1
|
Errachid A, Nohawica M, Wyganowska-Swiatkowska M. A comprehensive review of the influence of Epigallocatechin gallate on Sjögren's syndrome associated molecular regulators of exocytosis (Review). Biomed Rep 2021; 15:95. [PMID: 34631050 PMCID: PMC8493546 DOI: 10.3892/br.2021.1471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/25/2021] [Indexed: 12/03/2022] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disorder that affects the salivary glands, leading to reduced secretory functions and oral and ocular dryness. The salivary glands are composed of acinar cells that are responsible for the secretion and production of secretory granules, which contain salivary components, such as amylase, mucins and immunoglobulins. This secretion process involves secretory vesicle trafficking, docking, priming and membrane fusion. A failure during any of the steps in exocytosis in the salivary glands results in the altered secretion of saliva. Soluble N-ethylmaleimide-sensitive-factor attachment protein receptors, actin, tight junctions and aquaporin 5 all serve an important role in the trafficking regulation of secretory vesicles in the secretion of saliva via exocytosis. Alterations in the expression and distribution of these selected proteins leads to salivary gland dysfunction, including SS. Several studies have demonstrated that green tea polyphenols, most notably Epigallocatechin gallate (EGCG), possess both anti-inflammatory and anti-apoptotic properties in normal human cells. Molecular, cellular and animal studies have indicated that EGCG can provide protective effects against autoimmune and inflammatory reactions in salivary glands in diseases such as SS. The aim of the present article is to provide a comprehensive and up-to-date review on the possible therapeutic interactions between EGCG and the selected molecular mechanisms associated with SS.
Collapse
Affiliation(s)
- Abdelmounaim Errachid
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland.,Earth and Life Institute, University Catholique of Louvain, B-1348 Louvain-la-Neuve, Ottignies-Louvain-la-Neuve, Belgium
| | - Michal Nohawica
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| | - Marzena Wyganowska-Swiatkowska
- Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, 60-812 Poznań, Greater Poland, Poland
| |
Collapse
|
2
|
Suzuki A, Iwata J. Molecular Regulatory Mechanism of Exocytosis in the Salivary Glands. Int J Mol Sci 2018; 19:E3208. [PMID: 30336591 PMCID: PMC6214078 DOI: 10.3390/ijms19103208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Every day, salivary glands produce about 0.5 to 1.5 L of saliva, which contains salivary proteins that are essential for oral health. The contents of saliva, 0.3% proteins (1.5 to 4.5 g) in fluid, help prevent oral infections, provide lubrication, aid digestion, and maintain oral health. Acinar cells in the lobular salivary glands secrete prepackaged secretory granules that contain salivary components such as amylase, mucins, and immunoglobulins. Despite the important physiological functions of salivary proteins, we know very little about the regulatory mechanisms of their secretion via exocytosis, which is a process essential for the secretion of functional proteins, not only in salivary glands, but also in other secretory organs, including lacrimal and mammary glands, the pancreas, and prostate. In this review, we discuss recent findings that elucidate exocytosis by exocrine glands, especially focusing on the salivary glands, in physiological and pathological conditions.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Program of Biochemistry and Cell Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
3
|
β-adrenoceptor activation increased VAMP-2 and syntaxin-4 in secretory granules are involved in protein secretion of submandibular gland through the PKA/F-actin pathway. Biosci Rep 2018; 38:BSR20171142. [PMID: 29358308 PMCID: PMC5809613 DOI: 10.1042/bsr20171142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/17/2022] Open
Abstract
Autologous submandibular gland transplantation is an effective treatment for severe dry eye syndrome. However, the protein secretion in transplanted gland is altered by a mechanism that remains to be elucidated. In the present study, we found that β1-adrenoceptor (β1-AR) and β2-AR expression and the phosphorylation of the downstream molecule protein kinase A (PKA) were elevated in transplanted submandibular glands obtained from epiphora patients. Synaptobrevin/vesicle-associated membrane protein 2 (VAMP-2) interacted with syntaxin-4 and actin in human submandibular gland. The contents of syntaxin-4 and actin interacting with VAMP-2 were increased in transplanted gland. Moreover, VAMP-2 and syntaxin-4 expression in the secretory granule fraction, and VAMP-2 expression in the membrane protein fraction were increased in isoproterenol-treated and transplanted glands. Isoproterenol increased F-actin polymerization in the apical and lateral regions of the cytoplasm in both control and transplanted glands. Inhibiting PKA activity and/or F-actin formation abolished the isoproterenol-enhanced expression of VAMP-2 and syntaxin-4 in the secretory granule fraction and the isoproterenol-enhanced expression of VAMP-2 in the membrane protein fraction. Taken together, these results indicate that the activation of β-ARs induces secretory granules and cell membrane fusion via the interaction of VAMP-2 and syntaxin-4 in a PKA- and F-actin-dependent manner in human submandibular gland. Up-regulated β-ARs might participate in altering protein secretion in transplanted submandibular gland by promoting the interaction of VAMP-2 with syntaxin-4.
