1
|
Conceição VS, Saraiva DPM, Denuault G, Bertotti M. Calibration-Free Analysis with Chronoamperometry at Microelectrodes. Anal Chem 2024; 96:14766-14774. [PMID: 39226461 PMCID: PMC11411494 DOI: 10.1021/acs.analchem.4c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Analytical methods are crucial for monitoring and assessing the concentration of important chemicals, and there is now a growing demand for methodologies that allow miniaturization, require lower sample volumes, and enable real-time analysis in the field. Most electroanalytical techniques depend on calibrations or standards, and this has several limitations, ranging from matrix interference, to stability problems, time required, cost and waste. Therefore, strategies that do not require standards or calibration curves greatly interest the analytical chemistry community. Here, we propose a new quantification method that does not rely on calibration and is only based on a single chronoamperometric curve recorded with a microelectrode. We show that satisfactory analytical information is obtained with just one chronoamperometric experiment that only takes a few seconds. We propose different data treatments to determine the unknown concentration, we consider the experimental conditions and instrument parameters, we report how parallel reactions affect the results, and we recommend procedures to implement the method in autonomous sensors. We also show that the concentration of several species can be derived if their E° values are sufficiently far apart or the sum of all concentrations if the E° values are too close. The proposed method was validated with a model redox system then further evaluated by determining ascorbic acid concentrations in standard solutions and food supplements, and paracetamol in a pain killer. The results for ascorbic acid were compared with those obtained by coulometry, and a good agreement was found, with a maximum deviation ca. 10.8%. The approach was also successfully applied to ascorbic acid quantification in solutions with different viscosity using ethylene glycol as a thickener.
Collapse
Affiliation(s)
- Valdomiro S Conceição
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo-USP, São Paulo, 05508-000, Brazil
| | - Douglas P M Saraiva
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo-USP, São Paulo, 05508-000, Brazil
| | - Guy Denuault
- School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Mauro Bertotti
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo-USP, São Paulo, 05508-000, Brazil
| |
Collapse
|
2
|
Jin S, Pang J, Ma F, Cheng Y, Shen Y, Xiao Z, Chen L. Regulating valence states of CuFe-PBA for the simultaneous electrochemical detection of Cd 2+, Pb 2+ and Hg 2+ in food application. Talanta 2024; 273:125848. [PMID: 38432072 DOI: 10.1016/j.talanta.2024.125848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Prussian blue analogues, as prospective electrode materials, play a crucial role in detecting heavy metal ions (HMIs), a process closely related to their electron transfer capacities and active surfaces. Here, etched copper-iron Prussian blue analogues (CuFe-PBA) are synthesized through a combination of flash nanoprecipitation (FNP) and an alkali etching process. Furthermore, this study investigates the impact of ammonia on the electronic structure of CuFe-PBA and its electrochemical detection capabilities for HMIs. The etched CuFe-PBA (e-CuFe-PBA) exhibits excellent detection performance for Cd2+, Pb2+ and Hg2+ with 17.6 μA μM-1, 24.2 μA μM-1 and 26.2 μA μM-1, respectively, due to the fact that the ammonia etching not only modulates the electronic properties of the surface of CuFe-PBA but also reduces the degree of agglomeration and enhances the accessible surface area. Additionally, it demonstrates excellent stability and resistance to interference, having been successfully applied to detect HMIs in food samples such as preserved eggs and apple juice. These results provide a new strategy for the use of Prussian blue analogues as electrochemical sensors for food safety applications.
Collapse
Affiliation(s)
- Shan Jin
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, PR China.
| | - Jianxiang Pang
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, PR China
| | - Fanpeng Ma
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, PR China
| | - Yikun Cheng
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, PR China
| | - Yunfei Shen
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, PR China
| | - Zemao Xiao
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, PR China
| | - Long Chen
- School of Chemistry and Chemical Engineering, Shihezi University/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi, 832003, PR China.
| |
Collapse
|
3
|
Gęca I, Korolczuk M. A Novel Eco-Friendly and Highly Sensitive Solid Lead-Tin Microelectrode for Trace U(VI) Determination in Natural Water Samples. SENSORS (BASEL, SWITZERLAND) 2023; 23:2552. [PMID: 36904757 PMCID: PMC10007126 DOI: 10.3390/s23052552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
For the first time a solid state lead-tin microelectrode (diameter ϕ 25 µm) was utilized for U(VI) ion determination by adsorptive stripping voltammetry. The described sensor is characterized by high durability, reusability and eco-friendly features, as the need for using lead and tin ions for metal film preplating has been eliminated, and consequently, the amount of toxic waste has been limited. The advantages of the developed procedure resulted also from the utilization of a microelectrode as a working electrode, because a restricted amount of metals is needed for its construction. Moreover, field analysis is possible to perform thanks to the fact that measurements can be carried out from unmixed solutions. The analytical procedure was optimized. The proposed procedure is characterized by two orders of magnitude linear dynamic range of U(VI) determination from 1 × 10-9 to 1 × 10-7 mol L-1 (120 s of accumulation). The detection limit was calculated to be 3.9 × 10-10 mol L-1 (accumulation time of 120 s). RSD% calculated from seven subsequent U(VI) determinations at a concentration of 2 × 10-8 mol L-1 was 3.5%. The correctness of the analytical procedure was confirmed by analyzing a natural certified reference material.
