LRIG1 has been identified as a tumor suppressor in human cancers. In contrast, LRIG2 appears to function as a tumor promoter, while LRIG3 appears to have a function similar to that of LRIG1. In the present review, we summarize the functional roles, molecular mechanisms, and clinical perspectives of LRIG proteins in gliomas and propose that these proteins may be useful in the future as targets for treatment and prognostication in glioma patients.
Collapse
Affiliation(s)
- Feng Mao
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baofeng Wang
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qungen Xiao
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangling Cheng
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Lei
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongsheng Guo
- Department of Neurosurgery and Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
RNAi screen reveals synthetic lethality between cyclin G-associated kinase and FBXW7 by inducing aberrant mitoses. Br J Cancer 2017; 117:954-964. [PMID: 28829765 PMCID: PMC5625678 DOI: 10.1038/bjc.2017.277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/30/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023] Open
Abstract
Background: F-box and WD40 repeat domain-containing 7 (FBXW7) is an E3 ubiquitin ligase involved in the ubiquitination and degradation of multiple oncogenic substrates. The tumour suppressor function is frequently lost in multiple cancers through genetic deletion and mutations in a broad range of tumours. Loss of FBXW7 functionality results in the stabilisation of multiple major oncoproteins, culminating in increased cellular proliferation and pro-survival pathways, cell cycle deregulation, chromosomal instability and altered metabolism. Currently, there is no therapy to specifically target FBXW7-deficient tumours. Methods: We performed a siRNA kinome screen to identify synthetically lethal hits to FBXW7 deficiency. Results: We identified and validated cyclin G-associated kinase (GAK) as a potential new therapeutic target. Combined loss of FBXW7 and GAK caused cell cycle defects, formation of multipolar mitoses and the induction of apoptosis. The synthetic lethal mechanism appears to be independent of clathrin-mediated receptor endocytosis function of GAK. Conclusions: These data suggest a putative therapeutic strategy for a large number of different types of human cancers with FBXW7 loss, many of which have a paucity of molecular abnormalities and treatment options.
Collapse
|
26
|
Liang R, Lin Y, Ye JZ, Yan XX, Liu ZH, Li YQ, Luo XL, Ye HH. High expression of RBM8A predicts poor patient prognosis and promotes tumor progression in hepatocellular carcinoma. Oncol Rep 2017; 37:2167-2176. [PMID: 28259942 DOI: 10.3892/or.2017.5457] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/30/2017] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a huge threat for human health worldwide. As a complicated tumor, the molecular basis for HCC development especially metastasis requires exploration. Although RNA binding motif (RBM) proteins are closely related to various cancers, the clinical importance and underlying mechanisms of RBM8A in HCC remain elusive. In this study, we found that RBM8A was highly expressed in HCC tumor tissues compared to normal liver tissues. Overexpression of RBM8A was associated with HbsAg and Edmondson pathological grading. Moreover, Kaplan-Meier survival analysis showed that high expression of RBM8A was related to the poor overall survival and progression-free survival of patients with HCC. Gain- and loss-of-function experiments further demonstrated that RBM8A promoted tumor cell migration and invasion in HCC via activation of epithelial-mesenchymal transition signaling pathway. It is also noteworthy that RBM8A is required for tumor cell proliferation and anti-apoptosis in HCC. Altogether, our results revealed a close relationship between RBM8A and HCC prognosis as well as a critical tumor-promoting function of RBM8A in HCC progression, suggesting that RBM8A might be a potential bio-marker and drug target in HCC therapy.
Collapse
Affiliation(s)
- Rong Liang
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Yan Lin
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Jia-Zhou Ye
- Department of Hepatobilliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Xue-Xin Yan
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Zhi-Hui Liu
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Yong-Qiang Li
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Xiao-Ling Luo
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 5300221, P.R. China
| | - Hai-Hong Ye
- Department of Hepatobilliary Surgery, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi 530001, P.R. China
| |
Collapse
|
27
|
Calcagno DQ, Takeno SS, Gigek CO, Leal MF, Wisnieski F, Chen ES, Araújo TMT, Lima EM, Melaragno MI, Demachki S, Assumpção PP, Burbano RR, Smith MC. Identification of IL11RA and MELK amplification in gastric cancer by comprehensive genomic profiling of gastric cancer cell lines. World J Gastroenterol 2016; 22:9506-9514. [PMID: 27920471 PMCID: PMC5116594 DOI: 10.3748/wjg.v22.i43.9506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/10/2016] [Accepted: 10/10/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To identify common copy number alterations on gastric cancer cell lines.
METHODS Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis.
RESULTS The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively.
CONCLUSION The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer.
