1
|
Khan MA, Fares H, Ghayvat H, Brunner IC, Puthusserypady S, Razavi B, Lansberg M, Poon A, Meador KJ. A systematic review on functional electrical stimulation based rehabilitation systems for upper limb post-stroke recovery. Front Neurol 2023; 14:1272992. [PMID: 38145118 PMCID: PMC10739305 DOI: 10.3389/fneur.2023.1272992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Background Stroke is one of the most common neurological conditions that often leads to upper limb motor impairments, significantly affecting individuals' quality of life. Rehabilitation strategies are crucial in facilitating post-stroke recovery and improving functional independence. Functional Electrical Stimulation (FES) systems have emerged as promising upper limb rehabilitation tools, offering innovative neuromuscular reeducation approaches. Objective The main objective of this paper is to provide a comprehensive systematic review of the start-of-the-art functional electrical stimulation (FES) systems for upper limb neurorehabilitation in post-stroke therapy. More specifically, this paper aims to review different types of FES systems, their feasibility testing, or randomized control trials (RCT) studies. Methods The FES systems classification is based on the involvement of patient feedback within the FES control, which mainly includes "Open-Loop FES Systems" (manually controlled) and "Closed-Loop FES Systems" (brain-computer interface-BCI and electromyography-EMG controlled). Thus, valuable insights are presented into the technological advantages and effectiveness of Manual FES, EEG-FES, and EMG-FES systems. Results and discussion The review analyzed 25 studies and found that the use of FES-based rehabilitation systems resulted in favorable outcomes for the stroke recovery of upper limb functional movements, as measured by the FMA (Fugl-Meyer Assessment) (Manually controlled FES: mean difference = 5.6, 95% CI (3.77, 7.5), P < 0.001; BCI-controlled FES: mean difference = 5.37, 95% CI (4.2, 6.6), P < 0.001; EMG-controlled FES: mean difference = 14.14, 95% CI (11.72, 16.6), P < 0.001) and ARAT (Action Research Arm Test) (EMG-controlled FES: mean difference = 11.9, 95% CI (8.8, 14.9), P < 0.001) scores. Furthermore, the shortcomings, clinical considerations, comparison to non-FES systems, design improvements, and possible future implications are also discussed for improving stroke rehabilitation systems and advancing post-stroke recovery. Thus, summarizing the existing literature, this review paper can help researchers identify areas for further investigation. This can lead to formulating research questions and developing new studies aimed at improving FES systems and their outcomes in upper limb rehabilitation.
Collapse
Affiliation(s)
- Muhammad Ahmed Khan
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Hoda Fares
- Department of Electrical, Electronic, Telecommunication Engineering and Naval Architecture (DITEN), University of Genoa, Genoa, Italy
| | - Hemant Ghayvat
- Department of Computer Science, Linnaeus University, Växjö, Sweden
| | | | | | - Babak Razavi
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| | - Maarten Lansberg
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| | - Ada Poon
- Department of Electrical Engineering, Stanford University, Palo Alto, CA, United States
| | - Kimford Jay Meador
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
2
|
Matsui H, Ohnishi K, Cho SG. Skin Impedance Estimation System for Voltage-mode Electrical Stimulator with an AC Bridge Circuit. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083380 DOI: 10.1109/embc40787.2023.10340064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Neuromuscular electrical stimulation is used to improve the motor function of paralyzed limbs and prevent muscle atrophy in stroke patients. The system for electrical stimulation is broadly classified into current-mode stimulators and voltage-mode stimulators. The current-mode stimulator adjusts the amplitude of the current, whereas the amplitude of the voltage is adjusted for voltage-mode stimulators. Voltagemode stimulators have the advantage that there is little risk of burns even if the electrode is partially detached. To perform arbitrary current-mode stimulation with voltage-mode stimulators, it is necessary to generate a stimulating voltage based on the skin impedance. As a primary experiment, the frequency characteristics of the electrode-skin impedance were measured using an impedance analyzer on 6 subjects, and the frequency band in which the skin impedance is equivalent to a parallel connection between resistance and capacitance was determined. A prototype bridge circuit with a skin impedance equivalent circuit implemented was designed, assembled, and tested to estimate the skin impedances of 3 subjects. The residuals were computed from the estimated skin-impedance resistance and capacitance of the bridge circuit, and the impedance-analyzer-measured resistance and capacitance. The residuals between the estimated and measured were up to 4.4 % in the resistance component, and up to 8.2 % in the capacitance component of the skin impedance measurements by the impedance analyzer.
Collapse
|
3
|
Niu CM, Chou CH, Bao Y, Wang T, Gu L, Zhang X, Cui L, Xuan Z, Zhuang C, Li S, Chen Z, Lan N, Xie Q. A Pilot Study of Synergy-Based FES for Upper-Extremity Poststroke Rehabilitation. Neurosci Lett 2022; 780:136621. [PMID: 35395324 DOI: 10.1016/j.neulet.2022.136621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
A previous study indicated that synergy-based functional electrical stimulation (FES) may improve instantaneous upper-limb motor performance for stroke survivors. However, it remains unclear whether the improvements will sustain over time to achieve functional gains associated with a task-oriented training (TOT). This pilot study was designed to investigate whether there is any promising sign of functional benefits. A TOT protocol with repeated forward and lateral reaching movements assisted by synergy-based FES was conducted in 16 patients (9 FES, 7 Sham) with post-stroke hemiparesis. FES stimuli were applied to 7 upper-extremity muscles of elbow and shoulder during patient movements. Envelopes of stimuli were individualized by re-composing the muscle synergies extracted from a healthy subject. After a five-day training for one hour each day, synergy-based FES induced higher increases in Fugl-Meyer scores (6.67±5.20) than did the Sham (2.00±2.38, p<0.05). Peak velocity of forward reaching movements increased with a slope 73% steeper in FES group than Sham. In lateral reaching movements, the change in synergy similarity correlated with the change in elbow flexion for the FES group, but not the Sham group. Our results indicate that synergy-based FES therapy induced clinically traceable signs of improvements in poststroke motor performance. The muscle activation in patients also showed promising sign of alteration by FES. Results suggest that a larger scale clinical trial of synergy-based FES may be feasible towards an individualized therapeutic regimen.
Collapse
Affiliation(s)
- Chuanxin M Niu
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Laboratory of Neurorehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chih-Hong Chou
- Laboratory of Neurorehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Bao
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tong Wang
- Laboratory of Neurorehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Gu
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Zhang
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijun Cui
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Xuan
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Zhuang
- Laboratory of Neurorehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Si Li
- Laboratory of Neurorehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi Chen
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Lan
- Laboratory of Neurorehabilitation Engineering, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Hadjiosif AM, Branscheidt M, Anaya MA, Runnalls KD, Keller J, Bastian AJ, Celnik PA, Krakauer JW. Dissociation between abnormal motor synergies and impaired reaching dexterity after stroke. J Neurophysiol 2022; 127:856-868. [PMID: 35108107 PMCID: PMC8957333 DOI: 10.1152/jn.00447.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
Most patients with stroke experience motor deficits, usually referred to collectively as hemiparesis. Although hemiparesis is one of the most common and clinically recognizable motor abnormalities, it remains undercharacterized in terms of its behavioral subcomponents and their interactions. Hemiparesis comprises both negative and positive motor signs. Negative signs consist of weakness and loss of motor control (dexterity), whereas positive signs consist of spasticity, abnormal resting posture, and intrusive movement synergies (abnormal muscle co-activations during voluntary movement). How positive and negative signs interact, and whether a common mechanism generates them, remains poorly understood. Here, we used a planar, arm-supported reaching task to assess poststroke arm dexterity loss, which we compared with the Fugl-Meyer stroke scale; a measure primarily reflecting abnormal synergies. We examined 53 patients with hemiparesis after a first-time ischemic stroke. Reaching kinematics were markedly more impaired in patients with subacute (<3 mo) compared to chronic (>6 mo) stroke even for similar Fugl-Meyer scores. This suggests a dissociation between abnormal synergies (reflected in the Fugl-Meyer scale) and loss of dexterity, which in turn suggests different underlying mechanisms. Moreover, dynamometry suggested that Fugl-Meyer scores capture weakness as well as abnormal synergies, in line with these two deficits sharing a neural substrate. These findings have two important implications: First, clinical studies that test for efficacy of rehabilitation interventions should specify which component of hemiparesis they are targeting and how they propose to measure it. Metrics used widely for this purpose may not always be chosen appropriately. For example, as we show here, the Fugl-Meyer score may capture some hemiparesis components (abnormal synergies and weakness) but not others (loss of dexterity). Second, there may be an opportunity to design rehabilitation interventions to address specific subcomponents of hemiparesis.NEW & NOTEWORTHY Motor impairment is common after stroke and comprises reduced dexterity, weakness, and abnormal muscle synergies. Here we report that, when matched on an established synergy and weakness scale (Fugl-Meyer), patients with subacute stroke have worse reaching dexterity than chronic ones. This result suggests that the components of hemiparesis are dissociable and have separable mechanisms and, thus, may require distinct assessments and treatments.