Collapse
|
4
|
Gomi H, Osawa H, Uno R, Yasui T, Hosaka M, Torii S, Tsukise A. Canine Salivary Glands: Analysis of Rab and SNARE Protein Expression and SNARE Complex Formation With Diverse Tissue Properties. J Histochem Cytochem 2017; 65:637-653. [PMID: 28914590 DOI: 10.1369/0022155417732527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The comparative structure and expression of salivary components and vesicular transport proteins in the canine major salivary glands were investigated. Histochemical analysis revealed that the morphology of the five major salivary glands-parotid, submandibular, polystomatic sublingual, monostomatic sublingual, and zygomatic glands-was greatly diverse. Immunoblot analysis revealed that expression levels of α-amylase and antimicrobial proteins, such as lysozyme, lactoperoxidase, and lactoferrin, differed among the different glands. Similarly, Rab proteins (Rab3d, Rab11a, Rab11b, Rab27a, and Rab27b) and soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins VAMP4, VAMP8, syntaxin-2, syntaxin-3, syntaxin-4, and syntaxin-6 were expressed at various levels in individual glands. mmunohistochemistry of Rab3d, Rab11b, Rab27b, VAMP4, VAMP8, syntaxin-4, and syntaxin-6 revealed their predominant expression in serous acinar cells, demilunes, and ductal cells. The VAMP4/syntaxin-6 SNARE complex, which is thought to be involved in the maturation of secretory granules in the Golgi field, was found more predominantly in the monostomatic sublingual gland than in the parotid gland. These results suggest that protein expression profiles in canine salivary glands differ among individual glands and reflect the properties of their specialized functions.
Collapse
Affiliation(s)
- Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiromi Osawa
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Rie Uno
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Seiji Torii
- Laboratory of Secretion Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Azuma Tsukise
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
5
|
Hernández-Palestina MS, Cisneros-Lesser JC, Arellano-Saldaña ME, Plascencia-Nieto SE. [Submandibular gland resection for the management of sialorrhea in paediatric patients with cerebral palsy and unresponsive to type A botullinum toxin. Pilot study]. CIR CIR 2016; 84:459-468. [PMID: 27221328 DOI: 10.1016/j.circir.2016.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/20/2015] [Accepted: 02/10/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Sialorrhoea has a prevalence of between 10% and 58% in patients with cerebral palsy. Amongst the invasive treatments, botulinum toxin-A injections in submandibular and parotid glands and various surgical techniques are worth mentioning. There are no studies in Mexico on the usefulness of surgery to manage sialorrhoea. OBJECTIVE To evaluate the usefulness of submandibular gland resection in improving sialorrhoea in patients with cerebral palsy and with a poor response to botulinum toxin. MATERIAL AND METHODS Experimental, clinical, self-controlled, prospective trial was conducted to evaluate the grade of sialorrhoea before surgery, and 8, 16 and 24 weeks after. Statistical analysis was performed using a non-parametric repetitive measure assessment, considering a p < 0.05 as significant. Complications and changes in salivary composition were evaluated. RESULTS Surgery was performed on 3 patients with severe sialorrhoea, and 2 with profuse sialorrhoea, with mean age of 10.8 years. The frequency and severity of sialorrhoea improved in the 5 patients, with mean of 76.7 and 87.5% improvement, respectively. The best results were seen after 6 months of surgery, with a statistically significant difference between the preoperative stage and 6 months after the procedure (p = 0.0039, 95% CI). No significant differences were observed in complications, increase in periodontal disease or cavities, or salivary composition. CONCLUSIONS Submandibular gland resection is an effective technique for sialorrhoea control in paediatric patients with cerebral palsy, with a reduction in salivary flow greater than 80%. It has a low chance of producing complications compared to other techniques. It led to an obvious decrease in sialorrhoea without the need to involve other salivary glands in the procedure.
Collapse
Affiliation(s)
| | - Juan Carlos Cisneros-Lesser
- Otorrinolaringología y Cirugía de Cabeza y Cuello, Instituto Nacional de Rehabilitación, Ciudad de México, México.