Collapse
|
28
|
Shin K, Hwang SG, Choi IJ, Ko YG, Jeong J, Kwon H. Fbxw7β, E3 ubiquitin ligase, negative regulation of primary myoblast differentiation, proliferation and migration. Anim Sci J 2016; 88:712-719. [PMID: 27594513 DOI: 10.1111/asj.12687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 06/10/2016] [Accepted: 06/21/2016] [Indexed: 12/24/2022]
Abstract
Satellite cells attached to skeletal muscle fibers play a crucial role in skeletal muscle regeneration. During regeneration, the satellite cells proliferate, migrate to the damaged region, and fuse to each other. Although it is important to determine the cellular mechanisms controlling myoblast behavior, their regulators are not well understood. In this study, we evaluated the roles of Fbxw7 in primary myoblasts and determined its potential as a therapeutic target for muscle disease. We originally found that Fbxw7β, one of the E3 ubiquitin ligase Fbxw7 subtypes, negatively regulates differentiation, proliferation and migration of myoblasts and satellite cells on muscle fiber. However, these phenomena were not observed in myoblasts expressing a dominant-negative, F-box deleted Fbxw7β, mutant. Our results suggest that myoblast differentiation potential and muscle regeneration can be regulated by Fbxw7β.
Collapse
Affiliation(s)
- Kyungshin Shin
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Science, Seoul, South Korea.,Department of Biotechnology, Korea University, Seoul, South Korea
| | - Sang-Gu Hwang
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| | - Ik Joon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea Cancer Center Hospital, Seoul, South Korea
| | - Young-Gyu Ko
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, South Korea
| | - Heechung Kwon
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Science, Seoul, South Korea
| |
Collapse
|
29
|
Lando M, Fjeldbo CS, Wilting SM, C Snoek B, Aarnes EK, Forsberg MF, Kristensen GB, Steenbergen RD, Lyng H. Interplay between promoter methylation and chromosomal loss in gene silencing at 3p11-p14 in cervical cancer. Epigenetics 2016; 10:970-80. [PMID: 26291246 DOI: 10.1080/15592294.2015.1085140] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Loss of 3p11-p14 is a frequent event in epithelial cancer and a candidate prognostic biomarker in cervical cancer. In addition to loss, promoter methylation can participate in gene silencing and promote tumor aggressiveness. We have performed a complete mapping of promoter methylation at 3p11-p14 in two independent cohorts of cervical cancer patients (n = 149, n = 121), using Illumina 450K methylation arrays. The aim was to investigate whether hyperm-ethylation was frequent and could contribute to gene silencing and disease aggressiveness either alone or combined with loss. By comparing the methylation level of individual CpG sites with corresponding data of normal cervical tissue, 26 out of 41 genes were found to be hypermethylated in both cohorts. The frequency of patients with hypermethylation of these genes was found to be higher at tumor stages of 3 and 4 than in stage 1 tumors. Seventeen of the 26 genes were transcriptionally downregulated in cancer compared to normal tissue, whereof 6 genes showed a significant correlation between methylation and expression. Integrated analysis of methylation, gene dosage, and expression of the 26 hypermethylated genes identified 3 regulation patterns encompassing 8 hypermethylated genes; a methylation driven pattern (C3orf14, GPR27, ZNF717), a gene dosage driven pattern (THOC7, PSMD6), and a combined methylation and gene dosage driven pattern (FHIT, ADAMTS9, LRIG1). In survival analysis, patients with both hypermethylation and loss of LRIG1 had a worse outcome compared to those harboring only hypermethylation or none of the events. C3orf14 emerged as a novel methylation regulated suppressor gene, for which knockdown was found to promote invasive growth in human papilloma virus (HPV)-transformed keratinocytes. In conclusion, hypermethylation at 3p11-p14 is common in cervical cancer and may exert a selection pressure during carcinogenesis alone or combined with loss. Information on both events could lead to improved prognostic markers.
Collapse
Affiliation(s)
- Malin Lando
- a Department of Radiation Biology ; Norwegian Radium Hospital; Oslo University Hospital ; Oslo , Norway
| | - Christina S Fjeldbo
- a Department of Radiation Biology ; Norwegian Radium Hospital; Oslo University Hospital ; Oslo , Norway
| | - Saskia M Wilting
- b Department of Pathology ; VU University Medical Center ; Amsterdam , the Netherlands
| | - Barbara C Snoek
- b Department of Pathology ; VU University Medical Center ; Amsterdam , the Netherlands
| | - Eva-Katrine Aarnes
- a Department of Radiation Biology ; Norwegian Radium Hospital; Oslo University Hospital ; Oslo , Norway
| | - Malin F Forsberg
- a Department of Radiation Biology ; Norwegian Radium Hospital; Oslo University Hospital ; Oslo , Norway
| | - Gunnar B Kristensen
- c Department of Gynecologic Oncology ; Norwegian Radium Hospital; Oslo University Hospital ; Oslo , Norway.,d Institute for Cancer Genetics and Informatics; Oslo University Hospital ; Oslo , Norway.,e Faculty of Medicine; University of Oslo ; Oslo , Norway
| | - Renske Dm Steenbergen
- b Department of Pathology ; VU University Medical Center ; Amsterdam , the Netherlands
| | - Heidi Lyng
- a Department of Radiation Biology ; Norwegian Radium Hospital; Oslo University Hospital ; Oslo , Norway
| |
Collapse
|
30
|
FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC. Oncotarget 2016; 6:12697-709. [PMID: 25885523 PMCID: PMC4494967 DOI: 10.18632/oncotarget.3708] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 11/25/2022] Open
Abstract
CCDC6 gene product is a pro-apoptotic protein substrate of ATM, whose loss or inactivation enhances tumour progression. In primary tumours, the impaired function of CCDC6 protein has been ascribed to CCDC6 rearrangements and to somatic mutations in several neoplasia. Recently, low levels of CCDC6 protein, in NSCLC, have been correlated with tumor prognosis. However, the mechanisms responsible for the variable levels of CCDC6 in primary tumors have not been described yet. We show that CCDC6 turnover is regulated in a cell cycle dependent manner. CCDC6 undergoes a cyclic variation in the phosphorylated status and in protein levels that peak at G2 and decrease in mitosis. The reduced stability of CCDC6 in the M phase is dependent on mitotic kinases and on degron motifs that are present in CCDC6 and direct the recruitment of CCDC6 to the FBXW7 E3 Ubl. The de-ubiquitinase enzyme USP7 appears responsible of the fine tuning of the CCDC6 stability, affecting cells behaviour and drug response. Thus, we propose that the amount of CCDC6 protein in primary tumors, as reported in lung, may depend on the impairment of the CCDC6 turnover due to altered protein-protein interaction and post-translational modifications and may be critical in optimizing personalized therapy.
