Hruska KA, Mathew S, Davies MR, Lund RJ. Connections between vascular calcification and progression of chronic kidney disease: therapeutic alternatives.
Kidney Int 2006:S142-51. [PMID:
16336568 DOI:
10.1111/j.1523-1755.2005.09926.x]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have shown that renal injury and chronic kidney disease (CKD) directly inhibit skeletal anabolism, and that stimulation of bone formation decreases the serum phosphate. Most recently, these observations were rediscovered in low-density lipoprotein receptor null mice fed high-fat/cholesterol diets, a model of the metabolic syndrome (hypertension, obesity, dyslipidemia, and insulin resistance). We had demonstrated that these mice have vascular calcification (VC) of both the intimal atherosclerotic type and medial type. We have shown that VC is worsened by CKD and ameliorated by bone morphogenetic protein -7 (BMP-7). The finding that high-fat-fed low-density lipoprotein receptor null animals without CKD have hyperphosphatemia led us to examine the skeletons of these mice. We found significant reductions in bone formation rates, associated with increased VC and superimposing CKD results in the adynamic bone disorder (ABD), while VC was worsened and hyperphosphatemia persisted. A pathological link between abnormal bone mineralization and VC through the serum phosphorus was demonstrated by the partial effectiveness of directly reducing the serum phosphate by a phosphate binder that had no skeletal action. BMP-7 treatment corrected the ABD and corrected hyperphosphatemia, compatible with BMP-7-driven stimulation of skeletal phosphate deposition reducing plasma phosphate and thereby removing a major stimulus to VC. Thus, in the metabolic syndrome with CKD, a reduction in bone-forming potential of osteogenic cells leads to ABD producing hyperphosphatemia and VC, processes ameliorated by the skeletal anabolic agent BMP-7, in part through increased bone formation and skeletal deposition of phosphate, and in part through direct actions on vascular smooth muscle cells. We have demonstrated that the processes leading to vascular calcification begin with even mild levels of renal injury before demonstrable hyperphosphatemia, and they are preventable and treatable. Therefore, early intervention in CKD is warranted and may affect mortality of the disease.
Collapse