LeMaire SA, Carter SA, Won T, Wang X, Conklin LD, Coselli JS. The Threat of Adhesive Embolization: BioGlue Leaks Through Needle Holes in Aortic Tissue and Prosthetic Grafts.
Ann Thorac Surg 2005;
80:106-10; discussion 110-1. [PMID:
15975350 DOI:
10.1016/j.athoracsur.2005.02.004]
[Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 01/25/2005] [Accepted: 02/01/2005] [Indexed: 11/30/2022]
Abstract
BACKGROUND
BioGlue Surgical Adhesive (CryoLife, Inc, Kennesaw, GA) is used to reinforce anastomoses during cardiovascular operations. Previous reports have raised concerns that adhesives may leak through suture-line needle holes and that resulting intraluminal glue may embolize. The purpose of this study was to determine if BioGlue leaks through anastomotic needle holes in aortic tissue and two common prosthetic graft materials.
METHODS
Polypropylene suture was used to create end-to-end anastomoses in gelatin-sealed woven polyester grafts (n = 45), expanded polytetrafluoroethylene (ePTFE) grafts (n = 45), and fresh porcine aortas (n = 45). An additional 45 anastomoses were created in ePTFE grafts using ePTFE sutures. The outer surface of each anastomosis was covered with BioGlue. Anastomoses underwent inspection with direct magnification or histology.
RESULTS
BioGlue leaked through needle holes and into the lumen in 10% of anastomoses (18 of 180). Leaks were significantly more common in fresh aorta (10 of 45, 22%) than in prosthetic grafts (8 of 135, 6%; p = 0.003). Suture size did not significantly affect the incidence of leak. The use of ePTFE sutures did not eliminate BioGlue leakage. Prosthetic graft leaks created discreet round adhesive particles. In contrast, aortic tissue leaks resulted in thin, friable flakes of glue extending along the intimal surface. Aortic histology confirmed that BioGlue reached the vessel lumen via the suture channels.
CONCLUSIONS
BioGlue leaked through the needle holes in fresh aortic tissue and prosthetic grafts. Intraluminal adhesive particles were easily dislodged, supporting concerns regarding embolization. The potential for adhesive embolization should be a factor when considering the relative risks and benefits of using BioGlue.
Collapse