Collapse
Affiliation(s)
- Alkis M Hadjiosif
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Meret Branscheidt
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
- Cereneo Center for Research and Neurorehabilitation, Weggis, Switzerland
| | - Manuel A Anaya
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | - Keith D Runnalls
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | | | - Amy J Bastian
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
- Kennedy Krieger Institute, Baltimore, Maryland
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland
- Santa Fe Institute, Santa Fe, New Mexico
| |
Collapse
|
5
|
Neuromuscular Stimulation as an Intervention Tool for Recovery from Upper Limb Paresis after Stroke and the Neural Basis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuromodulators at the periphery, such as neuromuscular electrical stimulation (NMES), have been developed as add-on tools to regain upper extremity (UE) paresis after stroke, but this recovery has often been limited. To overcome these limits, novel strategies to enhance neural reorganization and functional recovery are needed. This review aims to discuss possible strategies for enhancing the benefits of NMES. To date, NMES studies have involved some therapeutic concerns that have been addressed under various conditions, such as the time of post-stroke and stroke severity and/or with heterogeneous stimulation parameters, such as target muscles, doses or durations of treatment and outcome measures. We began by identifying factors sensitive to NMES benefits among heterogeneous conditions and parameters, based on the “progress rate (PR)”, defined as the gains in UE function scores per intervention duration. Our analysis disclosed that the benefits might be affected by the target muscles, stroke severity and time period after stroke. Likewise, repetitive peripheral neuromuscular magnetic stimulation (rPMS) is expected to facilitate motor recovery, as already demonstrated by a successful study. In parallel, our efforts should be devoted to further understanding the precise neural mechanism of how neuromodulators make UE function recovery occur, thereby leading to overcoming the limits. In this study, we discuss the possible neural mechanisms.
Collapse
|
6
|
Kim DH, Jang SH. Effects of Mirror Therapy Combined with EMG-Triggered Functional Electrical Stimulation to Improve on Standing Balance and Gait Ability in Patient with Chronic Stroke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:3721. [PMID: 33918288 PMCID: PMC8038158 DOI: 10.3390/ijerph18073721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
This study was performed to evaluate the effects of EMG-triggered functional electrical stimulation on balance and gait ability on patient with Chronic Stroke. A total of 60 chronic stroke patients were divided into mirror treatment and functional electrical (MT-EF) Group, MT group, CON group. Each group performed 60 min a day five times a week for eight weeks. MT-FE group was performed 30 min five times a week for eight weeks in mirror therapy process with EMG-FES. MT group performed 30 min five times a week for eight weeks in mirror therapy process. CON group was performed 30 min five times a week for eight weeks in conservative treatment. To measure the balance ability, Biorescue (COP, LOS), Berg balance scale (BBS) and FRT, and the gait ability test was performed by 10 m walk test. MT-FE group revealed significant differences in COP, LOS, BBS, FRT and 10 m walk test as compared to the MT and CON groups (p < 0.05). Our results showed that MT-FE was more effective on COP, LOS, BBS, FRT and 10 m walk test in patients with chronic stroke. Our results also showed that MT-EF group was more effective on balance and gait ability in patients with chronic stroke. We suggest that this study can be used for intervention data for recovering balance and gait ability in chronic stroke patients.
Collapse
Affiliation(s)
- Dong-Hoon Kim
- Department of Physical Therapy, Gimcheon University, 214, Daehak-ro, Gimcheon 39528, Korea;
| | - Sang-Hun Jang
- Department of Physical Therapy, College of Health and Life Science, Korea National University of Transportation, 61, Daehak-ro, Jeungpyeong-gun, Chungbuk 27909, Korea
| |
Collapse
|
7
|
Obayashi S, Takahashi R, Onuki M. Upper limb recovery in early acute phase stroke survivors by coupled EMG-triggered and cyclic neuromuscular electrical stimulation. NeuroRehabilitation 2020; 46:417-422. [PMID: 32310196 DOI: 10.3233/nre-203024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Few patients with severe upper extremity (UE) paresis after stroke achieved full recovery, because of the lack of a definitive approach to improve severe UE paresis immediately after onset. OBJECTIVE to investigate the effects of coupled EMG-triggered and cyclic neuromuscular electrical stimulation (NMES) on UE paresis during early acute phase of stroke. METHODS Seventeen participants with severe UE disability met the criteria. 8 subjects received 20 minutes of NMES prior to standard care per session, while 9 age- and severity-matched subjects received two times 20 minutes of standard care. Outcome measures included UE motor section of the Fugl-Meyer Motor Assessment Scale (FMA-UE), Wolf motor function test (WMFT), and box and block test (BBT). RESULTS The NMES group received treatment (average session: 10.87) after a median 7 days from stroke (16.5 sessions after 5 days for control). To adjust the different treatment durations, we defined "progress rate" as the gains of UE function scores divided by treatment duration. The progress rate was significantly different in FMA-UE, but not in WMFT and BBT. CONCLUSIONS The present study suggested beneficial effects of coupled NMES on UE paresis during early acute phase of stroke.
Collapse
Affiliation(s)
- Shigeru Obayashi
- Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Rina Takahashi
- Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| | - Mitsugu Onuki
- Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, Koshigaya, Saitama, Japan
| |
Collapse
|
8
|
Obayashi S, Takahashi R. Repetitive peripheral magnetic stimulation improves severe upper limb paresis in early acute phase stroke survivors. NeuroRehabilitation 2020; 46:569-575. [PMID: 32508342 PMCID: PMC7458515 DOI: 10.3233/nre-203085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND It is very difficult for patients with severe upper extremity (UE) paresis after stroke to achieve full recovery because of the lack of a definitive approach for improving severe UE paresis immediately after onset. OBJECTIVE to investigate the effects of repetitive peripheral magnetic stimulation (rPMS) on severe UE paresis during early acute phase of stroke. METHODS Nineteen participants with severe UE disability met the criteria. 10 subjects received 15-20 minutes of rPMS prior to standard care per session, while 9 age- and severity-matched subjects received two times 20 minutes of standard care. Outcome measures included UE motor section of the Fugl-Meyer Motor Assessment Scale (FMA-UE), Wolf motor function test (WMFT), and box and block test (BBT). RESULTS The rPMS group received treatment (average sessions: 7.8) after a median 9.2 days from stroke (16.5 sessions after 5 days for control). To adjust the different treatment durations, we defined "progress rate" as the gains of UE function scores divided by treatment duration. The progress rate was significantly different in FMA-UE and WMFT, but not in BBT. CONCLUSIONS The present study suggested beneficial effects of rPMS on severe UE paresis during early acute phase of stroke.
Collapse
Affiliation(s)
- Shigeru Obayashi
- Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Rina Takahashi
- Department of Rehabilitation Medicine, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| |
Collapse
|
9
|
Yang JD, Liao CD, Huang SW, Tam KW, Liou TH, Lee YH, Lin CY, Chen HC. Effectiveness of electrical stimulation therapy in improving arm function after stroke: a systematic review and a meta-analysis of randomised controlled trials. Clin Rehabil 2019; 33:1286-1297. [PMID: 30977379 DOI: 10.1177/0269215519839165] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the effectiveness of electrical stimulation in arm function recovery after stroke. METHODS Data were obtained from the PubMed, Cochrane Library, Embase, and Scopus databases from their inception until 12 January 2019. Only randomized controlled trials (RCTs) reporting the effects of electrical stimulation on the recovery of arm function after stroke were selected. RESULTS Forty-eight RCTs with a total of 1712 patients were included in the analysis. The body function assessment, Upper-Extremity Fugl-Meyer Assessment, indicated more favorable outcomes in the electrical stimulation group than in the placebo group immediately after treatment (23 RCTs (n = 794): standard mean difference (SMD) = 0.67, 95% confidence interval (CI) = 0.51-0.84) and at follow-up (12 RCTs (n = 391): SMD = 0.66, 95% CI = 0.35-0.97). The activity assessment, Action Research Arm Test, revealed superior outcomes in the electrical stimulation group than those in the placebo group immediately after treatment (10 RCTs (n = 411): SMD = 0.70, 95% CI = 0.39-1.02) and at follow-up (8 RCTs (n = 289): SMD = 0.93, 95% CI = 0.34-1.52). Other activity assessments, including Wolf Motor Function Test, Box and Block Test, and Motor Activity Log, also revealed superior outcomes in the electrical stimulation group than those in the placebo group. Comparisons between three types of electrical stimulation (sensory, cyclic, and electromyography-triggered electrical stimulation) groups revealed no significant differences in the body function and activity. CONCLUSION Electrical stimulation therapy can effectively improve the arm function in stroke patients.
