1
|
Khamis MM, Adamko DJ, El-Aneed A. STRATEGIES AND CHALLENGES IN METHOD DEVELOPMENT AND VALIDATION FOR THE ABSOLUTE QUANTIFICATION OF ENDOGENOUS BIOMARKER METABOLITES USING LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:31-52. [PMID: 31617245 DOI: 10.1002/mas.21607] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Metabolomics is a dynamically evolving field, with a major application in identifying biomarkers for drug development and personalized medicine. Numerous metabolomic studies have identified endogenous metabolites that, in principle, are eligible for translation to clinical practice. However, few metabolomic-derived biomarker candidates have been qualified by regulatory bodies for clinical applications. Such interruption in the biomarker qualification process can be largely attributed to various reasons including inappropriate study design and inadequate data to support the clinical utility of the biomarkers. In addition, the lack of robust assays for the routine quantification of candidate biomarkers has been suggested as a potential bottleneck in the biomarker qualification process. In fact, the nature of the endogenous metabolites precludes the application of the current validation guidelines for bioanalytical methods. As a result, there have been individual efforts in modifying existing guidelines and/or developing alternative approaches to facilitate method validation. In this review, three main challenges for method development and validation for endogenous metabolites are discussed, namely matrix effects evaluation, alternative analyte-free matrices, and the choice of internal standards (ISs). Some studies have modified the equations described by the European Medicines Agency for the evaluation of matrix effects. However, alternative strategies were also described; for instance, calibration curves can be generated in solvents and in biological samples and the slopes can be compared through ratios, relative standard deviation, or a modified Stufour suggested approaches while quantifying mainly endogenous metabolitesdent t-test. ISs, on the contrary, are diverse; in which seven different possible types, used in metabolomics-based studies, were identified in the literature. Each type has its advantages and limitations; however, isotope-labeled ISs and ISs created through isotope derivatization show superior performance. Finally, alternative matrices have been described and tested during method development and validation for the quantification of endogenous entities. These alternatives are discussed in detail, highlighting their advantages and shortcomings. The goal of this review is to compare, apprise, and debate current knowledge and practices in order to aid researchers and clinical scientists in developing robust assays needed during the qualification process of candidate metabolite biomarkers. © 2019 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Mona M Khamis
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Darryl J Adamko
- Department of Pediatrics, College of Medicine, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Rd, Saskatoon, Saskatchewan, S7N 5E5, Canada
| |
Collapse
|
2
|
Schelhaas S, Heinzmann K, Honess DJ, Smith DM, Keen H, Heskamp S, Witney TH, Besret L, Doblas S, Griffiths JR, Aboagye EO, Jacobs AH. 3'-Deoxy-3'-[ 18F]Fluorothymidine Uptake Is Related to Thymidine Phosphorylase Expression in Various Experimental Tumor Models. Mol Imaging Biol 2018; 20:194-199. [PMID: 28971330 DOI: 10.1007/s11307-017-1125-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE We recently reported that high thymidine phosphorylase (TP) expression is accompanied by low tumor thymidine concentration and high 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) uptake in four untreated lung cancer xenografts. Here, we investigated whether this relationship also holds true for a broader range of tumor models. PROCEDURES Lysates from n = 15 different tumor models originating from n = 6 institutions were tested for TP and thymidylate synthase (TS) expression using western blots. Results were correlated to [18F]FLT accumulation in the tumors as determined by positron emission tomography (PET) measurements in the different institutions and to previously published thymidine concentrations. RESULTS Expression of TP correlated positively with [18F]FLT SUVmax (ρ = 0.549, P < 0.05). Furthermore, tumors with high TP levels possessed lower levels of thymidine (ρ = - 0.939, P < 0.001). CONCLUSIONS In a broad range of tumors, [18F]FLT uptake as measured by PET is substantially influenced by TP expression and tumor thymidine concentrations. These data strengthen the role of TP as factor confounding [18F]FLT uptake.
Collapse
Affiliation(s)
- Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Kathrin Heinzmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
| | - Davina J Honess
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Heather Keen
- PHB Imaging Group, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Timothy H Witney
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
- UCL Centre for Advanced Biomedical Imaging, University College London, London, UK
| | | | | | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric O Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU) Münster, Waldeyerstr. 15, 48149, Münster, Germany.