| | | | | |
Collapse
|
6
|
Xu H, Shan XF, Cong X, Yang NY, Wu LL, Yu GY, Zhang Y, Cai ZG. Pre- and Post-synaptic Effects of Botulinum Toxin A on Submandibular Glands. J Dent Res 2015; 94:1454-62. [PMID: 26078423 DOI: 10.1177/0022034515590087] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Intraglandular injection of botulinum toxin type A (BoNT/A) is an effective treatment for sialorrhea. Despite numerous experimental and clinical studies on inhibition of saliva section by BoNT/A, the proteolysis of synaptosomal-associated protein 25 (SNAP-25) following BoNT/A treatment has not yet been confirmed in the salivary gland after injection of BoNT/A. More important, it is not known whether BoNT/A exerts a direct effect in acinar cells. Here, we show that injection of BoNT/A into the rat submandibular gland (SMG) decreased salivary flow in a dose-dependent manner; the inhibitory effect lasted at least 4 wk, and salivary flow recovered to normal levels by 12 wk. During the inhibitory period, SMG neurons and synapses expressed lower levels of full-length SNAP-25, and cleavage of SNAP-25 was observed, as indicated by detection of reduced molecular weight SNAP-25 using Western blotting. In addition, the water channel aquaporin 5 (AQP5) was downregulated and abnormally distributed in rat SMG after injection of BoNT/A. The direct effects of BoNT/A on AQP5 expression and distribution were assessed in vitro to exclude the influence of BoNT/A-induced inhibitory neurotransmission. In stable GFP-AQP5-transfected SMG-C6 cells, treatment with BoNT/A reduced the cell surface protein level of AQP5 in a dose- and time-dependent manner without affecting total AQP5 protein expression. Cell surface biotinylation and immunofluorescence demonstrated translocation of AQP5 from the membrane to the cytoplasm, which was confirmed by decreased levels of AQP5 protein in the membrane fraction and increased levels in the cytoplasmic fraction, suggestive of AQP5 redistribution. Taken together, these results indicated that BoNT/A reversibly decreased saliva secretion in rat SMGs through not only the presynaptic SNAP-25 cleavage but also the postsynaptic AQP5 redistribution. These data provide the first evidence for a direct effect of BoNT/A on the salivary gland.
Collapse
Affiliation(s)
- H Xu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - X F Shan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - X Cong
- Department of Physiology and Pathophysiology, Peking University Health Science Centre and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - N Y Yang
- Department of Pediatric Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - L L Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Centre and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - G Y Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Zhang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Z G Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
7
|
Araujo CL, Quintero IB, Kipar A, Herrala AM, Pulkka AE, Saarinen L, Hautaniemi S, Vihko P. Prostatic acid phosphatase is the main acid phosphatase with 5'-ectonucleotidase activity in the male mouse saliva and regulates salivation. Am J Physiol Cell Physiol 2014; 306:C1017-27. [PMID: 24717577 DOI: 10.1152/ajpcell.00062.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously shown that in addition to the well-known secreted isoform of prostatic acid phosphatase (sPAP), a transmembrane isoform exists (TMPAP) that interacts with snapin (a SNARE-associated protein) and regulates the endo-/exocytic pathways. We have also shown that PAP has 5'-ectonucleotidase and thiamine monophosphatase activity and elicits antinociceptive effects in mouse models of chronic inflammatory and neuropathic pain. Therefore, to determine the physiological role of PAP in a typical exocrine organ, we studied the submandibular salivary gland (SMG) of PAP(-/-) and wild-type C57BL/6J mice by microarray analyses, microRNA sequencing, activity tests, immunohistochemistry, and biochemical and physiological analyses of saliva. We show that PAP is the main acid phosphatase in the wild-type male mouse saliva, accounting for 50% of the total acid phosphatase activity, and that it is expressed only in the granular convoluted tubules of the SMGs, where it is the only 5'-ectonucleotidase. The lack of PAP in male PAP(-/-) mice was associated with a significant increase in the salivation volume under secretagogue stimulation, overexpression of genes related to cell proliferation (Mki67, Aurkb, Birc5) and immune response (Irf7, Cxcl9, Ccl3, Fpr2), and upregulation of miR-146a in SMGs. An increased and sustained acinar cell proliferation was detected without signs of glandular hyperplasia. Our results indicate that in PAP(-/-) mice, SMG homeostasis is maintained by an innate immune response. Additionally, we suggest that in male mice, PAP via its 5'-ectonucleotidase activity and production of adenosine can elicit analgesic effects when animals lick their wounds.
Collapse
Affiliation(s)
- César L Araujo
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, Helsinki, Finland
| | - Ileana B Quintero
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, Helsinki, Finland
| | - Anja Kipar
- Finnish Centre for Laboratory Animal Pathology, Faculty of Veterinary Science, University of Helsinki, Helsinki, Finland; and
| | - Annakaisa M Herrala
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, Helsinki, Finland
| | - Anitta E Pulkka
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, Helsinki, Finland
| | - Lilli Saarinen
- Research Programs Unit; Genome-scale Biology and Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Programs Unit; Genome-scale Biology and Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | - Pirkko Vihko
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital Laboratory, Helsinki, Finland; Veterinary Pathology, School of Veterinary Science and Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Messenger SW, Falkowski MA, Groblewski GE. Ca²⁺-regulated secretory granule exocytosis in pancreatic and parotid acinar cells. Cell Calcium 2014; 55:369-75. [PMID: 24742357 DOI: 10.1016/j.ceca.2014.03.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 01/09/2023]
Abstract
Protein secretion from acinar cells of the pancreas and parotid glands is controlled by G-protein coupled receptor activation and generation of the cellular messengers Ca(2+), diacylglycerol and cAMP. Secretory granule (SG) exocytosis shares some common characteristics with nerve, neuroendocrine and endocrine cells which are regulated mainly by elevated cell Ca(2+). However, in addition to diverse signaling pathways, acinar cells have large ∼1 μm diameter SGs (∼30 fold larger diameter than synaptic vesicles), respond to stimulation at slower rates (seconds versus milliseconds), demonstrate significant constitutive secretion, and in isolated acini, undergo sequential compound SG-SG exocytosis at the apical membrane. Exocytosis proceeds as an initial rapid phase that peaks and declines over 3 min followed by a prolonged phase that decays to near basal levels over 20-30 min. Studies indicate the early phase is triggered by Ca(2+) and involves the SG proteins VAMP2 (vesicle associated membrane protein2), Ca(2+)-sensing protein synatotagmin 1 (syt1) and the accessory protein complexin 2. The molecular details for regulation of VAMP8-mediated SG exocytosis and the prolonged phase of secretion are still emerging. Here we review the known regulatory molecules that impact the sequential exocytic process of SG tethering, docking, priming and fusion in acinar cells.
