1
|
SV40 Transfected Human Anterior Cruciate Ligament Derived Ligamentocytes-Suitable as a Human in Vitro Model for Ligament Reconstruction? Int J Mol Sci 2020; 21:ijms21020593. [PMID: 31963350 PMCID: PMC7014138 DOI: 10.3390/ijms21020593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Cultured human primary cells have a limited lifespan undergoing dedifferentiation or senescence. Anterior cruciate ligaments (ACL) are hypocellular but tissue engineering (TE) requires high cell numbers. Simian virus (SV) 40 tumor (T) antigen expression could extend the lifespan of cells. This study aimed to identify cellular changes induced by SV40 expression in human ACL ligamentocytes by comparing them with non-transfected ligamentocytes and tissue of the same donor to assess their applicability as TE model. Human ACL ligamentocytes (40-year-old female donor after ACL rupture) were either transfected with a SV40 plasmid or remained non-transfected (control) before monitored for SV40 expression, survival, and DNA content. Protein expression of cultured ligamentocytes was compared with the donor tissue. Ligamentocyte spheroids were seeded on scaffolds embroidered either from polylactic acid (PLA) threads solely or combined PLA and poly (L-lactide-co-ε-caprolactone) (P(LA-CL)) threads. These scaffolds were further functionalized with fluorination and fibrillated collagen foam. Cell distribution and survival were monitored for up to five weeks. The transfected cells expressed the SV40 antigen throughout the entire observation time, but often exhibited random and incomplete cell divisions with significantly more dying cells, significantly more DNA and more numerous nucleoli than controls. The expression profile of non-transfected and SV40-positive ligamentocytes was similar. In contrast to controls, SV40-positive cells formed larger spheroids, produced less vimentin and focal adhesions and died on the scaffolds after 21 d. Functionalized scaffolds supported human ligamentocyte growth. SV40 antigen expressing ligamentocytes share many properties with their non-transfected counterparts suggesting them as a model, however, applicability for TE is limited.
Collapse
|
2
|
Implications of cultured periodontal ligament cells for the clinical and experimental setting: a review. Arch Oral Biol 2011; 56:933-43. [PMID: 21470594 DOI: 10.1016/j.archoralbio.2011.03.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 02/08/2011] [Accepted: 03/06/2011] [Indexed: 01/17/2023]
Abstract
The periodontal ligament (PDL) is a key contributor to the process of regeneration of the periodontium. The heterogeneous nature of the PDL tissue, its development during early adulthood, and the different conditions to which the PDL tissue is exposed to in vivo impart on the PDL unique characteristics that may be of consequence during its cultivation in vitro. Several factors affecting the in vivo setting influence the behaviour of PDL fibroblasts in culture. The purpose of this review is to address distinct factors that influence the behaviour of PDL fibroblasts in culture -in vivo-in vitro transitions, cell identification/isolation markers, primary PDL cultures and cell lines, tooth-specific factors, and donor-specific factors. Based on the reviewed studies, the authors recommendations include the use of several identification markers to confirm cell identity, use of primary cultures at early passage to maintain unique PDL heterogeneic characteristics, and noting donor conditions such as age, systemic health status, and tooth health status. Continued efforts will expand our understanding of the in vitro and in vivo behaviour of cells, with the goal of orchestrating optimal periodontal regeneration. This understanding will lead to improved evidence-based rationales for more individualized and predictable periodontal regenerative therapies.
Collapse
|
3
|
Hughes FJ, Ghuman M, Talal A. Periodontal regeneration: a challenge for the tissue engineer? Proc Inst Mech Eng H 2010; 224:1345-58. [PMID: 21287824 DOI: 10.1243/09544119jeim820] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Periodontitis affects around 15 per cent of human adult populations. While periodontal treatment aimed at removing the bacterial cause of the disease is generally very successful, the ability predictably to regenerate the damaged tissues remains a major unmet objective for new treatment strategies. Existing treatments include the use of space-maintaining barrier membranes (guided tissue regeneration), use of graft materials, and application of bioactive molecules to induce regeneration, but their overall effects are relatively modest and restricted in application. The periodontal ligament is rich in mesenchymal stem cells, and the understanding of the signalling molecules that may regulate their differentation has increased enormously in recent years. Applying these principles for the development of new tissue engineering strategies for periodontal regeneration will require further work to determine the efficacy of current experimental preclinical treatments, including pharmacological application of growth factors such as bone morphogenetic proteins (BMPs) or Wnts, use of autologous stem cell reimplantation strategies, and development of improved biomaterial scaffolds. This article describes the background to this problem, addresses the current status of periodontal regeneration, including the background biology, and discusses the potential for some of these experimental therapies to achieve the goal of clinically predictable periodontal regeneration.