- Department of Geriatric Medicine, Johanniter Hospital, Bonn, Germany.
| |
Collapse
|
3
|
Chan SR, Salem K, Jeffery J, Powers GL, Yan Y, Shoghi KI, Mahajan AM, Fowler AM. Sex as a Biologic Variable in Preclinical Imaging Research: Initial Observations with 18F-FLT. J Nucl Med 2017; 59:833-838. [PMID: 29217733 DOI: 10.2967/jnumed.117.199406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
The study objective was to investigate whether sex influences 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) uptake and tissue distribution in mouse models of cancer. Methods:18F-FLT biodistribution was measured in 3 strains of male and female mice (129S6/SvEv, athymic nude, and BALB/c). 18F-FDG biodistribution was measured for comparison. 18F-FLT uptake was also measured in female 129S6/SvEv mice bearing estrogen-dependent SSM3 mouse mammary tumors, male athymic nude mice bearing androgen-dependent CWR22 prostate cancer xenografts, and male and female athymic nude mice bearing estrogen-independent MDA-MB-231 human breast cancer xenografts. Ki-67 expression was assayed by immunohistochemistry. PET/CT imaging was performed to visualize 18F-FLT biodistribution and to determine pharmacokinetics. Results: Greater 18F-FLT activity was observed in blood, liver, muscle, heart, kidney, and bone in female than male mice. Pharmacokinetic analysis demonstrated higher early renal 18F-FLT activity and greater accumulation of 18F-FLT in the urinary bladder in male than female mice. The differential pattern of 18F-FLT biodistribution between the sexes seen with 18F-FLT was not observed with 18F-FDG. Increased tumoral 18F-FLT uptake compared with muscle was observed in both the SSM3 mammary tumors (2.4 ± 0.17 vs. 1.6 ± 0.14 percentage injected dose [%ID]/g at 2 h after injection, P = 0.006) and the CWR22 prostate cancer xenografts (0.34 ± 0.08 vs. 0.098 ± 0.033 %ID/g at 2 h after injection, P = 0.03). However, because of higher nonspecific muscle uptake in female mice, tumor-to-muscle uptake ratios were greater for CWR22 tumors than for SSM3 tumors (4.2 ± 0.78 vs. 1.5 ± 0.049 at 2 h after injection, P = 0.008). Sex-dependent differences in 18F-FLT uptake were also observed for MDA-MB-231 xenografts (tumor-to-muscle ratio, 7.2 ± 0.9 for female vs. 16.9 ± 8.6 for male, P = 0.039). Conversely, greater tumoral Ki-67 staining was observed in female mice (71% ± 3% for female vs. 54% ± 2% for male, P = 0.009), and this finding more closely matched the relative differences in absolute 18F-FLT tumor uptake values (4.5 ± 0.99 %ID/g for female vs. 1.9 ± 0.30 %ID/g for male, P = 0.03). Conclusion: Depending on whether female or male mice are used, differences in biodistribution and nonspecific tissue uptake can adversely affect quantitative measures of 18F-FLT uptake. Thus, sex is a potential variable to consider in defining quantitative imaging metrics using 18F-FLT to assess tumor proliferation.
Collapse
Affiliation(s)
- Szeman Ruby Chan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Justin Jeffery
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin
| | - Ginny L Powers
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yongjun Yan
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Kooresh I Shoghi
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Aparna M Mahajan
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin .,University of Wisconsin Carbone Cancer Center, Madison, Wisconsin.,Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
4
|
Heinzmann K, Honess DJ, Lewis DY, Smith DM, Cawthorne C, Keen H, Heskamp S, Schelhaas S, Witney TH, Soloviev D, Williams KJ, Jacobs AH, Aboagye EO, Griffiths JR, Brindle KM. The relationship between endogenous thymidine concentrations and [(18)F]FLT uptake in a range of preclinical tumour models. EJNMMI Res 2016; 6:63. [PMID: 27515446 PMCID: PMC4980847 DOI: 10.1186/s13550-016-0218-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Recent studies have shown that 3'-deoxy-3'-[(18)F] fluorothymidine ([(18)F]FLT)) uptake depends on endogenous tumour thymidine concentration. The purpose of this study was to investigate tumour thymidine concentrations and whether they correlated with [(18)F]FLT uptake across a broad spectrum of murine cancer models. A modified liquid chromatography-mass spectrometry (LC-MS/MS) method was used to determine endogenous thymidine concentrations in plasma and tissues of tumour-bearing and non-tumour bearing mice and rats. Thymidine concentrations were determined in 22 tumour models, including xenografts, syngeneic and spontaneous tumours, from six research centres, and a subset was compared for [(18)F]FLT uptake, described by the maximum and mean tumour-to-liver uptake ratio (TTL) and SUV. RESULTS The LC-MS/MS method used to measure thymidine in plasma and tissue was modified to improve sensitivity and reproducibility. Thymidine concentrations determined in the plasma of 7 murine strains and one rat strain were between 0.61 ± 0.12 μM and 2.04 ± 0.64 μM, while the concentrations in 22 tumour models ranged from 0.54 ± 0.17 μM to 20.65 ± 3.65 μM. TTL at 60 min after [(18)F]FLT injection, determined in 14 of the 22 tumour models, ranged from 1.07 ± 0.16 to 5.22 ± 0.83 for the maximum and 0.67 ± 0.17 to 2.10 ± 0.18 for the mean uptake. TTL did not correlate with tumour thymidine concentrations. CONCLUSIONS Endogenous tumour thymidine concentrations alone are not predictive of [(18)F]FLT uptake in murine cancer models.