Collapse
Affiliation(s)
- Scott W Messenger
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States
| | - Michelle A Falkowski
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States
| | - Guy E Groblewski
- Department of Nutritional Sciences, Graduate Program in Biochemical and Molecular Nutrition, University of Wisconsin, Madison, WI 53706, United States.
| |
Collapse
|
9
|
Ishigami T, Abe K, Aoki I, Minegishi S, Ryo A, Matsunaga S, Matsuoka K, Takeda H, Sawasaki T, Umemura S, Endo Y. Anti‐interleukin‐5 and multiple autoantibodies are associated with human atherosclerotic diseases and serum interleukin‐5 levels. FASEB J 2013; 27:3437-45. [DOI: 10.1096/fj.12-222653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tomoaki Ishigami
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kaito Abe
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Ichiro Aoki
- Department of Molecular PathologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Akihide Ryo
- Department of MicrobiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Satoko Matsunaga
- Department of MicrobiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kazuhiro Matsuoka
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Hiroyuki Takeda
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Tatsuya Sawasaki
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yaeta Endo
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| |
Collapse
|
10
|
Takuma T, Shitara A, Arakawa T, Okayama M, Mizoguchi I, Tajima Y. Isoproterenol stimulates transient SNAP23-VAMP2 interaction in rat parotid glands. FEBS Lett 2013; 587:583-9. [PMID: 23380067 DOI: 10.1016/j.febslet.2013.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/10/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
Abstract
The exocytosis of salivary proteins is mainly regulated by cAMP, although soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which mediate cAMP-dependent exocytic membrane fusion, have remained unidentified. Here we examined the effect of isoproterenol (ISO) and cytochalasin D (CyD) on the level of SNARE complexes in rat parotid glands. When SNARE complexes were immunoprecipitated by anti-SNAP23, the coprecipitation of VAMP2 was significantly increased in response to ISO and/or CyD, although the coprecipitation of VAMP8 or syntaxin 4 was scarcely augmented. These results suggest that the SNAP23-VAMP2 interaction plays a key role in cAMP-mediated exocytosis from parotid glands.
Collapse
Affiliation(s)
- Taishin Takuma
- Department of Biochemistry, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Use of biotinylated ubiquitin for analysis of rat brain mitochondrial proteome and interactome. Int J Mol Sci 2012; 13:11593-11609. [PMID: 23109873 PMCID: PMC3472765 DOI: 10.3390/ijms130911593] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 08/22/2012] [Accepted: 09/03/2012] [Indexed: 11/16/2022] Open
Abstract
Applicability of in vitro biotinylated ubiquitin for evaluation of endogenous ubiquitin conjugation and analysis of ubiquitin-associated protein-protein interactions has been investigated. Incubation of rat brain mitochondria with biotinylated ubiquitin followed by affinity chromatography on avidin-agarose, intensive washing, tryptic digestion of proteins bound to the affinity sorbent and their mass spectrometry analysis resulted in reliable identification of 50 proteins belonging to mitochondrial and extramitochondrial compartments. Since all these proteins were bound to avidin-agarose only after preincubation of the mitochondrial fraction with biotinylated ubiquitin, they could therefore be referred to as specifically bound proteins. A search for specific ubiquitination signature masses revealed several extramitochondrial and intramitochondrial ubiquitinated proteins representing about 20% of total number of proteins bound to avidin-agarose. The interactome analysis suggests that the identified non-ubiquitinated proteins obviously form tight complexes either with ubiquitinated proteins or with their partners and/or mitochondrial membrane components. Results of the present study demonstrate that the use of biotinylated ubiquitin may be considered as the method of choice for in vitro evaluation of endogenous ubiquitin-conjugating machinery in particular subcellular organelles and changes in ubiquitin/organelle associated interactomes. This may be useful for evaluation of changes in interactomes induced by protein ubiquitination under norm and various brain pathologies.