Collapse
Affiliation(s)
- Jheng-Dao Yang
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei
| | - Chun-De Liao
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei.,2 School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei
| | - Shih-Wei Huang
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei.,3 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Ka-Wai Tam
- 4 Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei.,5 Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei.,6 Center for Evidence-Based Health Care, Shuang Ho Hospital, Taipei Medical University, Taipei
| | - Tsan-Hon Liou
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei.,3 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei
| | - Yu-Hao Lee
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei
| | - Chia-Yun Lin
- 7 Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei Medical University, Taipei
| | - Hung-Chou Chen
- 1 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, Taipei.,3 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei.,6 Center for Evidence-Based Health Care, Shuang Ho Hospital, Taipei Medical University, Taipei
| |
Collapse
|
10
|
Park JH. Effects of mental imagery training combined electromyogram-triggered neuromuscular electrical stimulation on upper limb function and activities of daily living in patients with chronic stroke: a randomized controlled trial. Disabil Rehabil 2019; 42:2876-2881. [DOI: 10.1080/09638288.2019.1577502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jin-Hyuck Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
11
|
Niu CM, Bao Y, Zhuang C, Li S, Wang T, Cui L, Xie Q, Lan N. Synergy-Based FES for Post-Stroke Rehabilitation of Upper-Limb Motor Functions. IEEE Trans Neural Syst Rehabil Eng 2019; 27:256-264. [DOI: 10.1109/tnsre.2019.2891004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Monte-Silva K, Piscitelli D, Norouzi-Gheidari N, Batalla MAP, Archambault P, Levin MF. Electromyogram-Related Neuromuscular Electrical Stimulation for Restoring Wrist and Hand Movement in Poststroke Hemiplegia: A Systematic Review and Meta-Analysis. Neurorehabil Neural Repair 2019; 33:96-111. [DOI: 10.1177/1545968319826053] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. Clinical trials have demonstrated some benefits of electromyogram-triggered/controlled neuromuscular electrical stimulation (EMG-NMES) on motor recovery of upper limb (UL) function in patients with stroke. However, EMG-NMES use in clinical practice is limited due to a lack of evidence supporting its effectiveness. Objective. To perform a systematic review and meta-analysis to determine the effects of EMG-NMES on stroke UL recovery based on each of the International Classification of Functioning, Disability, and Health (ICF) domains. Methods. Database searches identified clinical trials comparing the effect of EMG-NMES versus no treatment or another treatment on stroke upper extremity motor recovery. A meta-analysis was done for outcomes at each ICF domain (Body Structure and Function, Activity and Participation) at posttest (short-term) and follow-up periods. Subgroup analyses were conducted based on stroke chronicity (acute/subacute, chronic phases). Sensitivity analysis was done by removing studies rated as poor or fair quality (PEDro score <6). Results. Twenty-six studies (782 patients) met the inclusion criteria. Fifty percent of them were considered to be of high quality. The meta-analysis showed that EMG-NMES has a robust short-term effect on improving UL motor impairment in the Body Structure and Function domain. No evidence was found in favor of EMG-NMES for the Activity and Participation domain. EMG-NMES had a stronger effect for each ICF domain in chronic (≥3 months) compared to acute/subacute phases. Conclusion. EMG-NMES is effective in the short term in improving UL impairment in individuals with chronic stroke.
Collapse
Affiliation(s)
- Katia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Brazil
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
| | - Daniele Piscitelli
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
- McGill University, Montreal, Quebec, Canada
| | - Nahid Norouzi-Gheidari
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
- McGill University, Montreal, Quebec, Canada
| | - Marc Aureli Pique Batalla
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
- Maastricht University, Maastricht, Netherlands
| | - Philippe Archambault
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
- McGill University, Montreal, Quebec, Canada
| | - Mindy F. Levin
- Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, Canada
- McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
The effect of task-oriented electromyography-triggered electrical stimulation of the paretic wrist extensors on upper limb motor function early after stroke: a pilot randomized controlled trial. Int J Rehabil Res 2018; 42:74-81. [PMID: 30540619 DOI: 10.1097/mrr.0000000000000333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The combined effect of task-oriented motor training and electromyography (EMG)-triggered electrical stimulation (ES) has been examined in chronic stroke, but there are no published reports in patients with early stroke. Therefore, the purpose of this study was to determine the short-term and long-term effects of task-oriented EMG-triggered ES on upper limb motor function in acute/subacute stroke. Twenty-seven patients with stroke within the first 3 months after stroke onset were randomly allocated to an experimental group and a control group. Twenty-three patients (12 patients in the experimental group and 11 patients in the control group) completed the study. The control group received a conventional physical therapy for 20 sessions, and the experimental group received task-oriented EMG-triggered ES therapy for the wrist/finger extensors in addition to conventional physical therapy for 5 sessions a week for 4 weeks. Primary outcome measures were the Action Research Arm Test, the Brunnstrom stages of the hand/upper extremity, and the motor Functional Independence Measure. All patients were evaluated before the treatment, after the treatment, and at 3 months. The parametric and nonparametric statistics at the 5% level of significance (α=0.05) was used for testing the differences between the two groups at each main end point. At the end of the treatment, the experimental group showed significantly greater improvements in Brunnstrom stages and ARAT grasp/grip/pinch scores, but not motor Functional Independence Measure scores, when compared with the control group. The differences between the 3-months and postintervention evaluations were not significant between the two groups suggesting retention of the postintervention gains. Our results indicate that task-oriented EMG-triggered ES training may result in improvements in the paretic upper limb function in patients with acute/subacute stroke that are superior to the conventional treatment.
Collapse
|
14
|
|
15
|
Balasubramanian S, Garcia-Cossio E, Birbaumer N, Burdet E, Ramos-Murguialday A. Is EMG a Viable Alternative to BCI for Detecting Movement Intention in Severe Stroke? IEEE Trans Biomed Eng 2018; 65:2790-2797. [PMID: 29993449 DOI: 10.1109/tbme.2018.2817688] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In light of the shortcomings of current restorative brain-computer interfaces (BCI), this study investigated the possibility of using EMG to detect hand/wrist extension movement intention to trigger robot-assisted training in individuals without residual movements. METHODS We compared movement intention detection using an EMG detector with a sensorimotor rhythm based EEG-BCI using only ipsilesional activity. This was carried out on data of 30 severely affected chronic stroke patients from a randomized control trial using an EEG-BCI for robot-assisted training. RESULTS The results indicate the feasibility of using EMG to detect movement intention in this severely handicapped population; probability of detecting EMG when patients attempted to move was higher (p 0.001) than at rest. Interestingly, 22 out of 30 (or 73%) patients had sufficiently strong EMG in their finger/wrist extensors. Furthermore, in patients with detectable EMG, there was poor agreement between the EEG and EMG intent detectors, which indicates that these modalities may detect different processes. CONCLUSION A substantial segment of severely affected stroke patients may benefit from EMG-based assisted therapy. When compared to EEG, a surface EMG interface requires less preparation time, which is easier to don/doff, and is more compact in size. SIGNIFICANCE This study shows that a large proportion of severely affected stroke patients have residual EMG, which yields a direct and practical way to trigger robot-assisted training.
Collapse
|
16
|
Virtual Reality Rehabilitation With Functional Electrical Stimulation Improves Upper Extremity Function in Patients With Chronic Stroke: A Pilot Randomized Controlled Study. Arch Phys Med Rehabil 2018; 99:1447-1453.e1. [PMID: 29505744 DOI: 10.1016/j.apmr.2018.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To compare virtual reality (VR) combined with functional electrical stimulation (FES) with cyclic FES for improving upper extremity function and health-related quality of life in patients with chronic stroke. DESIGN A pilot, randomized, single-blind, controlled trial. SETTING Stroke rehabilitation inpatient unit. PARTICIPANTS Participants (N=48) with hemiplegia secondary to a unilateral stroke for >3 months and with a hemiplegic wrist extensor Medical Research Council scale score ranging from 1 to 3. INTERVENTIONS FES was applied to the wrist extensors and finger extensors. A VR-based wearable rehabilitation device was used combined with FES and virtual activity-based training for the intervention group. The control group received cyclic FES only. Both groups completed 20 sessions over a 4-week period. MAIN OUTCOME MEASURES Primary outcome measures were changes in Fugl-Meyer Assessment-Upper Extremity and Wolf Motor Function Test scores. Secondary outcome measures were changes in Box and Block Test, Jebsen-Taylor Hand Function Test, and Stroke Impact Scale scores. Assessments were performed at baseline (t0) and at 2 weeks (t1), 4 weeks (t4), and 8 weeks (t8). Between-group comparisons were evaluated using a repeated-measures analysis of variance. RESULTS Forty-one participants were included in the analysis. Compared with FES alone, VR-FES produced a substantial increase in Fugl-Meyer Assessment-distal score (P=.011) and marginal improvement in Jebsen-Taylor Hand Function Test-gross score (P=.057). VR-FES produced greater, although nonsignificant, improvements in all other outcome measures, except in the Stroke Impact Scale-activities of daily living/instrumental activities of daily living score. CONCLUSIONS FES with VR-based rehabilitation may be more effective than cyclic FES in improving distal upper extremity gross motor performance poststroke.