Collapse
Affiliation(s)
- F J Hughes
- Department of Periodontology, Institute of Dentistry, Kings College London, London, UK.
| | | | | |
Collapse
|
4
|
Ibi M, Ishisaki A, Yamamoto M, Wada S, Kozakai T, Nakashima A, Iida J, Takao S, Izumi Y, Yokoyama A, Tamura M. Establishment of cell lines that exhibit pluripotency from miniature swine periodontal ligaments. Arch Oral Biol 2007; 52:1002-8. [PMID: 17543882 DOI: 10.1016/j.archoralbio.2007.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 12/04/2006] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The periodontal ligament (PDL) is a fibrous connective tissue composed of heterogeneous cell types, including PDL fibroblasts. It is not clear whether cells within the PDL fibroblast population retain the potency to differentiate into other cell types. DESIGN In the present study, clonal cell lines, derived from Clawn miniature swine PDLs, were established by gene transfection for a human telomerase reverse transcriptase, and characterized. RESULTS These cell lines, denoted TesPDL1-4, had PDL fibroblasts that showed fibroblastic morphology and expressed procollagen alpha1(I), osteopontin, periostin and alkaline phosphatase mRNA. Under the specific culture conditions, TesPDL3 cells also have the ability to express CD31, vascular endothelial cadherin, von Willebrand factor, osteocalcin, and to form extracellular mineralized nodules. CONCLUSIONS Our data indicate that TesPDL3 cells have unique properties of expressing several phenotype of fibroblasts, vascular endothelial cells and osteoblasts in cultures.
Collapse
Affiliation(s)
- Miho Ibi
- Department of Oral Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, North 13, West 7, Sapporo 060-8586, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pi SH, Lee SK, Hwang YS, Choi MG, Lee SK, Kim EC. Differential expression of periodontal ligament-specific markers and osteogenic differentiation in human papilloma virus 16-immortalized human gingival fibroblasts and periodontal ligament cells. J Periodontal Res 2007; 42:104-13. [PMID: 17305867 DOI: 10.1111/j.1600-0765.2006.00921.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament cells and gingival fibroblasts are important in the remodeling of periodontal tissue, but human papilloma virus (HPV)16-immortalized cell lines derived from human periodontal ligament cells and gingival fibroblasts has not been characterized. The purpose of this study was to establish and differentially characterize the immortalized cell lines from gingival fibroblasts and periodontal ligament by HPV16 transfection. MATERIAL AND METHODS Cell growth, cell cycle analysis, western blot for cell cycle regulatory proteins and osteogenic differentiation markers, and reverse transcription-polymerase chain reaction for periodontal ligament-specific markers were performed. RESULTS Both immortalized cell lines (immortalized gingival fibroblasts and immortalized periodontal ligament cells) grew faster than primary cultured gingival fibroblasts or periodontal ligament cells. Immortalized gingival fibroblasts and immortalized periodontal ligament cells overexpressed proteins p16 and p21, and exhibited degradation of proteins pRb and p53, which normally cause cell cycle arrest in G2/M-phase. Western blotting and reverse transcription-polymerase chain reaction for periodontal ligament-specific and osteogenic differentiation marker studies demonstrated that a cell line, designated IPDL, mimicked periodontal ligament gene expression for alkaline phosphatase, osteonectin, osteopontin, bone sialoprotein, bone morphogenic protein-2, periostin, S-100A4 and PDLs17. CONCLUSION These results indicate that IPDL and immortalized gingival fibroblast cell lines consistently retain normal periodontal ligament and gingival fibroblast phenotypes, respectively, and periodontal ligament markers and osteogenic differentiation in IPDL are distinct from immortalized gingival fibroblast cells.