Collapse
|
12
|
Okayama M, Shitara A, Arakawa T, Tajima Y, Mizoguchi I, Takuma T. SNARE proteins are not excessive for the formation of post-Golgi SNARE complexes in HeLa cells. Mol Cell Biochem 2012; 366:159-68. [DOI: 10.1007/s11010-012-1293-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/17/2012] [Indexed: 11/24/2022]
|
13
|
Stoeckelhuber M, Scherer EQ, Janssen KP, Slotta-Huspenina J, Loeffelbein DJ, Rohleder NH, Nieberler M, Hasler R, Kesting MR. The human submandibular gland: immunohistochemical analysis of SNAREs and cytoskeletal proteins. J Histochem Cytochem 2011; 60:110-20. [PMID: 22131313 DOI: 10.1369/0022155411432785] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Submandibular acinar glands secrete numerous proteins such as digestive enzymes and defense proteins on the basis of the exocrine secretion mode. Exocytosis is a complex process, including a soluble NSF attachment protein receptor (SNARE)-mediated membrane fusion of vesicles and target membrane and the additional activation of cytoskeletal proteins. Relevant data are available predominantly for animal salivary glands, especially of the rat parotid acinar cells. The authors investigated the secretory molecular machinery of acinar (serous) cells in the human submandibular gland by immunohistochemistry and immunofluorescence and found diverse proteins associated with exocytosis for the first time. SNAP-23, syntaxin-2, syntaxin-4, and VAMP-2 were localized at the luminal plasma membrane; syntaxin-2 and septin-2 were expressed in vesicles in the cytoplasm. Double staining of syntaxin-2 and septin-2 revealed a colocalization on the same vesicles. Lactoferrin and α-amylase served as a marker for secretory vesicles and were labeled positively together with syntaxin-2 and septin-2 in double-staining procedures. Cytoskeletal components such as actin, myosin II, cofilin, and profilin are concentrated at the apical plasma membrane of acinar submandibular glands. These observations complement the understanding of the complex exocytosis mechanisms.
Collapse
Affiliation(s)
- Mechthild Stoeckelhuber
- Department of Oral and Maxillofacial Surgery, Technische Universität München, Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cosen-Binker LI, Morris GP, Vanner S, Gaisano HY. Munc18/SNARE proteins’ regulation of exocytosis in guinea pig duodenal Brunner’s gland acini. World J Gastroenterol 2008; 14:2314-22. [PMID: 18416456 PMCID: PMC2705084 DOI: 10.3748/wjg.14.2314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine the molecular mechanism of exocytosis in the Brunner’s gland acinar cell.
METHODS: We used a submucosal preparation of guinea pig duodenal Brunner’s gland acini to visualize the dilation of the ductal lumen in response to cholinergic stimulus. We correlated this to electron microscopy to determine the extent of exocytosis of the mucin-filled vesicles. We then examined the behavior of SNARE and interacting Munc18 proteins by confocal microscopy.
RESULTS: One and 6 &mgr;mol/L carbachol evoked a dose-dependent dilation of Brunner’s gland acini lumen, which correlated to the massive exocytosis of mucin. Munc18c and its cognate SNARE proteins Syntaxin-4 and SNAP-23 were localized to the apical plasma membrane, and upon cholinergic stimulation, Munc18c was displaced into the cytosol leaving Syntaxin-4 and SNAP-23 intact.
CONCLUSION: Physiologic cholinergic stimulation induces Munc18c displacement from the Brunner’s gland acinar apical plasma membrane, which enables apical membrane Syntaxin-4 and SNAP-23 to form a SNARE complex with mucin-filled vesicle SNARE proteins to affect exocytosis.
Collapse
|
15
|
Unstimulated amylase secretion is proteoglycan-dependent in rat parotid acinar cells. Arch Biochem Biophys 2008; 469:165-73. [DOI: 10.1016/j.abb.2007.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/09/2007] [Accepted: 10/13/2007] [Indexed: 11/22/2022]
|
16
|
Okayama M, Arakawa T, Mizoguchi I, Tajima Y, Takuma T. SNAP-23 is not essential for constitutive exocytosis in HeLa cells. FEBS Lett 2007; 581:4583-8. [PMID: 17825825 DOI: 10.1016/j.febslet.2007.08.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 08/09/2007] [Accepted: 08/21/2007] [Indexed: 01/28/2023]
Abstract
We applied the small interfering RNA (siRNA) technique and over-expression of a dominant-negative mutant to evaluate the role of SNAP-23, a non-neuronal isoform of SNAP-25, in constitutive exocytosis from HeLa cells. Although the protein level of SNAP-23 was reduced to less than 10% of the control value by siRNA directed against SNAP-23, exocytosis of SEAP (secreted alkaline phosphatase) was normal. Double knockdown of SNAP-23 and syntaxin-4 also failed to inhibit the secretion. Furthermore, over-expression of deltaC8-SNAP-23, a dominant-negative mutant of SNAP-23, did not abrogate SEAP secretion. These results suggest that SNAP-23 is not essential for constitutive exocytosis of SEAP.