Collapse
|
17
|
Nussbaum EL, Houghton P, Anthony J, Rennie S, Shay BL, Hoens AM. Neuromuscular Electrical Stimulation for Treatment of Muscle Impairment: Critical Review and Recommendations for Clinical Practice. Physiother Can 2017; 69:1-76. [PMID: 29162949 PMCID: PMC5683854 DOI: 10.3138/ptc.2015-88] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: In response to requests from physiotherapists for guidance on optimal stimulation of muscle using neuromuscular electrical stimulation (NMES), a review, synthesis, and extraction of key data from the literature was undertaken by six Canadian physical therapy (PT) educators, clinicians, and researchers in the field of electrophysical agents. The objective was to identify commonly treated conditions for which there was a substantial body of literature from which to draw conclusions regarding the effectiveness of NMES. Included studies had to apply NMES with visible and tetanic muscle contractions. Method: Four electronic databases (CINAHL, Embase, PUBMED, and SCOPUS) were searched for relevant literature published between database inceptions until May 2015. Additional articles were identified from bibliographies of the systematic reviews and from personal collections. Results: The extracted data were synthesized using a consensus process among the authors to provide recommendations for optimal stimulation parameters and application techniques to address muscle impairments associated with the following conditions: stroke (upper or lower extremity; both acute and chronic), anterior cruciate ligament reconstruction, patellofemoral pain syndrome, knee osteoarthritis, and total knee arthroplasty as well as critical illness and advanced disease states. Summaries of key details from each study incorporated into the review were also developed. The final sections of the article outline the recommended terminology for describing practice using electrical currents and provide tips for safe and effective clinical practice using NMES. Conclusion: This article provides physiotherapists with a resource to enable evidence-informed, effective use of NMES for PT practice.
Collapse
Affiliation(s)
- Ethne L. Nussbaum
- Department of Physical Therapy, University of Toronto
- Toronto Rehab, University Health Network, Toronto, Ontario
| | - Pamela Houghton
- School of Physical Therapy, University of Western Ontario, London
| | - Joseph Anthony
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia
| | - Sandy Rennie
- Department of Physical Therapy, University of Toronto
- School of Physiotherapy, Dalhousie University, Halifax, Nova Scotia
| | - Barbara L. Shay
- Department of Physical Therapy, University of Manitoba, Winnipeg, Manitoba
| | - Alison M. Hoens
- School of Physical Therapy, University of Western Ontario, London
| |
Collapse
|
18
|
Prochazka A. Neurophysiology and neural engineering: a review. J Neurophysiol 2017; 118:1292-1309. [PMID: 28566462 PMCID: PMC5558026 DOI: 10.1152/jn.00149.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/19/2022] Open
Abstract
Neurophysiology is the branch of physiology concerned with understanding the function of neural systems. Neural engineering (also known as neuroengineering) is a discipline within biomedical engineering that uses engineering techniques to understand, repair, replace, enhance, or otherwise exploit the properties and functions of neural systems. In most cases neural engineering involves the development of an interface between electronic devices and living neural tissue. This review describes the origins of neural engineering, the explosive development of methods and devices commencing in the late 1950s, and the present-day devices that have resulted. The barriers to interfacing electronic devices with living neural tissues are many and varied, and consequently there have been numerous stops and starts along the way. Representative examples are discussed. None of this could have happened without a basic understanding of the relevant neurophysiology. I also consider examples of how neural engineering is repaying the debt to basic neurophysiology with new knowledge and insight.
Collapse
Affiliation(s)
- Arthur Prochazka
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
19
|
Wattchow KA, McDonnell MN, Hillier SL. Rehabilitation Interventions for Upper Limb Function in the First Four Weeks Following Stroke: A Systematic Review and Meta-Analysis of the Evidence. Arch Phys Med Rehabil 2017; 99:367-382. [PMID: 28734936 DOI: 10.1016/j.apmr.2017.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 06/14/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the therapeutic interventions reported in the research literature and synthesize their effectiveness in improving upper limb (UL) function in the first 4 weeks poststroke. DATA SOURCES Electronic databases and trial registries were searched from inception until June 2016, in addition to searching systematic reviews by hand. STUDY SELECTION Randomized controlled trials (RCTs), controlled trials, and interventional studies with pre/posttest design were included for adults within 4 weeks of any type of stroke with UL impairment. Participants all received an intervention of any physiotherapeutic or occupational therapeutic technique designed to address impairment or activity of the affected UL, which could be compared with usual care, sham, or another technique. DATA EXTRACTION Two reviewers independently assessed eligibility of full texts, and methodological quality of included studies was assessed using the Cochrane Risk of Bias Tool. DATA SYNTHESIS A total of 104 trials (83 RCTs, 21 nonrandomized studies) were included (N=5225 participants). Meta-analyses of RCTs only (20 comparisons) and narrative syntheses were completed. Key findings included significant positive effects for modified constraint-induced movement therapy (mCIMT) (standardized mean difference [SMD]=1.09; 95% confidence interval [CI], .21-1.97) and task-specific training (SMD=.37; 95% CI, .05-.68). Evidence was found to support supplementary use of biofeedback and electrical stimulation. Use of Bobath therapy was not supported. CONCLUSIONS Use of mCIMT and task-specific training was supported, as was supplementary use of biofeedback and electrical simulation, within the acute phase poststroke. Further high-quality studies into the initial 4 weeks poststroke are needed to determine therapies for targeted functional UL outcomes.
Collapse
Affiliation(s)
- Kimberley A Wattchow
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Michelle N McDonnell
- Stroke and Rehabilitation Research Group, School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia.
| | - Susan L Hillier
- School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
20
|
Abstract
[Purpose] While electromyography (EMG) biofeedback has been recently used in diverse therapeutic interventions for stroke patients, research on its effects has been lacking. Most existing studies are confined to functions of the lower extremities, and research on upper extremity functional recovery using EMG biofeedback training is limited. Therefore, this study examined the effects of training using EMG biofeedback on stroke patients' upper extremity functions. [Subjects and Methods] The subjects of this study included 30 hemiplegia patients whose disease duration was longer than six months. They were randomly divided into a control group (n=15) receiving traditional rehabilitation therapy and an experimental group (n=15) receiving both traditional rehabilitation therapy and training using EMG biofeedback. The program lasted for a total of four weeks. In order to examine the subjects' functional recovery, the author measured their upper limb function using the Fugl-Meyer Assessment and Manual Function Test, and activities of daily living using the Functional Independence Measure before and after training. [Results] A comparison of the study groups revealed that those in the experimental group experienced greater improvement in upper extremity function after training in all tests compared to the control group; however, there was no significant difference in terms of the activities of daily living between the two groups. The results of this study were as follows. [Conclusion] Thus, stroke patients receiving intensive EMG biofeedback showed more significant upper extremity functional recovery than those who only received traditional rehabilitation therapy.
Collapse
Affiliation(s)
- Ju-Hong Kim
- Department of Occupational Therapy, Howon University, Republic of Korea
| |
Collapse
|
21
|
Jeon S, Kim Y, Jung K, Chung Y. The effects of electromyography-triggered electrical stimulation on shoulder subluxation, muscle activation, pain, and function in persons with stroke: A pilot study. NeuroRehabilitation 2017; 40:69-75. [PMID: 27792019 DOI: 10.3233/nre-161391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The purpose of this study was to examine the effects of task-oriented electromyography-triggered stimulation for shoulder subluxation, muscle activation, pain and upper extremity function in hemiparetic stroke patients. METHODS Twenty participants with subacute hemiparetic stroke were recruited for this study and were randomly divided into two groups: experimental group (n = 10) and control group (n = 10). Subjects in the experimental group participated in task-oriented electromyography triggered stimulation for 30 minutes, five times a week for four weeks, whereas the control group received cyclic functional electrical stimulation for 30 minutes, five times a week for four weeks. Subjects in both groups received conventional physical therapy for four weeks (30 min/day, five times/week). Data collected included the degree of shoulder subluxation which had been confirmed by X-ray, muscle activation of the supraspinatus and posterior deltoid muscles by electromyography, pain by the Visual Analogue Scale (VAS), and hand function by the Fugl-Meyer Assessment (FMA) before and after the four week exercise period. RESULTS The results showed significant improvement in shoulder subluxation, muscle activation, and VAS results in the experimental group, compared with the control group(p < 0.05). FMA scores showed no significant differences between the two groups. CONCLUSIONS In conclusion, task-oriented electromyography-triggered stimulation improved shoulder subluxation, muscle activation, pain and upper extremity function. These results suggest that task-oriented electromyography-triggered stimulation is effective and beneficial for individuals with subacute stroke, and that further studies should be conducted on multivarious anatomical regions.