Collapse
Affiliation(s)
- Kathrin Heinzmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Present address: Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
| | - Davina Jean Honess
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - David Yestin Lewis
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK
| | | | - Christopher Cawthorne
- Wolfson Molecular Imaging Centre, Manchester Pharmacy School, University of Manchester, Manchester, UK
- Present address: Positron Emission Tomography Research Centre, University of Hull, Hull, UK
| | - Heather Keen
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, Macclesfield, UK
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sonja Schelhaas
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU), University Hospital of Münster, Münster, Germany
| | - Timothy Howard Witney
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
- Present address: UCL Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Dmitry Soloviev
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK
| | - Kaye Janine Williams
- Wolfson Molecular Imaging Centre, Manchester Pharmacy School, University of Manchester, Manchester, UK
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK
| | - Andreas Hans Jacobs
- European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität (WWU), University Hospital of Münster, Münster, Germany
| | - Eric Ofori Aboagye
- Comprehensive Cancer Imaging Centre, Imperial College London, London, UK
| | | | - Kevin Michael Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- CRUK-EPSRC Cancer Imaging Centre in Cambridge and Manchester, Cambridge, UK.
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
5
|
Abstract
Positron emission tomography can be used to image tumor proliferation when combined with appropriate labeled tracers, such as the thymidine analog [(18)F]-3'-deoxy-3'-fluorothymidine. Although thymidine kinase 1 is the principal mechanism of cell trapping, other variables, such as the cellular level of native thymidine, may need to be considered.
Collapse
Affiliation(s)
- Anthony F Shields
- Karmanos Cancer Institute, Department of Oncology, Wayne State University, Detroit, Michigan 48201-2013, USA.
| |
Collapse
|
6
|
Zhang CC, Yan Z, Li W, Kuszpit K, Painter CL, Zhang Q, Lappin PB, Nichols T, Lira ME, Affolter T, Fahey NR, Cullinane C, Spilker M, Zasadny K, O'Brien P, Buckman D, Wong A, Christensen JG. [(18)F]FLT-PET imaging does not always "light up" proliferating tumor cells. Clin Cancer Res 2011; 18:1303-12. [PMID: 22170262 DOI: 10.1158/1078-0432.ccr-11-1433] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE [(18)F]FLT (3'-Fluoro-3' deoxythymidine)-PET imaging was proposed as a tool for measuring in vivo tumor cell proliferation. The aim of this article was to validate the use of [(18)F]FLT-PET imaging for measuring xenograft proliferation and subsequent monitoring of targeted therapy. EXPERIMENTAL DESIGN In exponentially growing xenografts, factors that could impact the outcome of [(18)F]FLT-PET imaging, such as nucleoside transporters, thymidine kinase 1, the relative contribution of DNA salvage pathway, and the ratio of FLT to thymidine, were evaluated. The [(18)F]FLT tracer avidity was compared with other proliferation markers. RESULTS In a panel of proliferating xenografts, [(18)F]FLT or [(3)H]thymidine tracer avidity failed to reflect the tumor growth rate across different tumor types, despite the high expressions of Ki67 and TK1. When FLT was injected at the same dose level as used in the preclinical [(18)F]FLT-PET imaging, the plasma exposure ratio of FLT to thymidine was approximately 1:200. Thymidine levels in different tumor types seemed to be variable and exhibited an inverse relationship with the FLT tracer avidity. In contrast, high-dose administration of bromdeoxyuridine (BrdUrd; 50 mg/kg) yielded a plasma exposure of more than 4-fold higher than thymidine and leads to a strong correlation between the BrdUrd uptake and the tumor proliferation rate. In FLT tracer-avid models, [(18)F]FLT-PET imaging as a surrogate biomarker predicted the therapeutic response of CDK4/6 inhibitor PD-0332991. CONCLUSIONS Tumor thymidine level is one of the factors that impact the correlation between [(18)F]FLT uptake and tumor cell proliferation. With careful validation, [(18)F]FLT-PET imaging can be used to monitor antiproliferative therapies in tracer-avid malignancies.