Collapse
Affiliation(s)
- Miki Okayama
- Department of Orthodontics, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | | | | | | | | |
Collapse
|
17
|
Teymoortash A, Sommer F, Mandic R, Schulz S, Bette M, Aumüller G, Werner JA. Intraglandular application of botulinum toxin leads to structural and functional changes in rat acinar cells. Br J Pharmacol 2007; 152:161-7. [PMID: 17618309 PMCID: PMC1978275 DOI: 10.1038/sj.bjp.0707375] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Intraglandular injection of botulinum toxin (BoNT) leads to a transient denervation of the submandibular gland and this is associated with reduced salivary secretion. The purpose of the present study was to verify whether temporary acinar atrophy occurs simultaneously with chemical denervation of the glands. EXPERIMENTAL APPROACH Tissue specimens of the right submandibular gland taken from 18 Wistar rats after intraglandular injection of BoNT A, BoNT B, or a combination of both were examined. As a sham control, an equivalent volume of saline was injected into the left submandibular gland. Morphometric measurements, immunohistochemistry, electron microscopy and western blot analysis were used to analyse the morphological and functional changes of the denervated glands. KEY RESULTS Morphological and ultrastructural analyses of the cell organelles and secretory granula showed a clear atrophy of the acini, which was more prominent in glands injected with the combination of BoNT/A and B. Morphometric measurements of the glandular acini revealed a significant reduction of the area of the acinar cells after injection of BoNT (P=0.031). The expression of amylase was significantly reduced in BoNT treated glands. CONCLUSIONS AND IMPLICATIONS Intraglandular application of BoNT induces structural and functional changes of the salivary glands indicated by glandular atrophy. These effects may be due to glandular denervation induced by the inhibition of the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) involved in acetylcholine release at the neuroglandular junction and also specially inhibition of those involved in exocytosis of the granula of the acinar cells.
Collapse
Affiliation(s)
- A Teymoortash
- Department of Otolaryngology-Head and Neck Surgery, Philipp University, Deutschhausstrasse 4, Marburg 35037, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Tanimura A, Tojyo Y. [Regulation of fluid and electrolyte secretion and exocytosis in salivary acinar cells]. Nihon Yakurigaku Zasshi 2006; 127:249-55. [PMID: 16755075 DOI: 10.1254/fpj.127.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Wu K, Jerdeva GV, da Costa SR, Sou E, Schechter JE, Hamm-Alvarez SF. Molecular mechanisms of lacrimal acinar secretory vesicle exocytosis. Exp Eye Res 2006; 83:84-96. [PMID: 16530759 DOI: 10.1016/j.exer.2005.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 10/12/2005] [Accepted: 11/01/2005] [Indexed: 11/26/2022]
Abstract
The acinar epithelial cells of the lacrimal gland are responsible for the production, packaging and regulated exocytosis of tear proteins into ocular surface fluid. This review summarizes new findings on the mechanisms of exocytosis in these cells. Participating proteins are discussed within the context of different categories of trafficking effectors including targeting and specificity factors (rabs, SNAREs) and transport factors (microtubules, actin filaments and motor proteins). Recent information describing fundamental changes in basic exocytotic mechanisms in the NOD mouse, an animal model of Sjögren's syndrome, is presented.
Collapse
Affiliation(s)
- Kaijin Wu
- Department of Pharmaceutical Sciences, School of Pharmacy, 1985 Zonal Avenue, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
20
|
Jo H, Byun HM, Kim JH, Kim MS, Kim SH, Hong JH, Seo JT, Lee SI, Shin DM, Son HK. Expression of Ca2+-dependent synaptotagmin isoforms in mouse and rat parotid acinar cells. Yonsei Med J 2006; 47:70-7. [PMID: 16502487 PMCID: PMC2687583 DOI: 10.3349/ymj.2006.47.1.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Synaptotagmin is a Ca2+ sensing protein, which triggers a fusion of synaptic vesicles in neuronal transmission. Little is known regarding the expression of Ca2+-dependent synaptotagmin isoforms and their contribution to the release of secretory vesicles in mouse and rat parotid acinar cells. We investigated a type of Ca2+-dependent synaptotagmin and Ca2+ signaling in both rat and mouse parotid acinar cells using RT-PCR, microfluorometry, and amylase assay. Mouse parotid acinar cells exhibited much more sensitive amylase release in response to muscarinic stimulation than did rat parotid acinar cells. However, transient [Ca2+]i increases and Ca2+ influx in response to muscarinic stimulation in both cells were identical, suggesting that the expression or activity of the Ca2+ sensing proteins is different. Seven Ca2+-dependent synaptotagmins, from 1 to 7, were expressed in the mouse parotid acinar cells. However, in the rat parotid acinar cells, only synaptotagmins 1, 3, 4 and 7 were expressed. These results indicate that the expression of Ca2+-dependent synaptotagmins may contribute to the release of secretory vesicles in parotid acinar cells.