Collapse
|
4
|
Pecchielan G, Battistel D, Daniele S. Scanning Electrochemical Microscopy and Voltammetric Investigation of Silver Nanoparticles Embedded within a Nafion Membrane. ChemElectroChem 2016. [DOI: 10.1002/celc.201600483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Giulia Pecchielan
- Department of Molecular Sciences and Nanosystems; University Cà Foscari Venice; Via Torino 155 30172 Venezia-Mestre Italy
| | - Dario Battistel
- Department of Environmental Sciences Informatics and Statistics; University Cà Foscari Venice, Institute for the Dynamics of Environmental Processes -CNR; Via Torino 155 30172 Venice Italy
| | - Salvatore Daniele
- Department of Molecular Sciences and Nanosystems; University Cà Foscari Venice; Via Torino 155 30172 Venezia-Mestre Italy
| |
Collapse
|
5
|
Battistel D, Baldi F, Gallo M, Faleri C, Daniele S. Characterisation of biosynthesised silver nanoparticles by scanning electrochemical microscopy (SECM) and voltammetry. Talanta 2014; 132:294-300. [PMID: 25476311 DOI: 10.1016/j.talanta.2014.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/05/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Silver nanoparticles (AgNPs) were biosynthesised by a Klebsiella oxytoca strain BAS-10, which, during its growth, is known to produce a branched exopolysaccharide (EPS). Klebsiella oxytoca cultures, treated with AgNO3 and grown under either aerobic or anaerobic conditions, produced silver nanoparticles embedded in EPS (AgNPs-EPS) containing different amounts of Ag(0) and Ag(I) forms. The average size of the AgNPs-EPS was determined by transmission electron microscopy, while the relative abundance of Ag(0)- or Ag(I)-containing AgNPs-EPS was established by scanning electrochemical microscopy (SECM). Moreover, the release of silver(I) species from the various types of AgNPs-EPS was investigated by combining SECM with anodic stripping voltammetry. These measurements allowed obtaining information on the kinetic of silver ions release from AgNPs-EPS and their concentration profiles at the substrate/water interface.
Collapse
Affiliation(s)
- Dario Battistel
- Dipartimento di Scienze Ambientali, Infomatica e Statistica, University Cà Foscari Venice. Calle Larga Santa Marta 2137. 30127 Venice, (I).
| | - Franco Baldi
- Dipartimento di Scienze Molecolari e Nanosistemi, University Cà Foscari Venice. Calle Larga Santa Marta 2137. 30127 Venice, (I)
| | - Michele Gallo
- Dipartimento di Scienze Molecolari e Nanosistemi, University Cà Foscari Venice. Calle Larga Santa Marta 2137. 30127 Venice, (I)
| | - Claudia Faleri
- Dipartimento Scienze della Vita, Siena University, via Mattioli 4, 53100 Siena (I)
| | - Salvatore Daniele
- Dipartimento di Scienze Molecolari e Nanosistemi, University Cà Foscari Venice. Calle Larga Santa Marta 2137. 30127 Venice, (I).
| |
Collapse
|
6
|
Denuault G. The Contribution of Microelectrodes to Electroanalytical Chemistry: From Reaction Mechanisms and Scanning Electrochemical Microscopy to Ocean Sensors. Isr J Chem 2010. [DOI: 10.1002/ijch.201000041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Brown RJC, Brett DJL. Microelectrode voltammetry as a high accuracy method for determination of diffusion coefficients. Mikrochim Acta 2008. [DOI: 10.1007/s00604-008-0062-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Takeuchi RM, Santos AL, Medeiros MJ, Stradiotto NR. Copper determination in ethanol fuel samples by anodic stripping voltammetry at a gold microelectrode. Mikrochim Acta 2008. [DOI: 10.1007/s00604-008-0039-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Bipartite expressions for amperometric currents of recessed, membrane covered planar and hanging mercury drop electrodes. J Electroanal Chem (Lausanne) 2008. [DOI: 10.1016/j.jelechem.2007.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Huidobro C, Companys E, Puy J, Galceran J, Pinheiro JP. The use of microelectrodes with AGNES. J Electroanal Chem (Lausanne) 2007. [DOI: 10.1016/j.jelechem.2007.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Effect of Bi(III) concentration on the stripping voltammetric response of in situ bismuth-coated carbon paste and gold electrodes. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2006.05.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Xie X, Stueben D, Berner Z. The Application of Microelectrodes for the Measurements of Trace Metals in Water. ANAL LETT 2005. [DOI: 10.1080/00032710500316050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
|
14
|
Numerical simulations of linear scan anodic stripping voltammetry at a modified square array of hemispherical microelectrodes located in a thin-layer cell. J Electroanal Chem (Lausanne) 2004. [DOI: 10.1016/j.jelechem.2003.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
AGNES: a new electroanalytical technique for measuring free metal ion concentration. J Electroanal Chem (Lausanne) 2004. [DOI: 10.1016/j.jelechem.2003.11.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|