Collapse
Affiliation(s)
- Cathy C Zhang
- Oncology Research Unit, La Jolla Laboratories, Pfizer Global Research and Development, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Paproski RJ, Wuest M, Jans HS, Graham K, Gati WP, McQuarrie S, McEwan A, Mercer J, Young JD, Cass CE. Biodistribution and Uptake of 3′-Deoxy-3′-Fluorothymidine in ENT1-Knockout Mice and in an ENT1-Knockdown Tumor Model. J Nucl Med 2010; 51:1447-55. [DOI: 10.2967/jnumed.110.076356] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
8
|
van de Merbel NC. Quantitative determination of endogenous compounds in biological samples using chromatographic techniques. Trends Analyt Chem 2008. [DOI: 10.1016/j.trac.2008.09.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Li KM, Rivory LP, Clarke SJ. Pemetrexed pharmacokinetics and pharmacodynamics in a phase I/II study of doublet chemotherapy with vinorelbine: implications for further optimisation of pemetrexed schedules. Br J Cancer 2007; 97:1071-6. [PMID: 17912246 PMCID: PMC2360430 DOI: 10.1038/sj.bjc.6603995] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The purpose of this study was to investigate the utility of plasma pharmacokinetic and pharmacodynamic measures including plasma deoxynucleosides, homocysteine and methylmalonic acid concentrations in understanding the time course and extent of the inhibition of thymidylate synthase (TS) by pemetrexed in the context of a phase I/II combination study with vinorelbine. Eighteen patients received supplementation with folic acid and Vitamin B12 1 week before beginning treatment with pemetrexed and vinorelbine administered in a dose-escalating manner on a 21-day cycle. Heparinised blood samples were collected from consenting patients in the first cycle for pharmacokinetic analyses and in the first two cycles for determination of plasma thymidine, deoxyuridine, homocysteine and methylmalonic acid concentrations. These values were correlated with response and toxicity. Plasma deoxyuridine was used as a measure of TS inhibition, and concentrations of deoxyuridine were significantly elevated relative to baseline on days 1 (P<0.01), 2 (P<0.001) and 3 (P<0.05) after treatment at all pemetrexed dose levels (400–700 mg m−2). The magnitude of deoxyuridine elevation correlated with pemetrexed area under the plasma concentration–time curve (AUC) (r2=0.23, P<0.05). However, deoxyuridine concentrations returned to baseline between 8 and 15 days after treatment with pemetrexed, suggesting that inhibition of TS was not durable. Pemetrexed AUC correlated with the percentage decline (relative to baseline) in both platelets (r2=0.58, P<0.001) and leucocytes (r2=0.26, P<0.05) at day 8. Baseline homocysteine was also significantly correlated with these measures of haematological toxicity (r2=0.37, P<0.01 and r2=0.39, P<0.01, respectively). In addition, there was a significant reduction of plasma homocysteine on days 8 (P<0.005) and 15 (P<0.05) in cycle 1 compared to baseline values. The results suggest that the TS inhibitory effects of pemetrexed are short-lived and make the case for a more frequent schedule of administration such as every 2 weeks. The lack of protracted TS inhibition may be due to concomitant vitamin administration, and this may be the mechanism by which vitamins prevent life-threatening toxicity from pemetrexed. Baseline homocysteine concentration remains a predictive marker for haematological toxicity even following folate supplementation.