Collapse
Affiliation(s)
- Hae Jo
- Department of Oral Biology, Brain Korea 21 Project of Medical Science, Yonsei University College of Dentistry, Seoul, Korea
| | - Hae Mi Byun
- Department of Oral Biology, Brain Korea 21 Project of Medical Science, Yonsei University College of Dentistry, Seoul, Korea
| | - Jong-Hoon Kim
- Department of Pedodontics, Yonsei University College of Dentistry, Seoul, Korea
| | - Min Seuk Kim
- Department of Oral Biology, Brain Korea 21 Project of Medical Science, Yonsei University College of Dentistry, Seoul, Korea
| | - Seung-Hyeoi Kim
- Department of Oral Biology, Brain Korea 21 Project of Medical Science, Yonsei University College of Dentistry, Seoul, Korea
| | - Jeong Hee Hong
- Department of Oral Biology, Brain Korea 21 Project of Medical Science, Yonsei University College of Dentistry, Seoul, Korea
| | - Jeong Taeg Seo
- Department of Oral Biology, Brain Korea 21 Project of Medical Science, Yonsei University College of Dentistry, Seoul, Korea
| | - Syng-Ill Lee
- Department of Oral Biology, Brain Korea 21 Project of Medical Science, Yonsei University College of Dentistry, Seoul, Korea
| | - Dong Min Shin
- Department of Oral Biology, Brain Korea 21 Project of Medical Science, Yonsei University College of Dentistry, Seoul, Korea
| | - Heung-Kyu Son
- Department of Pedodontics, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
21
|
Oishi Y, Arakawa T, Tanimura A, Itakura M, Takahashi M, Tajima Y, Mizoguchi I, Takuma T. Role of VAMP-2, VAMP-7, and VAMP-8 in constitutive exocytosis from HSY cells. Histochem Cell Biol 2005; 125:273-81. [PMID: 16195891 DOI: 10.1007/s00418-005-0068-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2005] [Indexed: 11/25/2022]
Abstract
We evaluated the role of VAMP-2/synaptobrevin, VAMP-7/TI-VAMP, and VAMP-8/endobrevin in exocytic pathways of HSY cells, a human parotid epithelial cell line, by coexpressing these VAMP proteins tagged with green fluorescent protein (GFP) and human growth hormone (hGH) as a secretory cargo. Exocytosis of hGH was constitutive and the fluorescent signal of hGH-GFP was observed in the Golgi area and small vesicles quickly moving throughout the cytoplasm. The cytoplasmic vesicles containing hGH overlapped well with VAMP-7-GFP, but did so scarcely with VAMP-2-GFP or VAMP-8-GFP. However, when the vesicle transport from the trans-Golgi network to the plasma membrane was arrested by incubation at 20 degrees C for 2 h and then released by warming up to 37 degrees C; VAMP-2-GFP and hGH were clearly colocalized together in small cytoplasmic vesicles. Neither VAMP-7-GFP nor hGH-GFP was colocalized with LAMP-1, a marker for lysosomes and late endosomes. These results suggest that (1) VAMP-2 can be one of the v-SNAREs for constitutive exocytosis; (2) VAMP-7 is involved in the constitutive exocytosis as a slow, minor v-SNARE, but not in the lysosomal transport; and (3) VAMP-8 is unlikely to be a v-SNARE for constitutive exocytosis in HSY cells.
Collapse
Affiliation(s)
- Yohei Oishi
- Department of Oral Biochemistry, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido, 061-0293 Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fukuda M, Imai A, Nashida T, Shimomura H. Slp4-a/granuphilin-a interacts with syntaxin-2/3 in a Munc18-2-dependent manner. J Biol Chem 2005; 280:39175-84. [PMID: 16186111 DOI: 10.1074/jbc.m505759200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Slp4-a/granuphilin-a was originally described as a protein specifically associated with insulin-containing granules in pancreatic beta-cells, but it was subsequently found to be present on amylase-containing granules in parotid acinar cells. Although Slp4-a has been suggested to control insulin secretion through interaction with syntaxin-1a and/or Munc18-1, nothing is known about the binding partner(s) of Slp4-a during amylase release from parotid acinar cells, which do not endogenously express either syntaxin-1a or Munc18-1. In this study we systematically investigated the interaction between syntaxin-1-5 and Munc18-1-3 by co-immunoprecipitation assay using COS-7 cells and discovered that Slp4-a interacts with a closed conformation of syntaxin-2/3 in a Munc18-2-dependent manner, whereas Munc18-2 itself hardly interacts with Slp4-a at all. By contrast, Slp4-a was found to strongly interact with Munc18-1 regardless of the presence of syntaxin-2/3, and syntaxin-2/3 co-immunoprecipitated with Slp4-a only in the presence of Munc18-1/2. Deletion analysis showed that the syntaxin-2/3 (or Munc18-1/2)-binding site is a linker domain of Slp4-a (amino acid residues 144-354), a previously uncharacterized region located between the N-terminal Rab27A binding domain and the C2A domain. We also found that the Slp4-a.syntaxin-2 complex is actually present in rat parotid glands and that introduction of the antibody against Slp4-a linker domain into streptolysin O-permeabilized parotid acinar cells severely attenuates isoproterenol-stimulated amylase release, possibly by disrupting the interaction between Slp4-a and syntaxin-2/3 (or Munc18-2). These results suggest that Slp4-a modulates amylase release from parotid acinar cells through interaction with syntaxin-2/3 on the apical plasma membrane.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Fukuda Initiative Research Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
23
|
Imai A, Nashida T, Shimomura H. Roles of Munc18-3 in amylase release from rat parotid acinar cells. Arch Biochem Biophys 2004; 422:175-82. [PMID: 14759605 DOI: 10.1016/j.abb.2003.12.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/12/2003] [Indexed: 12/16/2022]
Abstract
Several "soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor" (SNARE) proteins have been identified in rat parotid acinar cells, including VAMP-2, syntaxin 4, and SNAP-23. Furthermore, an association between Munc18c (Munc18-3) and syntaxin 4 has been reported. However, the role of Munc18-3 in secretory granule exocytosis on parotid acinar cells remains unclear. In the present study, we investigated the role of Munc18-3 in rat parotid acinar cells. Munc18-3 was localized on the apical plasma membrane where exocytosis occurs and interacted with syntaxin 4. Anti-Munc18-3 antibody dose-dependently decreased isoproterenol (IPR)-induced amylase release from SLO-permeabilized parotid acinar cells. Furthermore, stimulation of the acinar cells with IPR induced translocation of Munc18-3 from the plasma membrane to the cytosol. Munc-18-3 was not phosphorylated by a catalytic subunit of protein kinase (PK) A but phosphorylated by PKC. Treatment of the plasma membrane with PKC but not PKA induced displacement of Munc18-3 from the membrane. The results indicate that Munc18-3 regulates exocytosis in the acinar cells for IPR-induced amylase release and that phosphorylation of Munc18-3 by PKA is not involved in the mechanism.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, School of Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Niigata 951-8580, Japan.