Collapse
|
31
|
Della Corte C, Triolo M, Iavarone M, Sangiovanni A. Early diagnosis of liver cancer: an appraisal of international recommendations and future perspectives. Liver Int 2016; 36:166-76. [PMID: 26386254 DOI: 10.1111/liv.12965] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/10/2015] [Indexed: 12/17/2022]
Abstract
All Societies, AASLD, EASL, APASL and JSH, identify patients with cirrhosis as a target population for surveillance, with minor differences for additional categories of patients, such as chronic hepatitis B and hepatitis C patients with advanced fibrosis. According to AASLD, liver disease related to metabolic diseases including diabetes and obesity is a recognized target of screening, since those conditions have been causally related to HCC. All societies endorse radiological non-invasive techniques as the mainstay for early diagnosis of HCC, but discrepancies exist between Societies on the utilization of contrast-enhanced ultrasound and utilization of serum markers for surveillance and diagnosis of HCC. The diagnostic algorithm of the international societies differ substantially in the anatomic paradigm of EASL and APASL which identify 1 cm size as the starting point for radiological diagnosis of HCC compared to APASL algorithm based on the dynamic pattern of contrast imaging, independently on tumour size. While strengthening prediction in individual patients is expected to improve cost-effectiveness ratios of screening, the benefits of pre-treatment patient stratification by clinical, histological and genetic scores remain uncertain and exclusion of patients with severe co-morbidities and advanced age is still debated.
Collapse
Affiliation(s)
- Cristina Della Corte
- A.M. & A. Migliavacca Center for Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Policlinico Hospital, University of Milan, Milan, Italy
| | - Michela Triolo
- A.M. & A. Migliavacca Center for Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Policlinico Hospital, University of Milan, Milan, Italy
| | - Massimo Iavarone
- A.M. & A. Migliavacca Center for Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Policlinico Hospital, University of Milan, Milan, Italy
| | - Angelo Sangiovanni
- A.M. & A. Migliavacca Center for Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca' Granda Policlinico Hospital, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Nakajima Y, Osakabe A, Waku T, Suzuki T, Akaogi K, Fujimura T, Homma Y, Inoue S, Yanagisawa J. Estrogen Exhibits a Biphasic Effect on Prostate Tumor Growth through the Estrogen Receptor β-KLF5 Pathway. Mol Cell Biol 2016; 36:144-56. [PMID: 26483416 PMCID: PMC4702593 DOI: 10.1128/mcb.00625-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/14/2015] [Accepted: 10/09/2015] [Indexed: 11/20/2022] Open
Abstract
Estrogens are effective in the treatment of prostate cancer; however, the effects of estrogens on prostate cancer are enigmatic. In this study, we demonstrated that estrogen (17β-estradiol [E2]) has biphasic effects on prostate tumor growth. A lower dose of E2 increased tumor growth in mouse xenograft models using DU145 and PC-3 human prostate cancer cells, whereas a higher dose significantly decreased tumor growth. We found that anchorage-independent apoptosis in these cells was inhibited by E2 treatment. Similarly, in vivo angiogenesis was suppressed by E2. Interestingly, these effects of E2 were abolished by knockdown of either estrogen receptor β (ERβ) or Krüppel-like zinc finger transcription factor 5 (KLF5). Ιn addition, E2 suppressed KLF5-mediated transcription through ERβ, which inhibits proapoptotic FOXO1 and proangiogenic PDGFA expression. Furthermore, we revealed that a nonagonistic ER ligand GS-1405 inhibited FOXO1 and PDGFA expression through the ERβ-KLF5 pathway and regulated prostate tumor growth without ERβ transactivation. Therefore, these results suggest that E2 biphasically modulates prostate tumor formation by regulating KLF5-dependent transcription through ERβ and provide a new strategy for designing ER modulators, which will be able to regulate prostate cancer progression with minimal adverse effects due to ER transactivation.
