1
|
Blundon MA, Schlesinger DR, Parthasarathy A, Smith SL, Kolev HM, Vinson DA, Kunttas-Tatli E, McCartney BM, Minden JS. Proteomic analysis reveals APC-dependent post-translational modifications and identifies a novel regulator of β-catenin. Development 2016; 143:2629-40. [PMID: 27287809 DOI: 10.1242/dev.130567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/31/2016] [Indexed: 01/02/2023]
Abstract
Wnt signaling generates patterns in all embryos, from flies to humans, and controls cell fate, proliferation and metabolic homeostasis. Inappropriate Wnt pathway activation results in diseases, including colorectal cancer. The adenomatous polyposis coli (APC) tumor suppressor gene encodes a multifunctional protein that is an essential regulator of Wnt signaling and cytoskeletal organization. Although progress has been made in defining the role of APC in a normal cellular context, there are still significant gaps in our understanding of APC-dependent cellular function and dysfunction. We expanded the APC-associated protein network using a combination of genetics and a proteomic technique called two-dimensional difference gel electrophoresis (2D-DIGE). We show that loss of Drosophila Apc2 causes protein isoform changes reflecting misregulation of post-translational modifications (PTMs), which are not dependent on β-catenin transcriptional activity. Mass spectrometry revealed that proteins involved in metabolic and biosynthetic pathways, protein synthesis and degradation, and cell signaling are affected by Apc2 loss. We demonstrate that changes in phosphorylation partially account for the altered PTMs in APC mutants, suggesting that APC mutants affect other types of PTM. Finally, through this approach Aminopeptidase P was identified as a new regulator of β-catenin abundance in Drosophila embryos. This study provides new perspectives on the cellular effects of APC that might lead to a deeper understanding of its role in development.
Collapse
Affiliation(s)
- Malachi A Blundon
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Danielle R Schlesinger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Amritha Parthasarathy
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samantha L Smith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Hannah M Kolev
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - David A Vinson
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ezgi Kunttas-Tatli
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jonathan S Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
2
|
Cilia La Corte AL, Carter AM, Rice GI, Duan QL, Rouleau GA, Adam A, Grant PJ, Hooper NM. A functional XPNPEP2 promoter haplotype leads to reduced plasma aminopeptidase P and increased risk of ACE inhibitor-induced angioedema. Hum Mutat 2011; 32:1326-31. [PMID: 21898657 DOI: 10.1002/humu.21579] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/11/2011] [Indexed: 01/16/2023]
Abstract
Angiotensin I-converting enzyme inhibitors (ACEi) are widely used antihypertensive agents that are associated with a potentially life-threatening reaction, ACEi-angioedema. Impaired metabolism of bradykinin and des-Arg(9) -bradykinin by aminopeptidase P (APP) is a key contributor to ACEi-angioedema. This study aimed to characterize the genetic regulation of the XPNPEP2 gene and identify the genetic factors contributing to variance in plasma APP activity and ACEi-angioedema. Additive genetic factors accounted for 47.3% of variance in plasma APP activity in healthy individuals. Nested deletion analysis identified the minimal promoter (-338 bp to -147 bp) and an enhancer region (-2,502 bp to -2,238 bp). Three polymorphisms (c.-2399C>A, c.-1612G>T, and c.-393G>A) were significantly associated with plasma APP activity. Haplotype ATG was significantly associated with reduced reporter gene activity and with reduced plasma APP activity. The c.-2399C>A polymorphism was located in an enhancer region and was predicted to differentially bind hepatic nuclear factor 4 (HNF4). Over expression of HNF4 increased the activation of haplotype ATG compared with haplotype CGG. In a case control study of subjects with a history of ACEi-angioedema, haplotype ATG was significantly associated with ACEi-angioedema (OR 4.87 [1.78-13.35] P = 0.002). The ATG haplotype is functional and contributes to ACEi-angioedema through a reduction in APP.
Collapse
|
3
|
Complexes of mutants of Escherichia coli aminopeptidase P and the tripeptide substrate ValProLeu. Arch Biochem Biophys 2007; 469:200-8. [PMID: 17983589 DOI: 10.1016/j.abb.2007.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Revised: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 11/23/2022]
Abstract
Aminopeptidase P (APPro) is a manganese-containing enzyme that catalyses the hydrolysis of the N-terminal residue of a polypeptide if the second residue is proline. Structures of APPro mutants with reduced or negligible activity have been determined in complex with the tripeptide substrate ValProLeu. In the complex of Glu383Ala APPro with ValProLeu one of the two metal sites is only partly occupied, indicating an essential role for Glu383 in metal binding in the presence of substrate. His361Ala APPro clearly possesses residual activity as the ValProLeu substrate has been cleaved in the crystals; difference electron density consistent with bound ProLeu dipeptide and a disordered Val amino acid is present at the active site. Contrary to previous suggestions, the His243Ala mutant is capable of binding substrate. The structure of the His243Ala APPro complex with ValProLeu shows that the peptide interacts with one of the active-site metal atoms via its terminal amino group. The implications of these complexes for the roles of the respective residues in APPro catalysis are discussed.
Collapse
|
4
|
Erşahin C, Szpaderska AM, Orawski AT, Simmons WH. Aminopeptidase P isozyme expression in human tissues and peripheral blood mononuclear cell fractions. Arch Biochem Biophys 2005; 435:303-10. [PMID: 15708373 DOI: 10.1016/j.abb.2004.12.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 12/21/2004] [Indexed: 11/30/2022]
Abstract
Aminopeptidase P (APP) isoforms specifically remove the N-terminal amino acid from peptides that have a proline residue in the second position. The mRNA levels of three different isoforms, each coded by a different gene, were determined in 16 human tissues and in peripheral blood mononuclear cell (PBMC) fractions by RT-PCR. The cytosolic isoform, APP1, and the cell surface membrane-bound isoform, APP2, are expressed in all of the human tissues and PBMC fractions examined. The very high expression of APP2 mRNA in kidney compared to other tissues was confirmed by enzyme activity measurements. Among the PBMC fractions, APP2 expression is highest in resting CD8(+) T cells, but decreases in these cells following their activation with phytohemagglutinin; in contrast, expression of APP2 increases in CD4(+) T cells upon activation. The third isoform, APP3, is a hypothetical protein identified by nucleotide sequencing. A detailed analysis of its amino acid sequence confirmed that the protein is an aminopeptidase P-like enzyme with greater similarity to Escherichia coli APP than to either APP1 or APP2. Two splice variants of APP3 exist, one of which is predicted to have a mitochondrial localization (APP3m) while the other is cytosolic (APP3c). Both forms are variably expressed in all of the human tissues and PBMC fractions examined.
Collapse
Affiliation(s)
- Cağatay Erşahin
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|