Collapse
Affiliation(s)
- S-H Pi
- Department of Periodontology, College of Dentistry, Wonkwang University, Iksan, Korea
| | | | | | | | | | | |
Collapse
|
6
|
Fujita T, Otsuka-Tanaka Y, Tahara H, Ide T, Abiko Y, Mega JI. Establishment of immortalized clonal cells derived from periodontal ligament cells by induction of the hTERT gene. J Oral Sci 2005; 47:177-84. [PMID: 16415561 DOI: 10.2334/josnusd.47.177] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Since the periodontal ligament (PDL) contains a heterogeneous cell population, it is challenging to identify all cell types within the tissue and to determine whether they function alone to produce tissue components or interact with other cell types. Further, it is difficult to isolate and expand single cell clones from PDL cells, as normal cells have a limited life span and are phenotypically unstable. In the present study, we inserted the human telomerase reverse transcriptase (hTERT) gene, which encodes the catalytic subunit of the telomerase holoenzyme, into normal human periodontal ligament (HPL) cells and successfully obtained single cell clones. Expression of the inserted gene and telomerase activity in each of the clones was confirmed. Unlike the original HPL cells, at the end of the study (day 120), clone populations continued to actively double without phenotypic alteration. Osteogenic characteristics were present in some but not all clones. In conclusion, immortalization of HPL cells was successfully accomplished by transduction with the hTERT gene. This is the first report of immortalization of different cell types derived from PDL.
Collapse
Affiliation(s)
- Tomohisa Fujita
- Department of Dentistry for the Disabled, Nihon University School of Dentistry at Matsudo, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Kubota M, Chiba M, Obinata M, Ueda S, Mitani H. Establishment of Periodontal Ligament Cell Lines from Temperature-Sensitive Simian Virus 40 Large T-antigen Transgenic Rats. Cytotechnology 2004; 44:55-65. [PMID: 19003229 PMCID: PMC3449499 DOI: 10.1023/b:cyto.0000043412.08814.80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Orthodontic tooth movement is controlled by various cell types in the periodontal ligament (PDL). Mechanical stresses, such as orthodontic force, are thought to induce differentiation of the mesenchymal cells in the PDL into osteoblasts and cementoblasts. The details of the process of differentiation, however, are not known, in part because adequate in vitro systems for their study do not yet exist. The purpose of this study was to establish and characterize immortalized PDL cell lines derived from the PDL of transgenic rats harboring the temperature-sensitive simian virus 40 T-antigen gene (TG rats). The PDL was removed from the molar roots of TG rats and incubated in tissue culture. Outgrowth cells from the PDL explant were passaged and cloned, depending on the shape of the colonies formed. The cell lines thus established were analyzed by reverse transcription-polymerase chain reaction for expression of type-I collagen, osteopontin, fibronectin, alkaline phosphatase (bone type), bone sialoprotein, the receptor activator of NF-kappa B ligand, and osteoprotegerin. In addition, the capacity for formation of mineralized nodules was assessed by incubating cells in calcification-promoting medium at 37 degrees C. A total of 15 stable cell lines were successfully established and characterized. These cell lines were classified into six groups based on their pattern of gene expression at 33 degrees C. Moreover, three of these clones were capable of forming calcified nodules. In conclusion, differential gene expression was demonstrated in 15 established PDL cell lines. Some cells had the potential to differentiate into cell types found in mineralized tissues, such as osteoblasts and cementoblasts, as well as cells expressing molecules that regulate osteoclast differentiation.