Collapse
Affiliation(s)
- Yuka Nakajima
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Asami Osakabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tsuyoshi Waku
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kensuke Akaogi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Junn Yanagisawa
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
33
|
Overexpression of NAD(P)H:quinone oxidoreductase 1 (NQO1) and genomic gain of the NQO1 locus modulates breast cancer cell sensitivity to quinones. Life Sci 2015; 145:57-65. [PMID: 26687450 DOI: 10.1016/j.lfs.2015.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/04/2015] [Accepted: 12/07/2015] [Indexed: 01/28/2023]
Abstract
AIMS Alterations in the expression of antioxidant enzymes are associated with changes in cancer cell sensitivity to chemotherapeutic drugs (menadione and β-lapachone). Mechanisms of acquisition of resistance to pro-oxidant drugs were investigated using a model of oxidative stress-resistant MCF-7 breast cancer cells (Resox cells). MAIN METHODS FISH experiments were performed in tumor biopsy and breast cancer cells to characterize the pattern of the NQO1 gene. SNP-arrays were conducted to detect chromosomal imbalances. Finally, the importance of NQO1 overexpression in the putative acquisition of either drug resistance or an increased sensitivity to quinones by cancer cells was investigated by immunoblotting and cytotoxicity assays. KEY FINDINGS Genomic gain of the chromosomal band 16q22 was detected in Resox cells compared to parental breast cancer MCF-7 cells and normal human mammary epithelial 250MK cells. This genomic gain was associated with amplification of the NQO1 gene in one tumor biopsy as well as in breast cancer cell lines. Using different breast cell models, we found that NQO1 overexpression was a main determinant for a potential chemotherapy resistance or an increased sensitivity to quinone-bearing compounds. SIGNIFICANCE Because NQO1 is frequently modified in tumors at genomic and transcriptomic levels, the impact of NQO1 modulation on breast cancer cell sensitivity places NQO1 as a potential link between cancer redox alterations and resistance to chemotherapy. Thus, the NQO1 gene copy number and NQO1 activity should be considered when quinone-bearing molecules are being utilized as potential drugs against breast tumors.
Collapse
|
34
|
Nakayama K, Rahman MT, Rahman M, Nakamura K, Ishikawa M, Katagiri H, Sato E, Ishibashi T, Iida K, Ishikawa N, Kyo S. CCNE1 amplification is associated with aggressive potential in endometrioid endometrial carcinomas. Int J Oncol 2015; 48:506-16. [PMID: 26647729 PMCID: PMC4725452 DOI: 10.3892/ijo.2015.3268] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/08/2015] [Indexed: 12/16/2022] Open
Abstract
The clinicopathological significance of amplification was investigated of the gene encoding cyclin E (CCNE1) and we assessed whether CCNE1 was a potential target in endometrioid endometrial carcinomas. CCNE1 amplification and CCNE1 or F-box and WD repeat domain-containing 7 (FBXW7) expression in endometrial endometrioid carcinoma was assessed by immunohistochemistry and fluorescence in situ hybridization. CCNE1 knockdown by small interfering RNA (siRNA) was used to assess the CCNE1 function. The results showed that CCNE1 amplification was present in 9 (8.3%) of 108 endometrial carcinomas. CCNE1 amplification was correlated with high histological grade (Grade 3; P=0.0087) and lymphovascular space invasion (P=0.0258). No significant association was observed between CCNE1 amplification and FIGO stage (P=0.851), lymph node metastasis (P=0.078), body mass index (P=0.265), deep myometrial invasion (P=0.256), menopausal status (P=0.289) or patient age (P=0.0817). CCNE1 amplification was significantly correlated with shorter progression-free and overall survival (P=0.0081 and 0.0073, respectively). CCNE1 protein expression or loss of FBXW7 expression in endometrial endometrioid carcinoma tended to be correlated with shorter progression-free and overall survival; however, this difference was not statistically significant. Multivariate analysis showed that CCNE1 amplification was an independent prognostic factor for overall survival but not for progression-free survival (P=0.0454 and 0.2175, respectively). Profound growth inhibition was observed in siRNA-transfected cancer cells with endogenous CCNE1 overexpression compared with that in cancer cells having low CCNE1 expression. CCNE1 amplification was independent of p53, HER2, MLH1 and ARID1A expression but dependent on PTEN expression in endometrial carcinomas. These findings indicated that CCNE1 amplification was critical for the survival of endometrial endometrioid carcinomas. Furthermore, the effects of CCNE1 knockdown were dependent on the CCNE1 expression status, suggesting that CCNE1-targeted therapy may be beneficial for patients with endometrial endometrioid carcinoma having CCNE1 amplification.