Collapse
Affiliation(s)
- Somyung Jeon
- Department of Physical Therapy, The Graduate School, Sahmyook University, Seoul, Republic of Korea
| | - Young Kim
- Department of Physical Therapy, The Graduate School, Sahmyook University, Seoul, Republic of Korea
| | - Kyoungsim Jung
- Department of Physical Therapy, The Graduate School, Sahmyook University, Seoul, Republic of Korea
| | - Yijung Chung
- Department of Physical Therapy, College of Health and Welfare, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
22
|
Eraifej J, Clark W, France B, Desando S, Moore D. Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Syst Rev 2017; 6:40. [PMID: 28245858 PMCID: PMC5331643 DOI: 10.1186/s13643-017-0435-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stroke can lead to significant impairment of upper limb function which affects performance of activities of daily living (ADL). Functional electrical stimulation (FES) involves electrical stimulation of motor neurons such that muscle groups contract and create or augment a moment about a joint. Whilst lower limb FES was established in post-stroke rehabilitation, there is a lack of clarity on the effectiveness of upper limb FES. This systematic review aims to evaluate the effectiveness of post-stroke upper limb FES on ADL and motor outcomes. METHODS Systematic review of randomised controlled trials from MEDLINE, PsychINFO, EMBASE, CENTRAL, ISRCTN, ICTRP and ClinicalTrials.gov. Citation checking of included studies and systematic reviews. Eligibility criteria: participants > 18 years with haemorrhagic/ischaemic stroke, intervention group received upper limb FES plus standard care, control group received standard care. Outcomes were ADL (primary), functional motor ability (secondary) and other motor outcomes (tertiary). Quality assessment using GRADE (Grading of Recommendations Assessment, Development and Evaluation) criteria. RESULTS Twenty studies were included. No significant benefit of FES was found for objective ADL measures reported in six studies (standardised mean difference (SMD) 0.64; 95% Confidence Interval (CI) [-0.02, 1.30]; total participants in FES group (n) = 67); combination of all ADL measures was not possible. Analysis of three studies where FES was initiated on average within 2 months post-stroke showed a significant benefit of FES on ADL (SMD 1.24; CI [0.46, 2.03]; n = 32). In three studies where FES was initiated more than 1 year after stroke, no significant ADL improvements were seen (SMD -0.10; CI [-0.59, 0.38], n = 35). Quality assessment using GRADE found very low quality evidence in all analyses due to heterogeneity, low participant numbers and lack of blinding. CONCLUSIONS FES is a promising therapy which could play a part in future stroke rehabilitation. This review found a statistically significant benefit from FES applied within 2 months of stroke on the primary outcome of ADL. However, due to the very low (GRADE) quality evidence of these analyses, firm conclusions cannot be drawn about the effectiveness of FES or its optimum therapeutic window. Hence, there is a need for high quality large-scale randomised controlled trials of upper limb FES after stroke. TRIAL REGISTRATION PROSPERO: CRD42015025162 , Date:11/08/2015.
Collapse
Affiliation(s)
- John Eraifej
- School of Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - William Clark
- School of Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Benjamin France
- School of Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sebastian Desando
- School of Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - David Moore
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
23
|
Hatem SM, Saussez G, Della Faille M, Prist V, Zhang X, Dispa D, Bleyenheuft Y. Rehabilitation of Motor Function after Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery. Front Hum Neurosci 2016; 10:442. [PMID: 27679565 PMCID: PMC5020059 DOI: 10.3389/fnhum.2016.00442] [Citation(s) in RCA: 433] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/18/2016] [Indexed: 12/27/2022] Open
Abstract
Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.
Collapse
Affiliation(s)
- Samar M Hatem
- Physical and Rehabilitation Medicine, Brugmann University HospitalBrussels, Belgium; Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de LouvainBrussels, Belgium; Faculty of Medicine and Pharmacy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit BrusselBrussels, Belgium
| | - Geoffroy Saussez
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| | - Margaux Della Faille
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| | - Vincent Prist
- Physical and Rehabilitation Medicine, Centre Hospitalier de l'Ardenne Libramont, Belgium
| | - Xue Zhang
- Movement Control and Neuroplasticity Research Group, Motor Control Laboratory, Department of Kinesiology, Katholieke Universiteit Leuven Leuven, Belgium
| | - Delphine Dispa
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de LouvainBrussels, Belgium; Physical Medicine and Rehabilitation, Cliniques Universitaires Saint-Luc, Université Catholique de LouvainBrussels, Belgium
| | - Yannick Bleyenheuft
- Systems and Cognitive Neuroscience, Institute of Neuroscience, Université Catholique de Louvain Brussels, Belgium
| |
Collapse
|
24
|
Kwakkel G, Winters C, van Wegen EEH, Nijland RHM, van Kuijk AAA, Visser-Meily A, de Groot J, de Vlugt E, Arendzen JH, Geurts ACH, Meskers CGM. Effects of Unilateral Upper Limb Training in Two Distinct Prognostic Groups Early After Stroke. Neurorehabil Neural Repair 2016; 30:804-16. [DOI: 10.1177/1545968315624784] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background and Objective. Favorable prognosis of the upper limb depends on preservation or return of voluntary finger extension (FE) early after stroke. The present study aimed to determine the effects of modified constraint-induced movement therapy (mCIMT) and electromyography-triggered neuromuscular stimulation (EMG-NMS) on upper limb capacity early poststroke. Methods. A total of 159 ischemic stroke patients were included: 58 patients with a favorable prognosis (>10° of FE) were randomly allocated to 3 weeks of mCIMT or usual care only; 101 patients with an unfavorable prognosis were allocated to 3-week EMG-NMS or usual care only. Both interventions started within 14 days poststroke, lasted up until 5 weeks, focused at preservation or return of FE. Results. Upper limb capacity was measured with the Action Research Arm Test (ARAT), assessed weekly within the first 5 weeks poststroke and at postassessments at 8, 12, and 26 weeks. Clinically relevant differences in ARAT in favor of mCIMT were found after 5, 8, and 12 weeks poststroke (respectively, 6, 7, and 7 points; P < .05), but not after 26 weeks. We did not find statistically significant differences between mCIMT and usual care on impairment measures, such as the Fugl-Meyer assessment of the arm (FMA-UE). EMG-NMS did not result in significant differences. Conclusions. Three weeks of early mCIMT is superior to usual care in terms of regaining upper limb capacity in patients with a favorable prognosis; 3 weeks of EMG-NMS in patients with an unfavorable prognosis is not beneficial. Despite meaningful improvements in upper limb capacity, no evidence was found that the time-dependent neurological improvements early poststroke are significantly influenced by either mCIMT or EMG-NMS.
Collapse
Affiliation(s)
- Gert Kwakkel
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Amsterdam Rehabilitation Research Center, Reade, Amsterdam, The Netherlands
| | - Caroline Winters
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Erwin E. H. van Wegen
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | - Anne Visser-Meily
- Brain Center Rudolf Magnus and Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jurriaan de Groot
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Erwin de Vlugt
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - J. Hans Arendzen
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander C. H. Geurts
- Department of Rehabilitation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel G. M. Meskers
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
25
|
|
26
|
Barreca S, Wolf SL, Fasoli S, Bohannon R. Treatment Interventions for the Paretic Upper Limb of Stroke Survivors: A Critical Review. Neurorehabil Neural Repair 2016; 17:220-6. [PMID: 14677218 DOI: 10.1177/0888439003259415] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite a threefold increase in treatment interventions studies during the past 10 years, “best practice” for the rehabilitation of the paretic upper limb is still unclear. This review aims to lessen uncertainty in the management of the poststroke upper limb. Two separate searches of the scientific literature from 1966-2001 yielded 333 articles. Three referees, using strict inclusion and exclusion criteria, selected 68 relevant references. Cohort studies, randomized control trials, and systematic reviews were critically appraised. Mean randomized control trial quality (n = 33) was 17.1/27 (SD = 5.2, 95% CI = 15.2–19.0, range = 6–26). Mean quality of cohort studies (n = 29) was 11.8/27 (SD = 3.8, 95% CI = 10.4–13.2, range = 4–19). Quantitative syntheses were done using theZ -statistic. This systematic review indicated that sensorimotor training; motor learning training that includes the use of imagery, electrical stimulation alone, or combined with biofeedback; and engaging the client in repetitive, novel tasks can be effective in reducing motor impairment after stroke. Furthermore, careful handling, electrical stimulation, movement with elevation, strapping, and the avoidance of overhead pulleys could effectively reduce or prevent pain in the paretic upper limb. Rehabilitation specialists can use this research synthesis to guide their selection of effective treatment techniques for persons with impairments after stroke.
Collapse
Affiliation(s)
- Susan Barreca
- Hamilton Health Sciences, School of Rehabilitation Science, McMaster University, Rehabilitation and Orthopedic Services, Holbrook 1, Chedoke, Hamilton, Ontario, Canada, L8M 3Z5.
| | | | | | | |
Collapse
|
27
|
Higgins J, Salbach NM, Wood-Dauphinee S, Richards CL, Côté R, Mayo NE. The effect of a task-oriented intervention on arm function in people with stroke: a randomized controlled trial. Clin Rehabil 2016; 20:296-310. [PMID: 16719028 DOI: 10.1191/0269215505cr943oa] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective: To evaluate the efficacy of a task-oriented intervention in enhancing arm function in people with stroke. Design: Two-centre, observer-blinded, stratified, block-randomized controlled trial. Setting: General community. Patients: Ninety-one individuals within one year of a first or recurrent stroke consented to participate between May 2000 and February 2003. Interventions: The experimental intervention involved practice of functional, unilateral and bilateral tasks that were designed to improve gross and fine manual dexterity whereas the control intervention was composed of walking tasks. Members in both groups participated in three sessions a week for six weeks. Main outcome measure(s): The primary test of arm function was the Box and Block Test. Secondary tests included the Nine-Hole Peg Test, maximal grip strength, the Test d'Evaluation des Membres supé rieurs des Personnes Agées (TEMPA) and the Stroke Rehabilitation Assessment of Movement. Results: Results are for the more affected arm. Baseline performance on the Box and Block Test was an average of 26 blocks (standard deviation (SD=16) in the experimental group (n=47) and 26 blocks (Sd=18) in the control group (n=44). These values represent approximately 40% of age-predicted values. Values for the postintervention evaluation were an average of 28 (SD=17) and 28 (SD=19) blocks for the experimental and control group respectively. No meaningful change on other measures of arm function was observed. Conclusions: A task-oriented intervention did not improve voluntary movement or manual dexterity of the affected arm in people with chronic stroke.
