1
|
Barros Azeredo NF, Ferreira Santos MS, Sempionatto JR, Wang J, Angnes L. Screen-Printed Technologies Combined with Flow Analysis Techniques: Moving from Benchtop to Everywhere. Anal Chem 2021; 94:250-268. [PMID: 34851628 DOI: 10.1021/acs.analchem.1c02637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Screen-printed electrodes (SPEs) coupled with flow systems have been reported in recent decades for an ever-growing number of applications in modern electroanalysis, aiming for portable methodologies. The information acquired through this combination can be attractive for future users with basic knowledge, especially due to the increased measurement throughput, reduction in reagent consumption and minimal waste generation. The trends and possibilities of this set rely on the synergistic behavior that maximizes both SPE and flow analyses characteristics, allowing mass production and automation. This overview addresses an in-depth update about the scope of samples, target analytes, and analytical throughput (injections per hour, limits of detection, linear range, etc.) obtained by coupling injection techniques (FIA, SIA, and BIA) with SPE-based electrochemical detection.
Collapse
Affiliation(s)
- Nathália Florência Barros Azeredo
- Institute of Chemistry, University of São Paulo, São Paulo 05508-070, Brazil.,Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | - Juliane R Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lúcio Angnes
- Institute of Chemistry, University of São Paulo, São Paulo 05508-070, Brazil
| |
Collapse
|
2
|
Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of okadaic acid in mussel sample. Talanta 2012; 99:232-7. [PMID: 22967546 DOI: 10.1016/j.talanta.2012.05.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/11/2012] [Accepted: 05/19/2012] [Indexed: 12/30/2022]
Abstract
An electrochemical immunosensor for okadaic acid (OA) detection has been developed, and used in an indirect competitive immunoassay format under automated flow conditions. The biosensor was fabricated by injecting OA modified magnetic beads onto screen printed carbon electrode (SPCE) in the flow system. The OA present in the sample competed with the immobilized OA to bind with anti-okadaic acid monoclonal antibody (anti-OA-MAb). The secondary alkaline phosphatase labeled antibody was used to perform electrochemical detection. The current response obtained from the labeled alkaline phosphatase to 1-naphthyl phosphate decreased proportionally to the concentration of free OA in the sample. The calculated limit of detection (LOD) was 0.15 μg/L with a linear range of 0.19-25 μg/L. The good recoveries percentages validated the immunosensor application for real mussel samples. The developed system automatically controlled the incubation, washing and current measurement steps, showing its potential use for OA determination in field analysis.
Collapse
|
3
|
|
4
|
Trojanowicz M. Recent developments in electrochemical flow detections—A review. Anal Chim Acta 2009; 653:36-58. [DOI: 10.1016/j.aca.2009.08.040] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/04/2009] [Accepted: 08/28/2009] [Indexed: 12/17/2022]
|
5
|
Ho JAA, Lin YC, Wang LS, Hwang KC, Chou PT. Carbon Nanoparticle-Enhanced Immunoelectrochemical Detection for Protein Tumor Marker with Cadmium Sulfide Biotracers. Anal Chem 2009; 81:1340-6. [DOI: 10.1021/ac801832h] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ja-an Annie Ho
- BioAnalytical Chemistry Laboratory, Department of Chemistry, National Tsing Hua University, Hsinchu, 30013 Taiwan, and Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
| | - Yeh-Chun Lin
- BioAnalytical Chemistry Laboratory, Department of Chemistry, National Tsing Hua University, Hsinchu, 30013 Taiwan, and Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
| | - Li-Sheng Wang
- BioAnalytical Chemistry Laboratory, Department of Chemistry, National Tsing Hua University, Hsinchu, 30013 Taiwan, and Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
| | - Kuo-Chu Hwang
- BioAnalytical Chemistry Laboratory, Department of Chemistry, National Tsing Hua University, Hsinchu, 30013 Taiwan, and Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
| | - Pi-Tai Chou
- BioAnalytical Chemistry Laboratory, Department of Chemistry, National Tsing Hua University, Hsinchu, 30013 Taiwan, and Department of Chemistry, National Taiwan University, Taipei, 10617 Taiwan
| |
Collapse
|
6
|
Superporous agarose—Reticulated vitreous carbon electrodes for electrochemical sandwich bioassays. Anal Chim Acta 2008; 628:190-7. [DOI: 10.1016/j.aca.2008.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 09/02/2008] [Accepted: 09/07/2008] [Indexed: 11/21/2022]
|
7
|
Viswanathan S, Rani C, Vijay Anand A, Ho JAA. Disposable electrochemical immunosensor for carcinoembryonic antigen using ferrocene liposomes and MWCNT screen-printed electrode. Biosens Bioelectron 2008; 24:1984-9. [PMID: 19038538 DOI: 10.1016/j.bios.2008.10.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/22/2008] [Accepted: 10/06/2008] [Indexed: 01/16/2023]
Abstract
Disposable electrochemical immunosensor for the detection of carcinoembryonic antigen (CEA) in saliva and serum was developed. Monoclonal anti-CEA antibodies (alphaCEA) were covalently immobilized on polyethyleneimine wrapped multiwalled carbon nanotubes screen-printed electrode. A sandwich immunoassay was performed with CEA and alphaCEA tagged ferrocene carboxylic acid encapsulated liposomes (alphaCEA-FCL). The square wave voltammetry (SWV) was employed to analyze faradic redox responses of the released ferrocene carboxylic acid from the immunoconjugated liposomes on the electrode surface. The magnitude of the SWV peak current was directly related to the concentration of CEA. The calibration curve for CEA concentration was in the range of 5 x 10(-12) to 5 x 10(-7)gmL(-1) with a detection limit of 1 x 10(-12)gmL(-1) (S/N=3). This method provides a high precise and sensitive determination of CEA in human blood serum and saliva samples.