Collapse
Affiliation(s)
- Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Mohammed Tanjimur Rahman
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Munmun Rahman
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Kohei Nakamura
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Hiroshi Katagiri
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Emi Sato
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Kouji Iida
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Noriyuki Ishikawa
- Department of Organ Pathology, Shimane University School of Medicine, Izumo 6938501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 6938501, Japan
| |
Collapse
|
35
|
Heo J, Eki R, Abbas T. Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 2015; 36:33-51. [PMID: 26432751 DOI: 10.1016/j.semcancer.2015.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023]
Abstract
F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
36
|
Fbw7 and its counteracting forces in stem cells and cancer: Oncoproteins in the balance. Semin Cancer Biol 2015; 36:52-61. [PMID: 26410034 DOI: 10.1016/j.semcancer.2015.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
Abstract
Fbw7 is well characterised as a stem cell regulator and tumour suppressor, powerfully positioned to control proliferation, differentiation and apoptosis by targeting key transcription factors for ubiquitination and destruction. Evidence in support of these roles continues to accumulate from in vitro studies, mouse models and human patient data. Here we summarise the latest of these findings, highlighting the tumour-suppressive role of Fbw7 in multiple tissues, and the rare circumstances where Fbw7 activity can be oncogenic. We discuss mechanisms that regulate ubiquitination by Fbw7, including ubiquitin-specific proteases such as USP28 that counteract Fbw7 activity and thereby stabilise oncoproteins. Deubiquitination of key Fbw7 substrates to prevent their destruction is beginning to be appreciated as an important pro-tumourigenic mechanism. As the ubiquitin-proteasome system represents a largely untapped field for drug development, the interplay between Fbw7 and its counterpart deubiquitinating enzymes in tumours is likely to attract increasing interest and influence future treatment strategies.
Collapse
|
37
|
Wang H, Maitra A, Wang H. The emerging roles of F-box proteins in pancreatic tumorigenesis. Semin Cancer Biol 2015; 36:88-94. [PMID: 26384530 DOI: 10.1016/j.semcancer.2015.09.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/13/2015] [Indexed: 11/24/2022]
Abstract
The role of F-box proteins in pancreatic tumorigenesis is emerging owing to their pivotal and indispensable roles in cell differentiation, cell cycle regulation and proliferation. In this review, we will focus on β-TrCP (β-transducin repeat-containing protein) and two other prototypical mammalian F-box proteins, Fbxw7 and Fbxw8, in pancreatic tumorigenesis and progression. We will highlight the functions and regulation of these F-box proteins, their respective substrates and cross-talks with other key signaling pathways, such as the Ras-Raf-Mek-Erk, Hedgehog, NFκB, TGF-β, Myc and HPK1 signaling pathways in pancreatic cancer.
Collapse
Affiliation(s)
- Hua Wang
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, United States
| | - Anirban Maitra
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, United States; Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, United States
| | - Huamin Wang
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, United States; Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, 77030, United States.
| |
Collapse
|
38
|
Felley-Bosco E, Opitz I, Meerang M. Hedgehog Signaling in Malignant Pleural Mesothelioma. Genes (Basel) 2015; 6:500-11. [PMID: 26184317 PMCID: PMC4584313 DOI: 10.3390/genes6030500] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/29/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a cancer associated with exposure to asbestos fibers, which accumulate in the pleural space, damage tissue and stimulate regeneration. Hedgehog signaling is a pathway important during embryonic mesothelium development and is inactivated in adult mesothelium. The pathway is reactivated in some MPM patients with poor clinical outcome, mainly mediated by the expression of the ligands. Nevertheless, mutations in components of the pathway have been observed in a few cases. Data from different MPM animal models and primary culture suggest that both autocrine and paracrine Hedgehog signaling are important to maintain tumor growth. Drugs inhibiting the pathway at the level of the smoothened receptor (Smo) or glioma-associated protein transcription factors (Gli) have been used mostly in experimental models. For clinical development, biomarkers are necessary for the selection of patients who can benefit from Hedgehog signaling inhibition.
Collapse
Affiliation(s)
- Emanuela Felley-Bosco
- University Hospital Zurich, Laboratory of Molecular Oncology, Clinic of Oncology, Haeldeliweg 4, 8044 Zürich, Switzerland.
| | - Isabelle Opitz
- University Hospital Zurich, Division of Thoracic Surgery, Raemistrasse 100, 8091 Zurich, Switzerland.
| | - Mayura Meerang
- University Hospital Zurich, Division of Thoracic Surgery, Raemistrasse 100, 8091 Zurich, Switzerland.
| |
Collapse
|
39
|
Ji S, Qin Y, Shi S, Liu X, Hu H, Zhou H, Gao J, Zhang B, Xu W, Liu J, Liang D, Liu L, Liu C, Long J, Zhou H, Chiao PJ, Xu J, Ni Q, Gao D, Yu X. ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer. Cell Res 2015; 25:561-73. [PMID: 25753158 PMCID: PMC4423074 DOI: 10.1038/cr.2015.30] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/08/2015] [Accepted: 02/10/2015] [Indexed: 02/06/2023] Open
Abstract
F-box and WD repeat domain-containing 7 (FBW7) is the substrate recognition component of the Skp1-Cul1-F-box (SCF) ubiquitin ligase complex and functions as a major tumor suppressor by targeting various oncoproteins for degradation. Genomic deletion or mutation of FBW7 has frequently been identified in many human cancers but not in pancreatic ductal adenocarcinoma. Thus it is important to know how the tumor suppressive function of FBW7 is impaired in pancreatic cancer. In this study, we first observed that low FBW7 expression correlated significantly with ERK activation in pancreatic cancer clinical samples, primarily due to KRAS mutations in pancreatic cancer. We further showed that ERK directly interacted with FBW7 and phosphorylated FBW7 at Thr205, which sequentially promoted FBW7 ubiquitination and proteasomal degradation. Furthermore, the phospho-deficient T205A FBW7 mutant is resistant to ERK activation and could significantly suppress pancreatic cancer cell proliferation and tumorigenesis. These results collectively demonstrate how the oncogenic KRAS mutation inhibits the tumor suppressor FBW7, thus revealing an important function of KRAS mutations in promoting pancreatic cancer progression.