Collapse
Affiliation(s)
- Johanne Higgins
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Hemmen B, Seelen HAM. Effects of movement imagery and electromyography-triggered feedback on arm—hand function in stroke patients in the subacute phase. Clin Rehabil 2016; 21:587-94. [PMID: 17702700 DOI: 10.1177/0269215507075502] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective: To investigate the effects of movement imagery-assisted electromyography (EMG)-triggered feedback (focused on paretic wrist dorsiflexors) on the arm—hand function of stroke patients. Design: Single-blinded, longitudinal, multicentre randomized controlled trial. Measurements were performed (on average) 54 days post stroke (baseline), three months later (post training) and at 12 months post baseline. Setting: Two rehabilitation centres. Subjects: Twenty-seven patients with a first-ever, ischaemic, subacute stroke. Interventions: A reference group received conventional electrostimulation, while the experimental group received arm—hand function training based on EMG-triggered feedback combined with movement imagery. Both groups were trained for three months, 5 days/week, 30 minutes/day, in addition to their therapy as usual. Main measures: Arm—hand function was evaluated using the upper extremity-related part of the Brunnstrom Fugl-Meyer test and the Action Research Arm test. Results: During training, Brunnstrom Fugl-Meyer scores improved 8.7 points and Action Research Arm scores by 19.4 points ( P < 0.0001) in both groups relative to baseline results, rising to 13.3 and 28.4 points respectively at one year follow-up ( P < 0.0001). No between-group differences were found at any time. Conclusions: EMG-triggered feedback stimulation did not lead to more arm—hand function improvement relative to conventional electrostimulation. However, in contrast to many clinical reports, a significant improvement was still observed in both groups nine months after treatment ceased.
Collapse
Affiliation(s)
- B Hemmen
- Rehabilitation Foundation Limburg (SRL), Hoensbroek, The Netherlands.
| | | |
Collapse
|
29
|
Wilson RD, Page SJ, Delahanty M, Knutson JS, Gunzler DD, Sheffler LR, Chae J. Upper-Limb Recovery After Stroke: A Randomized Controlled Trial Comparing EMG-Triggered, Cyclic, and Sensory Electrical Stimulation. Neurorehabil Neural Repair 2016; 30:978-987. [PMID: 27225977 DOI: 10.1177/1545968316650278] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE This study compared the effect of cyclic neuromuscular electrical stimulation (NMES), electromyographically (EMG)-triggered NMES, and sensory stimulation on motor impairment and activity limitations in patients with upper-limb hemiplegia. METHODS This was a multicenter, single-blind, multiarm parallel-group study of nonhospitalized hemiplegic stroke survivors within 6 months of stroke. A total of 122 individuals were randomized to receive either cyclic NMES, EMG-triggered NMES, or sensory stimulation twice every weekday in 40-minute sessions, over an 8 week-period. Patients were followed for 6 months after treatment concluded. RESULTS There were significant increases in the Fugl-Meyer Assessment [F(1, 111) = 92.6, P < .001], FMA Wrist and Hand [F(1, 111) = 66.7, P < .001], and modified Arm Motor Ability Test [mAMAT; time effect: F(1, 111) = 91.0, P < .001] for all 3 groups. There was no significant difference in the improvement among groups in the FMA [F(2, 384) = 0.2, P = .83], FMA Wrist and Hand [F(2, 384) = 0.4, P = .70], or the mAMAT [F(2, 379) = 1.2, P = .31]. CONCLUSIONS All groups exhibited significant improvement of impairment and functional limitation with electrical stimulation therapy applied within 6 months of stroke. Improvements were likely a result of spontaneous recovery. There was no difference based on the type of electrical stimulation that was administered.
Collapse
Affiliation(s)
- Richard D Wilson
- MetroHealth Rehabilitation Institute, MetroHealth Medical Center, Cleveland, OH, USA Case Western Reserve University, Cleveland, OH, USA Cleveland FES Center, Cleveland, OH, USA
| | | | - Michael Delahanty
- Akron General Medical Center, Akron, OH, USA Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jayme S Knutson
- MetroHealth Rehabilitation Institute, MetroHealth Medical Center, Cleveland, OH, USA Case Western Reserve University, Cleveland, OH, USA Cleveland FES Center, Cleveland, OH, USA
| | | | - Lynne R Sheffler
- MetroHealth Rehabilitation Institute, MetroHealth Medical Center, Cleveland, OH, USA Case Western Reserve University, Cleveland, OH, USA Cleveland FES Center, Cleveland, OH, USA
| | - John Chae
- MetroHealth Rehabilitation Institute, MetroHealth Medical Center, Cleveland, OH, USA Case Western Reserve University, Cleveland, OH, USA Cleveland FES Center, Cleveland, OH, USA
| |
Collapse
|
30
|
Nagai MK, Marquez-Chin C, Popovic MR. Why Is Functional Electrical Stimulation Therapy Capable of Restoring Motor Function Following Severe Injury to the Central Nervous System? Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Abstract
This article reviews the most common therapeutic and neuroprosthetic applications of neuromuscular electrical stimulation (NMES) for upper and lower extremity stroke rehabilitation. Fundamental NMES principles and purposes in stroke rehabilitation are explained. NMES modalities used for upper and lower limb rehabilitation are described, and efficacy studies are summarized. The evidence for peripheral and central mechanisms of action is also summarized.
Collapse
|
32
|
Ethier C, Gallego JA, Miller LE. Brain-controlled neuromuscular stimulation to drive neural plasticity and functional recovery. Curr Opin Neurobiol 2015; 33:95-102. [PMID: 25827275 PMCID: PMC4523462 DOI: 10.1016/j.conb.2015.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/11/2015] [Accepted: 03/11/2015] [Indexed: 01/18/2023]
Abstract
There is mounting evidence that appropriately timed neuromuscular stimulation can induce neural plasticity and generate functional recovery from motor disorders. This review addresses the idea that coordinating stimulation with a patient's voluntary effort might further enhance neurorehabilitation. Studies in cell cultures and behaving animals have delineated the rules underlying neural plasticity when single neurons are used as triggers. However, the rules governing more complex stimuli and larger networks are less well understood. We argue that functional recovery might be optimized if stimulation were modulated by a brain machine interface, to match the details of the patient's voluntary intent. The potential of this novel approach highlights the need for a better understanding of the complex rules underlying this form of plasticity.
Collapse
Affiliation(s)
- C Ethier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611 USA
| | - J A Gallego
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611 USA; Neural and Cognitive Engineering Group, Centre for Automation and Robotics, Spanish National Research Council (CSIC), Ctra. Campo Real km 0.2, Arganda del Rey, Madrid 28500 Spain
| | - L E Miller
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611 USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, 345 E. Superior Avenue, Chicago, IL 60611, USA; Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
33
|
Khadilkar A, Phillips K, Jean N, Lamothe C, Milne S, Sarnecka J. Ottawa Panel Evidence-Based Clinical Practice Guidelines for Post-Stroke Rehabilitation. Top Stroke Rehabil 2015; 13:1-269. [PMID: 16939981 DOI: 10.1310/3tkx-7xec-2dtg-xqkh] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE The purpose of this project was to create guidelines for 13 types of physical rehabilitation interventions used in the management of adult patients (>18 years of age) presenting with hemiplegia or hemiparesis following a single clinically identifiable ischemic or hemorrhagic cerebrovascular accident (CVA). METHOD Using Cochrane Collaboration methods, the Ottawa Methods Group identified and synthesized evidence from comparative controlled trials. The group then formed an expert panel, which developed a set of criteria for grading the strength of the evidence and the recommendation. Patient-important outcomes were determined through consensus, provided that these outcomes were assessed with a validated and reliable scale. RESULTS The Ottawa Panel developed 147 positive recommendations of clinical benefit concerning the use of different types of physical rehabilitation interventions involved in post-stroke rehabilitation. DISCUSSION AND CONCLUSION The Ottawa Panel recommends the use of therapeutic exercise, task-oriented training, biofeedback, gait training, balance training, constraint-induced movement therapy, treatment of shoulder subluxation, electrical stimulation, transcutaneous electrical nerve stimulation, therapeutic ultrasound, acupuncture, and intensity and organization of rehabilitation in the management of post stroke.