| | | | | |
Collapse
|
24
|
Imai A, Nashida T, Yoshie S, Shimomura H. Intracellular localisation of SNARE proteins in rat parotid acinar cells: SNARE complexes on the apical plasma membrane. Arch Oral Biol 2003; 48:597-604. [PMID: 12828989 DOI: 10.1016/s0003-9969(03)00116-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Intracellular localisation of soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptors (SNAREs) is an important factor in clarifying whether SNAREs regulate exocytosis in salivary glands. We investigated intracellular localisation of syntaxins 2, 3 and 4 and SNAP-23, which are thought to be target membrane (t)-SNAREs, in rat parotid gland by Western blotting and immunocytochemistry. Syntaxins 2 and 3 were localised in the apical plasma membrane (APM), and syntaxin 4 was localised in the plasma membrane. SNAP-23 was localised in the APM and intracellular membrane (ICM). In a yeast two-hybrid assay, syntaxins 2, 3 and 4 interacted with SNAP-23 and VAMP-3. Using immunoprecipitation methods, syntaxins 3 and 4 were seen to interact with VAMP-8 and SNAP-23 at the APM, respectively. SNAP-23 interacted with syntaxin 3, syntaxin 4, VAMP-2, VAMP-3 and VAMP-8. Many SNARE complexes were detected under non-stimulated/basic conditions in the parotid APM. Some of these complexes may have a role in exocytosis from parotid acinar cells.
Collapse
Affiliation(s)
- Akane Imai
- Department of Biochemistry, School of Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Niigata 951-8580, Japan.
| | | | | | | |
Collapse
|
25
|
Abstract
This article provides a review of the application of gene transfer technology to studies of salivary glands. Salivary glands provide an uncommon target site for gene transfer but offer many experimental situations likely of interest to the cell biologist. The reader is provided with a concise overview of salivary biology, along with a general discussion of the strategies available for gene transfer to any tissue. In particular, adenoviral vectors have been useful for proof of concept studies with salivary glands. Several examples are given, using adenoviral-mediated gene transfer, for addressing both biological and clinical questions. Additionally, benefits and shortcomings affecting the utility of this technology are discussed.
Collapse
Affiliation(s)
- Bruce J Baum
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
26
|
Affiliation(s)
- R James Turner
- Membrane Biology Section, Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda 20892-1190, USA.
| | | |
Collapse
|
27
|
Imai A, Nashida T, Shimomura H. mRNA expression of membrane-fusion-related proteins in rat parotid gland. Arch Oral Biol 2001; 46:955-62. [PMID: 11451410 DOI: 10.1016/s0003-9969(01)00048-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The soluble N-ethylmaleimide-sensitive fusion (NSF) attachment protein (SNAP) receptor (SNARE) hypothesis has been applied to exocytosis in salivary glands. The expression of SNARE proteins has not been well investigated in the parotid gland. In this study, the mRNA expression of SNAREs and membrane-fusion-related proteins were investigated in the rat parotid by reverse transcriptase-polymerase chain reaction (RT-PCR). All syntaxins except syntaxin 1, and the vesicle-associated membrane proteins (VAMP) except VAMP-7, NSF, SNAP-23 and alpha-SNAP, were expressed for the SNAREs in rat parotid. Synaptotagmins 3, 4 and 11, Munc18s (1, 2 and 3), syncollin, prenylated Rab acceptor (PRA1), zygin 1, pantophysin and cellugyrin, which are the other membrane-fusion-related proteins, were also detected, but neither Rim nor rabphilin 3A, which have high specificity of binding to Rab 3A, were found. mRNA expressions of many SNAREs and of the membrane-fusion-proteins suggest novel interactions for the regulation of salivary exocytosis.
Collapse
Affiliation(s)
- A Imai
- Department of Oral Biochemistry, School of Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Niigata 951-8580, Japan.
| | | | | |
Collapse
|