Collapse
Affiliation(s)
- Shunrong Ji
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Qin
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xiangyuan Liu
- Key Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongli Hu
- Key Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Gao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bo Zhang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wenyan Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Dingkong Liang
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Long
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Haijun Zhou
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul J Chiao
- Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jin Xu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Daming Gao
- Key Laboratory of System Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
40
|
Evasion of anti-growth signaling: A key step in tumorigenesis and potential target for treatment and prophylaxis by natural compounds. Semin Cancer Biol 2015; 35 Suppl:S55-S77. [PMID: 25749195 DOI: 10.1016/j.semcancer.2015.02.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/14/2022]
Abstract
The evasion of anti-growth signaling is an important characteristic of cancer cells. In order to continue to proliferate, cancer cells must somehow uncouple themselves from the many signals that exist to slow down cell growth. Here, we define the anti-growth signaling process, and review several important pathways involved in growth signaling: p53, phosphatase and tensin homolog (PTEN), retinoblastoma protein (Rb), Hippo, growth differentiation factor 15 (GDF15), AT-rich interactive domain 1A (ARID1A), Notch, insulin-like growth factor (IGF), and Krüppel-like factor 5 (KLF5) pathways. Aberrations in these processes in cancer cells involve mutations and thus the suppression of genes that prevent growth, as well as mutation and activation of genes involved in driving cell growth. Using these pathways as examples, we prioritize molecular targets that might be leveraged to promote anti-growth signaling in cancer cells. Interestingly, naturally occurring phytochemicals found in human diets (either singly or as mixtures) may promote anti-growth signaling, and do so without the potentially adverse effects associated with synthetic chemicals. We review examples of naturally occurring phytochemicals that may be applied to prevent cancer by antagonizing growth signaling, and propose one phytochemical for each pathway. These are: epigallocatechin-3-gallate (EGCG) for the Rb pathway, luteolin for p53, curcumin for PTEN, porphyrins for Hippo, genistein for GDF15, resveratrol for ARID1A, withaferin A for Notch and diguelin for the IGF1-receptor pathway. The coordination of anti-growth signaling and natural compound studies will provide insight into the future application of these compounds in the clinical setting.
Collapse
|
41
|
Enkhbold C, Utsunomiya T, Morine Y, Imura S, Ikemoto T, Arakawa Y, Kanamoto M, Iwahashi S, Saito Y, Ishikawa D, Shimada M. Loss of FBXW7 expression is associated with poor prognosis in intrahepatic cholangiocarcinoma. Hepatol Res 2014; 44:E346-52. [PMID: 24552289 DOI: 10.1111/hepr.12314] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 01/24/2023]
Abstract
AIM FBXW7 acts as a tumor suppressor gene by targeting several oncogenic regulators of proliferation, growth and apoptosis for proteasomal degradation. However, the significance of this protein is not yet well understood in intrahepatic cholangiocarcinoma (IHCC). In this study, we aimed to investigate the correlation between FBXW7 expression and clinicopathological variables in IHCC patients. METHODS Thirty-one patients with IHCC who underwent hepatic resection were enrolled. FBXW7 expression in tumor tissue was determined by immunohistochemistry and patients were divided into two groups, the FBXW7 high expression group (n = 11) and the FBXW7 low expression group (n = 20). We then compared clinicopathological variables including prognosis between the high and low expression groups in tumor tissue. RESULTS FBXW7 expression was significantly correlated with staging (P = 0.006), and tended to correlate with lymph node metastasis. The FBXW7 low expression group had significantly poorer prognosis compared with the FBXW7 high expression group (P = 0.020); 3-year survival rates were 29.4% and 72.7%, respectively. Furthermore, the disease-free survival rate in the FBXW7 low expression group was significantly worse than in the FBXW7 high expression group (P = 0.022). On multivariate analysis, intrahepatic metastasis (P = 0.006) was a significant independent prognostic factor for disease-free survival, and FBXW7 low expression tended to be an independent prognostic factor for both overall (P = 0.067) and disease-free survival (P = 0.083). CONCLUSION Our results confirmed that low expression of FBXW7 in IHCC correlates with tumor progression and poor prognosis in IHCC.