Collapse
|
34
|
|
35
|
Abstract
Impaired motor function after stroke is a major cause of disability in young stroke survivors. The plasticity of the adult human brain provides opportunities to enhance traditional rehabilitation programs for these individuals. Younger stroke patients appear to have a greater ability to recover from stroke and are likely to benefit substantially from treatments that facilitate plasticity-mediated recovery. The use of new exercise treatments, such as constraint-induced movement therapy, robot-aided rehabilitation, and partial body weight supported treadmill training are being studied intensively and are likely to ultimately be incorporated into standard poststroke rehabilitation. Medications to enhance recovery, growth factors, and stem cells will also be components of rehabilitation for the young stroke survivor in the foreseeable future.
Collapse
Affiliation(s)
- Joel Stein
- Spaulding Rehabilitation Hospital, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Chae J, Yu DT. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiparesis. Top Stroke Rehabil 2015; 8:24-39. [PMID: 14523728 DOI: 10.1310/rexb-akv9-2xbe-u5qa] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This article assesses the clinical efficacy of established neuromuscular electrical stimulation (NMES) technologies for motor restoration in hemiparesis and provides an overview of evolving technologies. Transcutaneous NMES facilitates motor recovery. However, its impact on physical disability remains uncertain. Transcutaneous NMES also decreases shoulder subluxation, but its effect on shoulder pain remains uncertain. Clinically deployable upper extremity neuroprosthesis systems will not be available until sometime in the distant future. However, there is stronger evidence for the clinical utility of lower extremity neuroprosthesis systems. Evolving technology utilizes semi-implanted or fully implanted systems with more sophisticated control paradigms. Initial experiences with these systems are reviewed and directions for future research are discussed in this article.
Collapse
Affiliation(s)
- John Chae
- Physical Medicine and Rehabilitation and Biomedical Engineering, Case Western Reserve University, MetroHealth Medical Center, Cleveland, Ohio, USA
| | | |
Collapse
|
37
|
Richards L, Hanson C, Wellborn M, Sethi A. Driving Motor Recovery After Stroke. Top Stroke Rehabil 2015; 15:397-411. [DOI: 10.1310/tsr1505-397] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Logan LR. Rehabilitation Techniques to Maximize Spasticity Management. Top Stroke Rehabil 2015; 18:203-11. [DOI: 10.1310/tsr1803-203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Kim JH, Lee BH. Mirror Therapy Combined With Biofeedback Functional Electrical Stimulation for Motor Recovery of Upper Extremities After Stroke: A Pilot Randomized Controlled Trial. Occup Ther Int 2014; 22:51-60. [DOI: 10.1002/oti.1384] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/23/2014] [Accepted: 10/02/2014] [Indexed: 01/06/2023] Open
Affiliation(s)
- Jung Hee Kim
- Department of Physical Therapy; Sahmyook University; Seoul Republic of Korea
- Department of Adult Physical Therapy; Seoul Rehabilitation Hospital; Seoul Republic of Korea
| | - Byoung-Hee Lee
- Department of Physical Therapy; Sahmyook University; Seoul Republic of Korea
| |
Collapse
|
40
|
The influence of functional electrical stimulation on hand motor recovery in stroke patients: a review. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2014; 6:9. [PMID: 25276333 PMCID: PMC4178310 DOI: 10.1186/2040-7378-6-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/29/2014] [Indexed: 01/24/2023]
Abstract
Neuromuscular stimulation has been used as one potential rehabilitative treatment option to restore motor function and improve recovery in patients with paresis. Especially stroke patients who often regain only limited hand function would greatly benefit from a therapy that enhances recovery and restores movement. Multiple studies investigated the effect of functional electrical stimulation on hand paresis, the results however are inconsistent. Here we review the current literature on functional electrical stimulation on hand motor recovery in stroke patients. We discuss the impact of different parameters such as stage after stoke, degree of impairment, spasticity and treatment protocols on the functional outcome. Importantly, we outline the results from recent studies investigating the cortical effects elicited by functional electrical stimulation giving insights into the underlying mechanisms responsible for long-term treatment effects. Bringing together the findings from present research it becomes clear that both, treatment outcomes as well as the neurophysiologic mechanisms causing functional recovery, vary depending on patient characteristics. In order to develop unified treatment guidelines it is essential to conduct homogenous studies assessing the impact of different parameters on rehabilitative success.
Collapse
|
41
|
McGie SC, Zariffa J, Popovic MR, Nagai MK. Short-term neuroplastic effects of brain-controlled and muscle-controlled electrical stimulation. Neuromodulation 2014; 18:233-40; discussion 240. [PMID: 24802088 DOI: 10.1111/ner.12185] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/15/2013] [Accepted: 03/04/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Functional electrical stimulation (FES) has been shown to facilitate the recovery of grasping function in individuals with incomplete spinal cord injury. Neurophysiological theory suggests that this benefit may be further enhanced by a more consistent pairing of the voluntary commands sent from the user's brain down their spinal cord with the electrical stimuli applied to the user's periphery. The objective of the study was to compare brain-machine interfaces (BMIs)-controlled and electromyogram (EMG)-controlled FES therapy to three more well-researched therapies, namely, push button-controlled FES therapy, voluntary grasping (VOL), and BMI-guided voluntary grasping. MATERIALS AND METHODS Ten able-bodied participants underwent one hour of each of five grasping training modalities, including BMI-controlled FES (BMI-FES), EMG-controlled FES (EMG-FES), conventional push button-controlled FES, VOL, and BMI-guided voluntary grasping. Assessments, including motor-evoked potential, grip force, and maximum voluntary contraction, were conducted immediately before and after each training period. RESULTS Motor-evoked potential-based outcome measures were more upregulated following BMI-FES and especially EMG-FES than they were following VOL or FES. No significant changes were found in the more functional outcome measures. CONCLUSIONS These results provide preliminary evidence suggesting the potential of BMI-FES and EMG-FES to induce greater neuroplastic changes than conventional therapies, although the precise mechanism behind these changes remains speculative. Further investigation will be required to elucidate the underlying mechanisms and to conclusively determine whether these effects can translate into better long-term functional outcomes and quality of life for individuals with spinal cord injury.
Collapse
Affiliation(s)
- Steven C McGie
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
42
|
Farmer SE, Durairaj V, Swain I, Pandyan AD. Assistive Technologies: Can They Contribute to Rehabilitation of the Upper Limb After Stroke? Arch Phys Med Rehabil 2014; 95:968-85. [DOI: 10.1016/j.apmr.2013.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/29/2013] [Accepted: 12/08/2013] [Indexed: 11/16/2022]
|
43
|
Jang SH, Jang WH, Chang PH, Lee SH, Jin SH, Kim YG, Yeo SS. Cortical activation change induced by neuromuscular electrical stimulation during hand movements: a functional NIRS study. J Neuroeng Rehabil 2014; 11:29. [PMID: 24597550 PMCID: PMC3973889 DOI: 10.1186/1743-0003-11-29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 02/20/2014] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Neuromuscular electrical stimulation (NMES) has been used in the field of rehabilitation for a long time. Previous studies on NMES have focused on the peripheral effect, in contrast, relatively little is known about the effect on the cerebral cortex. In the current study, we attempted to investigate the change of cortical activation pattern induced by NMES during execution of hand movements in normal subjects, using functional near infrared spectroscopy (fNIRS). METHODS Twelve healthy normal subjects were randomly assigned to the NMES group (six subjects) and the sham group (six subjects). We measured oxy-hemoglobin (HbO) in six regions of interest (ROI) during pre-NMES and post-NMES motor phase; the left dorsolateral and ventrolateral prefrontal cortex, premotor cortex, primary sensory-motor cortex (SM1), hand somatotopic area of SM1, and posterior parietal cortex. Between the pre-NMES and the post-NMES motor phases, real or sham NMES was applied on finger and wrist extensors of all subjects during a period of 5 minutes. RESULTS In all groups, during the pre-NMES motor phase, the HbO value in the hand somatotopic area of the left SM1 was higher than those of other ROIs. In the NMES group, during the post-NMES motor phase, HbO value variation in the hand somatotopic area of the left SM1 showed a significant decrease, compared with that of sham group (p < 0.05). However, in the sham group, similar aspect of results in HbO values of all ROIs was observed between pre-NMES and post-NMES motor phases (p > 0.05). CONCLUSIONS Results of this study showed that NMES induced a decrease of cortical activation during execution of hand movements. This finding appears to indicate that application of NMES can increase the efficiency of the cerebral cortex during execution of motor tasks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sang Seok Yeo
- Department of Physical Therapy, College of Health Sciences, Dankook University, 119, Dandae-ro, Dongnam-gu, Cheonan-si, Chungnam 330-714, Republic of Korea.