Collapse
Affiliation(s)
- Subramanian Viswanathan
- Department of Biosensors, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn, Poland
| | | | | | | |
Collapse
|
8
|
Over-the-Counter Biosensors: Past, Present, and Future. SENSORS 2008; 8:5535-5559. [PMID: 27873829 PMCID: PMC3705519 DOI: 10.3390/s8095535] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 08/28/2008] [Accepted: 09/03/2008] [Indexed: 11/17/2022]
Abstract
The demand for specific, low cost, rapid, sensitive and easy detection of biomolecules is huge. A well-known example is the glucose meters used by diabetics to monitor their blood glucose levels. Nowadays, a vast majority of the glucose meters are based on electrochemical biosensor technology. The inherent small size and simple construction of the electrochemical transducer and instrument are ideally suited for point-of-care biosensing. Besides glucose, a wide variety of electrochemical biosensors have been developed for the measurements of some other key metabolites, proteins, and nucleic acids. Nevertheless, unlike the glucose meters, limited success has been achieved for the commercialization of the protein and nucleic acid biosensors. In this review article, key technologies on the electrochemical detection of key metabolites, proteins, and DNAs are discussed in detail, with particular emphasis on those that are compatible to home-use setting. Moreover, emerging technologies of lab-on-a-chip microdevices and nanosensors (i.e., silicon and carbon nanotube field-effect sensors) offer opportunities for the construction of new generation biosensors with much better performances. Together with the continuous innovations in the basic components of biosensors (i.e., transducers, biorecognition molecules, immobilization and signal transduction schemes), consumers could soon buy different kinds of biosensing devices in the pharmacy stores.
Collapse
|
9
|
Villalba MM, Davis J. New directions for carbon-based detectors: exploiting the versatility of carbon substrates in electroanalysis. J Solid State Electrochem 2008. [DOI: 10.1007/s10008-008-0535-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM. Some Recent Designs and Developments of Screen‐Printed Carbon Electrochemical Sensors/Biosensors for Biomedical, Environmental, and Industrial Analyses. ANAL LETT 2007. [DOI: 10.1081/al-120030682] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM. Chapter 23 Screen-printed electrochemical (bio)sensors in biomedical, environmental and industrial applications. ELECTROCHEMICAL SENSOR ANALYSIS 2007. [DOI: 10.1016/s0166-526x(06)49023-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
12
|
Wu J, Tang J, Dai Z, Yan F, Ju H, El Murr N. A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen. Biosens Bioelectron 2006; 22:102-8. [PMID: 16427775 DOI: 10.1016/j.bios.2005.12.008] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/23/2005] [Accepted: 12/13/2005] [Indexed: 11/16/2022]
Abstract
A new simple immunoassay method for carcinoembryonic antigen (CEA) detection using a disposable immunosensor coupled with a flow injection system was developed. The immunosensor was prepared by coating CEA/colloid Au/chitosan membrane at a screen-printed carbon electrode (SPCE). Using a competitive immunoassay format, the immunosensor inserted in the flow system with an injection of sample and horseradish peroxidase (HRP)-labeled CEA antibody was used to trap the labeled antibody at room temperature for 35 min. The current response obtained from the labeled HRP to thionine-H(2)O(2) system decreased proportionally to the CEA concentration in the range of 0.50-25 ng/ml with a correlation coefficient of 0.9981 and a detection limit of 0.22 ng/ml (S/N=3). The immunoassay system could automatically control the incubation, washing and current measurement steps with good stability and acceptable accuracy. Thus, the proposed method proved its potential use in clinical immunoassay of CEA.
Collapse
Affiliation(s)
- Jie Wu
- Key Laboratory of Analytical Chemistry for Life Science (Education Ministry of China), Department of Chemistry, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Díaz-González M, González-García M, Costa-García A. Recent Advances in Electrochemical Enzyme Immunoassays. ELECTROANAL 2005. [DOI: 10.1002/elan.200503357] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|