Collapse
Affiliation(s)
- Chinbold Enkhbold
- Department of Surgery, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xing C, Ci X, Sun X, Fu X, Zhang Z, Dong EN, Hao ZZ, Dong JT. Klf5 deletion promotes Pten deletion-initiated luminal-type mouse prostate tumors through multiple oncogenic signaling pathways. Neoplasia 2014; 16:883-99. [PMID: 25425963 PMCID: PMC4240924 DOI: 10.1016/j.neo.2014.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/13/2014] [Accepted: 09/22/2014] [Indexed: 01/18/2023] Open
Abstract
Krüppel-like factor 5 (KLF5) regulates multiple biologic processes. Its function in tumorigenesis appears contradictory though, showing both tumor suppressor and tumor promoting activities. In this study, we examined whether and how Klf5 functions in prostatic tumorigenesis using mice with prostate-specific deletion of Klf5 and phosphatase and tensin homolog (Pten), both of which are frequently inactivated in human prostate cancer. Histologic analysis demonstrated that when one Pten allele was deleted, which causes mouse prostatic intraepithelial neoplasia (mPIN), Klf5 deletion accelerated the emergence and progression of mPIN. When both Pten alleles were deleted, which causes prostate cancer, Klf5 deletion promoted tumor growth, increased cell proliferation, and caused more severe morphologic and molecular alterations. Homozygous deletion of Klf5 was more effective than hemizygous deletion. Unexpectedly, while Pten deletion alone expanded basal cell population in a tumor as reported, Klf5 deletion in the Pten-null background clearly reduced basal cell population while expanding luminal cell population. Global gene expression profiling, pathway analysis, and experimental validation indicate that multiple mechanisms could mediate the tumor-promoting effect of Klf5 deletion, including the up-regulation of epidermal growth factor and its downstream signaling molecules AKT and ERK and the inactivation of the p15 cell cycle inhibitor. KLF5 also appears to cooperate with several transcription factors, including CREB1, Sp1, Myc, ER and AR, to regulate gene expression. These findings validate the tumor suppressor function of KLF5. They also yield a mouse model that shares two common genetic alterations with human prostate cancer—mutation/deletion of Pten and deletion of Klf5.
Collapse
Affiliation(s)
- Changsheng Xing
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China ; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xinpei Ci
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China ; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaodong Sun
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaoying Fu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA ; Department of Pathology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiqian Zhang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric N Dong
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Zhao-Zhe Hao
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Jin-Tang Dong
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China ; Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
43
|
Attallah AM, El-Far M, Omran MM, Abdallah SO, El-desouky MA, El-Dosoky I, Abdelrazek MA, Attallah AA, Elweresh MA, Abdel Hameed GE, Shawki HA, Salama KS, El-Waseef AM. Circulating levels and clinical implications of epithelial membrane antigen and cytokeratin-1 in women with breast cancer: can their ratio improve the results? Tumour Biol 2014; 35:10737-45. [DOI: 10.1007/s13277-014-2375-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022] Open
|
44
|
Sarhadi VK, Lahti L, Scheinin I, Ellonen P, Kettunen E, Serra M, Scotlandi K, Picci P, Knuutila S. Copy number alterations and neoplasia-specific mutations inMELK,PDCD1LG2, TLN1, andPAX5at 9p in different neoplasias. Genes Chromosomes Cancer 2014; 53:579-88. [DOI: 10.1002/gcc.22168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 03/09/2014] [Indexed: 12/16/2022] Open
Affiliation(s)
- Virinder Kaur Sarhadi
- Department of Pathology; Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
| | - Leo Lahti
- Department of Veterinary Bioscience; University of Helsinki, Finland and Laboratory of Microbiology, Wageningen University; The Netherlands
| | - Ilari Scheinin
- Department of Pathology; Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
- Department of Pathology; VU University Medical Center; Amsterdam The Netherlands
| | - Pekka Ellonen
- Institute for Molecular Medicine Finland, University of Helsinki; Biomedicum Helsinki 2U Helsinki Finland
| | - Eeva Kettunen
- Health and Work Ability; Finnish Institute of Occupational Health; Helsinki Finland
| | - Massimo Serra
- Laboratory of Experimental Oncology; Orthopaedic Rizzoli Institute; Bologna Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology; Orthopaedic Rizzoli Institute; Bologna Italy
| | - Piero Picci
- Laboratory of Experimental Oncology; Orthopaedic Rizzoli Institute; Bologna Italy
| | - Sakari Knuutila
- Department of Pathology; Haartman Institute and HUSLAB, University of Helsinki and Helsinki University Central Hospital; Helsinki Finland
| |
Collapse
|
45
|
Abstract
The MYC oncoprotein is an essential transcription factor that regulates the expression of many genes involved in cell growth, proliferation, and metabolic pathways. Thus, it is important to keep MYC activity in check in normal cells in order to avoid unwanted oncogenic changes. Normal cells have adapted several ways to control MYC levels, and these mechanisms can be disrupted in cancer cells. One of the major ways in which MYC levels are controlled in cells is through targeted degradation by the ubiquitin-proteasome system (UPS). Here, we discuss the role of the UPS in the regulation of MYC protein levels and review some of the many proteins that have been shown to regulate MYC protein stability. In addition, we discuss how this relates to MYC transcriptional activity, human cancers, and therapeutic targeting.
Collapse
Affiliation(s)
- Amy S Farrell
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | | |
Collapse
|
46
|
Gu DL, Chen YH, Shih JH, Lin CH, Jou YS, Chen CF. Target genes discovery through copy number alteration analysis in human hepatocellular carcinoma. World J Gastroenterol 2013; 19:8873-8879. [PMID: 24379610 PMCID: PMC3870538 DOI: 10.3748/wjg.v19.i47.8873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.