Collapse
Affiliation(s)
- K M Li
- Discipline of Pharmacology, Faculty of Medicine, Bosch Institute, School of Medical Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - L P Rivory
- Johnson and Johnson Research Pty. Ltd, Strawberry Hills, New South Wales 2012, Australia
| | - S J Clarke
- Department of Medicine, Concord Hospital, Concord, New South Wales 2137, Australia
- E-mail:
| |
Collapse
|
10
|
Li KM, Rivory LP, Hoskins J, Sharma R, Clarke SJ. Altered deoxyuridine and thymidine in plasma following capecitabine treatment in colorectal cancer patients. Br J Clin Pharmacol 2007; 63:67-74. [PMID: 16827816 PMCID: PMC2000712 DOI: 10.1111/j.1365-2125.2006.02710.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Accepted: 03/31/2006] [Indexed: 12/27/2022] Open
Abstract
AIMS To investigate the relationship between changes in plasma deoxynucleoside concentrations and response and toxicity in patients treated with capecitabine. METHODS Twenty-six patients received 2 g capecitabine twice daily orally for 2 weeks of a 3-week cycle. Blood samples were collected on day 0 (baseline), day 8, day 15 and day 22 of the first cycle for the determination of plasma thymidine (TdR) and deoxyuridine (UdR) concentrations. Patients were reviewed weekly during the first cycle, then 3-weekly for toxicity assessment. Response was assessed according to Response Evaluation Criteria in Solid Tumours (RECIST) criteria. RESULTS The plasma UdR and UdR/TdR ratios were significantly elevated (P < 0.001) compared with baseline (49.3 +/- 20.8 nmol l(-1)) for the entire 3-week treatment period. In contrast, the plasma TdR concentrations of these patients were significantly reduced only on day 8 (P < 0.01) compared with baseline (12.1 +/- 3.83 nmol l(-1)), but returned gradually to basal levels by day 15. There were no significant correlations demonstrated between pretreatment or maximal post-treatment plasma nucleoside ratio and either toxicity or response. The TSER genotype frequencies of homozygous TSER*2, TSER*3 and heterozygous TSER*2/*3 were 7.7%, 42.3% and 50%, respectively. These preliminary data also indicate no direct relationship between thymidylate synthase (TS) genotype and plasma nucleoside levels. CONCLUSIONS Capecitabine mimics continuous infusion of 5-FU to achieve sustained cellular TS inhibitory effects and suggests the antiproliferative mechanism of capectabine is at least partly due to TS inhibition through its active metabolite FdUMP. Although plasma UdR and TdR concentrations and the UdR/TdR ratio can provide some pharmacodynamic indication of TS inhibition, they are unlikely to predict therapeutic response or toxicity accurately following capecitabine treatment in cancer patients.
Collapse
Affiliation(s)
- Kong M Li
- Department of Pharmacology, Faculty of Medicine, Institute of Biomedical Research, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
11
|
Li KM, Thompson MR, McGregor IS. Rapid quantitation of fluoxetine and norfluoxetine in serum by micro-disc solid-phase extraction with high-performance liquid chromatography–ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 804:319-26. [PMID: 15081926 DOI: 10.1016/j.jchromb.2004.01.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 01/19/2004] [Accepted: 01/19/2004] [Indexed: 10/26/2022]
Abstract
A rapid, robust and sensitive method for the extraction and quantitative analysis of serum fluoxetine (FLX) and norfluoxetine (N-FLX) using a solid-phase extraction (SPE) column and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was developed and validated. The sample clean-up step was performed by simple micro-disc mixed-mode (non-polar and strong cation exchange (SCX)) SPE cartridges. Separation of analytes and internal standard (IS) clomipramine (CLO) from endogenous matrix interference was achieved using a Waters Symmetry C(8) (150 mm x 2.1 mm i.d., 5 microm) reversed-phase narrow bore column. The relative retention times were 8.5, 9.6 and 10.5 min for FLX, N-FLX and CLO, respectively with a low isocratic flow rate of 0.3 ml/min. Chromatographic run time was completed in 15 min and peak area ratios of analytes to IS were used for regression analysis of the calibration curve. The latter was linear from 10 to 4000 nmol/l using 0.5 ml sample volume of serum. The average recovery was 95.5% for FLX and 96.9% for N-FLX. The lowest limit of quantitation (LLOQ) for serum FLX and N-FLX was 10 nmol/l (on-column amount of 200 fmol). The method described was used to analyse serum samples obtained from rats given chronic FLX treatment and to examine the relationship between steady state serum drug concentrations and neurochemical changes in several brain regions.
Collapse
Affiliation(s)
- Kong M Li
- Department of Pharmacology, Faculty of Medicine, School of Biomedical Sciences, University of Sydney, Bosch Building, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|