Collapse
|
8
|
Kuru L, Parkar MH, Griffiths GS, Olsen I. Flow cytometry analysis of guided tissue regeneration-associated human periodontal cells. J Periodontol 2001; 72:1016-24. [PMID: 11525432 DOI: 10.1902/jop.2001.72.8.1016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Expanded polytetrafluoroethylene (ePTFE) barrier membranes have been widely used for guided tissue regeneration (GTR) of the human periodontal ligament (PL). However, the precise cellular and molecular events involved in the re-growth of the new tissue are still unclear. METHODS Retrieved membranes and the newly-regenerated soft tissue (RT) underlying the membranes were used to examine the cells associated with GTR compared with normal human PL and gingival cells. Flow cytometry (FCM) was used, for the first time, to analyze the spindle-shaped fibroblast-like cells which were adherent to these membranes and the cells which grew out of the RT. RESULTS The results showed that the membrane-associated (M) cells had the lowest rate of proliferation and appeared to be larger and more granular than the other types of cell. Moreover, both the M- and RT-derived cells were found to express higher levels of the extracellular matrix (ECM) proteins collagen type 1, fibronectin, tenascin, and decorin. In addition, evidence based on FCM profiles identified distinct sub-populations of GTR cells in which fibronectin expression was markedly up-regulated compared with normal PL cells and which also differed in size and granularity. CONCLUSIONS The results of this study show that cells associated with GTR barrier membranes and with the underlying tissue appear to have distinct phenotypic and functional activities consistent with the production of new periodontal connective tissue and periodontal regeneration.
Collapse
Affiliation(s)
- L Kuru
- Department of Periodontology, Eastman Dental Institute for Oral Health Care Sciences, University College London, University of London, UK
| | | | | | | |
Collapse
|
9
|
Ivanovski S, Haase HR, Bartold PM. Expression of bone matrix protein mRNAs by primary and cloned cultures of the regenerative phenotype of human periodontal fibroblasts. J Dent Res 2001; 80:1665-71. [PMID: 11597029 DOI: 10.1177/00220345010800071301] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The successful regeneration of periodontal tissues is dependent, in part, on the ability of cells to reconstitute the mineralized tissues of cementum and bone. The aim of the present study was to characterize regeneration-associated cells in terms of their ability to express mineralized tissue macromolecules. Following guided tissue regeneration, cell cultures were established from regenerating tissue, periodontal ligament, and gingiva. Additionally, these cells were transfected, and single-cell-derived clones were established. Following treatment with platelet-derived growth factor-BB and insulin-derived growth factor-1, the presence of mRNA for alkaline phosphatase, osteocalcin, bone sialoprotein, osteopontin, and bone morphogenetic proteins-2 and -4 was assessed. The three cell types expressed similar mRNA levels for alkaline phosphatase, bone morphogenetic protein-2, and bone morphogenetic protein-4, whereas the expression of osteopontin, osteocalcin, and bone sialoprotein was greater in the periodontal ligament and regenerating tissue fibroblasts compared with the gingival fibroblasts. The two growth factors did not affect the expression of any of the genes. This study has identified markers that correlate with the known ability of periodontal ligament and regenerating tissue-derived fibroblasts to facilitate regeneration of the mineralized tissues of the periodontium.
Collapse
Affiliation(s)
- S Ivanovski
- Department of Dentistry, University of Queensland, Brisbane, Australia.
| | | | | |
Collapse
|
10
|
Knowles JC, Santos JD, Monteiro FJ, Olsen I. Direct and indirect effects of P2O5 glass reinforced-hydroxyapatite composites on the growth and function of osteoblast-like cells. Biomaterials 2000; 21:1165-72. [PMID: 10817269 DOI: 10.1016/s0142-9612(00)00007-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human osteoblast-like cells were plated on hydroxyapatite and P2O5-glass reinforced hydroxyapatite composite discs. They were also cultured in the presence of media obtained by incubating the discs in the absence of cells. The effects of these direct and indirect interactions were examined by measuring cell proliferation and the expression of certain key extracellular matrix antigens. One composite was found to initially delay cell growth, while the extract of a different composite appeared to down-regulate DNA synthesis. Flow cytometry analysis showed that growth directly on the discs had little effect on collagen type I, but reduced fibronectin and osteocalcin levels. The extracts of the materials generally had less effect, although one extract obtained from the glass-reinforced hydroxyapatite significantly down-regulated fibronectin. These in vitro studies thus suggest that there were only few differences overall in the growth of the cells directly on the glass-reinforced compared with the hydroxyapatite discs and also only relatively small effects of the extracts on the cells. However, the flow cytometry results suggest that both the materials and the extracts may have a potentially important influence on connective tissue production, and that these effects are both material- and antigen-specific.
Collapse
|