Collapse
|
47
|
Diakiw SM, D'Andrea RJ, Brown AL. The double life of KLF5: Opposing roles in regulation of gene-expression, cellular function, and transformation. IUBMB Life 2013; 65:999-1011. [DOI: 10.1002/iub.1233] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/13/2013] [Indexed: 01/13/2023]
Affiliation(s)
- Sonya M. Diakiw
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre; University of New South Wales; Australia
- Department of Haematology; SA Pathology; Adelaide Australia
| | - Richard J. D'Andrea
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Medicine; University of Adelaide; Adelaide Australia
| | - Anna L. Brown
- Department of Haematology; SA Pathology; Adelaide Australia
- School of Pharmacy and Medical Sciences; University of South Australia; Australia
- Centre for Cancer Biology, SA Pathology; Adelaide Australia
- School of Molecular and Biomedical Sciences; University of Adelaide; Adelaide Australia
| |
Collapse
|
48
|
Lu H, Li G, Liu L, Feng L, Wang X, Jin H. Regulation and function of mitophagy in development and cancer. Autophagy 2013; 9:1720-36. [PMID: 24091872 DOI: 10.4161/auto.26550] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Beyond its role in recycling intracellular components nonselectively to sustain survival in response to metabolic stresses, autophagy can also selectively degrade specific cargoes such as damaged or dysfunctional organelles to maintain cellular homeostasis. Mitochondria, known as the power plant of cells, are the critical and dynamic organelles playing a fundamental role in cellular metabolism. Mitophagy, the selective autophagic elimination of mitochondria, has been identified both in yeast and in mammalian cells. Moreover, defects in mitophagy may contribute to a variety of human disorders such as neurodegeneration and myopathies. However, the role of mitophagy in development and cancer remains largely unclear. In this review, we summarize our current knowledge of the regulation and function of mitophagy in development and cancer.
Collapse
Affiliation(s)
- Haiqi Lu
- Laboratory of Cancer Biology; Institute of Clinical Science; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou, Zhejiang China; Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine; Zhejiang University; Hangzhou; Zhejiang China
| | | | | | | | | | | |
Collapse
|
49
|
Stage-stratified analysis of prognostic significance of Bax-interacting factor-1 expression in resected colorectal cancer. BIOMED RESEARCH INTERNATIONAL 2013; 2013:329839. [PMID: 24175288 PMCID: PMC3794616 DOI: 10.1155/2013/329839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 01/03/2023]
Abstract
Background/Aim. Bax-interacting factor-1 (Bif-1) plays a crucial role in apoptosis and autophagy. The aim of this study was to evaluate Bif-1 protein expression and its prognostic significance in colorectal cancer (CRC). Methods. We analyzed Bif-1 protein expression in 251 resected specimens from patients with CRC by immunohistochemistry using tissue microarray. Results. Low Bif-1 expression was observed in 131 patients (52.2%) and high Bif-1 expression in 120 patients (47.8%). No significant differences were observed in clinicopathological parameters between patients with high and low Bif-1 expression. Kaplan-Meier survival analysis showed no difference in survival between patients with high and low Bif-1 expression. Stratified analysis of Bif-1 according to TNM stage demonstrated that low Bif-1 expression was significantly associated with a poor outcome in patients with stages I and II (P = 0.034). Stratified multivariate analysis demonstrated that low Bif-1 expression was an independent indicator of poor prognosis (hazard ratio, 0.459; 95% confidence interval, 0.285–0.739; P = 0.001). Conclusion. Patients with low levels of Bif-1 expression have shortened survival rates in CRC of stages I and II. This suggests that Bif-1 protein expression may be a useful prognostic marker in early-stage CRC.
Collapse
|
50
|
The FBXO4 tumor suppressor functions as a barrier to BRAFV600E-dependent metastatic melanoma. Mol Cell Biol 2013; 33:4422-33. [PMID: 24019069 DOI: 10.1128/mcb.00706-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cyclin D1-cyclin-dependent kinase 4/6 (CDK4/6) dysregulation is a major contributor to melanomagenesis. Clinical evidence has revealed that p16(INK4A), an allosteric inhibitor of CDK4/6, is inactivated in over half of human melanomas, and numerous animal models have demonstrated that p16(INK4A) deletion promotes melanoma. FBXO4, a specificity factor for the E3 ligase that directs timely cyclin D1 proteolysis, has not been studied in melanoma. We demonstrate that Fbxo4 deficiency induces Braf-driven melanoma and that this phenotype depends on cyclin D1 accumulation in mice, underscoring the importance of this ubiquitin ligase in tumor suppression. Furthermore, we have identified a substrate-binding mutation, FBXO4 I377M, that selectively disrupts cyclin D1 degradation while preserving proteolysis of the other known FBXO4 substrate, TRF1. The I377M mutation and Fbxo4 deficiency result in nuclear accumulation of cyclin D1, a key transforming neoplastic event. Collectively, these data provide evidence that FBXO4 dysfunction, as a mechanism for cyclin D1 overexpression, is a contributor to human malignancy.
Collapse
|