| |
Collapse
|
44
|
Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, Kwakkel G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One 2014; 9:e87987. [PMID: 24505342 PMCID: PMC3913786 DOI: 10.1371/journal.pone.0087987] [Citation(s) in RCA: 712] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Physical therapy (PT) is one of the key disciplines in interdisciplinary stroke rehabilitation. The aim of this systematic review was to provide an update of the evidence for stroke rehabilitation interventions in the domain of PT. METHODS AND FINDINGS Randomized controlled trials (RCTs) regarding PT in stroke rehabilitation were retrieved through a systematic search. Outcomes were classified according to the ICF. RCTs with a low risk of bias were quantitatively analyzed. Differences between phases poststroke were explored in subgroup analyses. A best evidence synthesis was performed for neurological treatment approaches. The search yielded 467 RCTs (N = 25373; median PEDro score 6 [IQR 5-7]), identifying 53 interventions. No adverse events were reported. Strong evidence was found for significant positive effects of 13 interventions related to gait, 11 interventions related to arm-hand activities, 1 intervention for ADL, and 3 interventions for physical fitness. Summary Effect Sizes (SESs) ranged from 0.17 (95%CI 0.03-0.70; I(2) = 0%) for therapeutic positioning of the paretic arm to 2.47 (95%CI 0.84-4.11; I(2) = 77%) for training of sitting balance. There is strong evidence that a higher dose of practice is better, with SESs ranging from 0.21 (95%CI 0.02-0.39; I(2) = 6%) for motor function of the paretic arm to 0.61 (95%CI 0.41-0.82; I(2) = 41%) for muscle strength of the paretic leg. Subgroup analyses yielded significant differences with respect to timing poststroke for 10 interventions. Neurological treatment approaches to training of body functions and activities showed equal or unfavorable effects when compared to other training interventions. Main limitations of the present review are not using individual patient data for meta-analyses and absence of correction for multiple testing. CONCLUSIONS There is strong evidence for PT interventions favoring intensive high repetitive task-oriented and task-specific training in all phases poststroke. Effects are mostly restricted to the actually trained functions and activities. Suggestions for prioritizing PT stroke research are given.
Collapse
Affiliation(s)
- Janne Marieke Veerbeek
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Erwin van Wegen
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Roland van Peppen
- Department of Physiotherapy, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Philip Jan van der Wees
- Scientific Institute for Quality of Healthcare (IQ healthcare), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Erik Hendriks
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
| | - Marc Rietberg
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neurorehabilitation, Reade Center for Rehabilitation and Rheumatology, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Bashir S. Novel Approaches of Non-Invasive Stimulation Techniques to Motor Rehabilitation Following Stroke: A Review. BRAIN & NEUROREHABILITATION 2014. [DOI: 10.12786/bn.2014.7.2.71] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Shahid Bashir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| |
Collapse
|
46
|
Coote S, Stokes EK. Physiotherapy for Upper Extremity Dysfunction Following Stroke. PHYSICAL THERAPY REVIEWS 2013. [DOI: 10.1179/108331901786161609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
47
|
Kim H, Lee G, Song C. Effect of functional electrical stimulation with mirror therapy on upper extremity motor function in poststroke patients. J Stroke Cerebrovasc Dis 2013; 23:655-61. [PMID: 23867040 DOI: 10.1016/j.jstrokecerebrovasdis.2013.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Motor recovery of the upper extremity in stroke patients is an important goal of rehabilitation. In particular, motor recovery can be accelerated when physical and cognitive interventions are combined. Thus, the aim of this study was to investigate the effects of functional electrical stimulation (FES) with mirror therapy (MT) on motor function of upper extremity in stroke patients. METHODS Twenty-seven stroke patients were recruited, and the 23 subjects who met the inclusion criteria were randomly allocated into 2 groups: the experimental group (n = 12) and the control group (n = 11). Both groups received conventional rehabilitation training for 60 minutes/day and 5 days/week for 4 weeks. In addition, members of the experimental group received FES with MT and members of the control group received FES without MT for 30 minutes/day and 5 days/week for 4 weeks. Immediately before and after intervention, motor recovery was measured using the Fugl-Meyer (FM) assessment, Brunnstrom's motor recovery stage (BMRS), the Manual Function Test (MFT), and the Box and Block Test (BBT). RESULTS Significant upper extremity motor improvements were observed in the experimental and control groups according to the FM, BMRS, MFT, and BBT (P < .05). In particular, FM subscores for wrist, hand, and co-ordination and MFT subscores for hand function were more significantly improved in the experimental group (P < .05). CONCLUSIONS Motor functions of the upper extremity were improved by FES with MT versus controls. The study shows that FES with MT during poststroke rehabilitation may effectively improve motor functions of the upper extremity.
Collapse
Affiliation(s)
- HyunJin Kim
- Department of Physical therapy, Graduate School of Sahmyook University, Seoul, Republic of Korea
| | - GyuChang Lee
- Department of Physical Therapy, Kyungnam University, College of Natural Sciences, Changwon-si, Republic of Korea
| | - ChangHo Song
- Department of Physical Therapy, Sahmyook University, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Sheffler LR, Taylor PN, Gunzler DD, Buurke JH, Ijzerman MJ, Chae J. Randomized controlled trial of surface peroneal nerve stimulation for motor relearning in lower limb hemiparesis. Arch Phys Med Rehabil 2013; 94:1007-14. [PMID: 23399456 DOI: 10.1016/j.apmr.2013.01.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/17/2013] [Accepted: 01/25/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To compare the motor relearning effect of a surface peroneal nerve stimulator (PNS) versus usual care on lower limb motor impairment, activity limitation, and quality of life among chronic stroke survivors. DESIGN Single-blinded randomized controlled trial. SETTING Teaching hospital of academic medical center. PARTICIPANTS Chronic stroke survivors (N=110; >12wk poststroke) with unilateral hemiparesis and dorsiflexion strength of ≤4/5 on the Medical Research Council scale. INTERVENTIONS Subjects were stratified by motor impairment level and then randomly assigned to ambulation training with either a surface PNS device or usual care (ankle-foot orthosis or no device) intervention. Subjects were treated for 12 weeks and followed up for 6 months posttreatment. MAIN OUTCOME MEASURES Lower limb portion of the Fugl-Meyer (FM) Assessment (motor impairment), the modified Emory Functional Ambulation Profile (mEFAP) performed without a device (functional ambulation), and the Stroke Specific Quality of Life (SSQOL) scale. RESULTS There was no significant treatment group main effect or treatment group by time interaction effect on FM, mEFAP, or SSQOL raw scores (P>.05). The time effect was significant for the 3 raw scores (P<.05). However, when comparing average change scores from baseline (t1) to end of treatment (t2, 12wk), and at 12 weeks (t3) and 24 weeks (t4) after end of treatment, significant differences were noted only for the mEFAP and SSQOL scores. The change in the average scores for both mEFAP and SSQOL occurred between t1 and t2, followed by relative stability thereafter. CONCLUSIONS There was no evidence of a motor relearning effect on lower limb motor impairment in either the PNS or usual-care groups. However, both the PNS and usual-care groups demonstrated significant improvements in functional mobility and quality of life during the treatment period, which were maintained at 6-month follow-up.
Collapse
Affiliation(s)
- Lynne R Sheffler
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH 44109, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Li S. Breathing-controlled Electrical Stimulation (BreEStim) for management of neuropathic pain and spasticity. J Vis Exp 2013:e50077. [PMID: 23353138 PMCID: PMC3582688 DOI: 10.3791/50077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Electrical stimulation (EStim) refers to the application of electrical current to muscles or nerves in order to achieve functional and therapeutic goals. It has been extensively used in various clinical settings. Based upon recent discoveries related to the systemic effects of voluntary breathing and intrinsic physiological interactions among systems during voluntary breathing, a new EStim protocol, Breathing-controlled Electrical Stimulation (BreEStim), has been developed to augment the effects of electrical stimulation. In BreEStim, a single-pulse electrical stimulus is triggered and delivered to the target area when the airflow rate of an isolated voluntary inspiration reaches the threshold. BreEStim integrates intrinsic physiological interactions that are activated during voluntary breathing and has demonstrated excellent clinical efficacy. Two representative applications of BreEStim are reported with detailed protocols: management of post-stroke finger flexor spasticity and neuropathic pain in spinal cord injury.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, USA.
| |
Collapse
|
50
|
Thorsen R, Cortesi M, Jonsdottir J, Carpinella I, Morelli D, Casiraghi A, Puglia M, Diverio M, Ferrarin M. Myoelectrically driven functional electrical stimulation may increase motor recovery of upper limb in poststroke subjects: A randomized controlled pilot study. ACTA ACUST UNITED AC 2013; 50:785-94. [DOI: 10.1682/jrrd.2012.07.0123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - M. Cortesi
- Rehabilitation Unit, Milano—Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - J. Jonsdottir
- Rehabilitation Unit, Milano—Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | | | - D. Morelli
- Rehabilitation Unit, Milano—Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - A. Casiraghi
- Rehabilitation Unit, Milano—Fondazione Don Carlo Gnocchi Onlus, Milan, Italy
| | - M. Puglia
- Rehabilitation Unit, Sarzana—Fondazione Don Carlo Gnocchi Onlus, Sarzana, Italy
| | - M. Diverio
- Rehabilitation Unit, Sarzana—Fondazione Don Carlo Gnocchi Onlus, Sarzana, Italy
| | | | | | | |
Collapse
|