1
|
Mohammed Meeran RA, Durairaj V, Sekaran P, Farmer SE, Pandyan AD. Assistive technologies, including orthotic devices, for the management of contractures in adults after a stroke. Cochrane Database Syst Rev 2024; 9:CD010779. [PMID: 39312271 PMCID: PMC11418973 DOI: 10.1002/14651858.cd010779.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
BACKGROUND Contractures (reduced range of motion and increased stiffness of a joint) are a frequent complication of stroke. Contractures can interfere with function and cause cosmetic and hygiene problems. Preventing and managing contractures might improve rehabilitation and recovery after stroke. OBJECTIVES To assess the effects of assistive technologies for the management of contractures in adults after a stroke. SEARCH METHODS We searched CENTRAL, MEDLINE, Embase, five other databases, and three trials registers in May 2022. We also searched for reference lists of relevant studies, contacted experts in the field, and ran forward citation searches. SELECTION CRITERIA Randomised controlled studies (RCTs) that used electrical, mechanical, or electromechanical devices to manage contractures in adults with stroke were eligible for inclusion in this review. We planned to include studies that compared assistive technologies against no treatment, routine therapy, or another assistive technology. DATA COLLECTION AND ANALYSIS Three review authors (working in pairs) selected all studies, extracted data, and assessed risk of bias. The primary outcomes were passive joint range of motion (PROM) with and without standardised force, and indirect measures of PROM. The secondary outcomes included hygiene. We also wanted to evaluate the adverse effects of assistive technology. Effects were expressed as mean differences (MDs) or standardised mean differences (SMDs) with 95% confidence intervals (CIs). MAIN RESULTS Seven studies fulfilled the inclusion criteria. Five of these were meta-analysed; they included 252 adults treated in acute and subacute rehabilitation settings. All studies compared assistive technology with routine therapy; one study also compared assistive technology with no treatment, but we were unable to obtain separate data for stroke participants. The assistive technologies used in the studies were electrical stimulation, splinting, positioning using a hinged board, and active repetitive motor training using a non-robotic device with electrical stimulation. Only one study applied stretching to end range. Treatment duration ranged from four to 12 weeks. The overall risk of bias was high for all studies. We are uncertain whether: • electrical stimulation to wrist extensors improves passive range of wrist extension (MD -7.30°, 95% CI -18.26° to 3.66°; 1 study, 81 participants; very low-certainty evidence); • a non-robotic device with electrical stimulation to shoulder flexors improves passive range of shoulder flexion (MD -9.00°, 95% CI -25.71° to 7.71°; 1 study; 50 participants; very low-certainty evidence); • assistive technology improves passive range of wrist extension with standardised force (SMD -0.05, 95% CI -0.39 to 0.29; four studies, 145 participants; very low-certainty evidence): • a non-robotic device with electrical stimulation to elbow extensors improves passive range of elbow extension (MD 0.41°, 95% CI -0.15° to 0.97°; 1 study, 50 participants; very low-certainty evidence). One study reported the adverse outcome of pain when using a hinged board to apply stretch to wrist and finger flexors, and another study reported skin breakdown when using a thumb splint. No studies reported hygiene or indirect measures of PROM. AUTHORS' CONCLUSIONS Only seven small RCTs met the eligibility criteria of this review, and all provided very low-certainty evidence. Consequently, we cannot draw firm conclusions on the effects of assistive technology compared with routine therapy or no therapy. It was also difficult to confirm whether there is a risk of harm associated with treatment using assistive technology. Future studies should apply adequate treatment intensity (i.e. magnitude and the duration of stretch) and use valid and reliable outcome measures. Such studies might better identify the role of assistive technology in the management of contractures in adults after a stroke.
Collapse
Affiliation(s)
| | - Venugopal Durairaj
- School of Health and Rehabilitation, Institute of Science and Technology in Medicine, Keele University, Stoke on Trent, UK
- Beacon Neuro Physio (www.beaconneurophysio.com), Derby, UK
| | - Padmanaban Sekaran
- Lead Physiotherapist, Movementology Clinics, Padmanaban's Movementology Academy LLP, Bangalore, India
| | | | - Anand D Pandyan
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, UK
| |
Collapse
|
2
|
Policy analysis on power standing systems. Prev Med Rep 2021; 24:101601. [PMID: 34976658 PMCID: PMC8683940 DOI: 10.1016/j.pmedr.2021.101601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 11/27/2022] Open
Abstract
Power wheelchairs provide people with mobility disabilities opportunities for independence in mobility and repositioning themselves. However, current power wheelchair power options covered by Medicare limit the person to a horizontal plane. In the home, access to the vertical plane is also required for mobility related activities of daily living. Power standing systems on power wheelchairs are one option for providing access to the vertical environment, although currently these systems are not covered by Medicare. Power standing systems also aid in medical management and in preventing common comorbidities associated with chronic neurological and congenital healthcare conditions. Therefore, a legal group led an interdisciplinary effort to change Medicare policy on power standing systems. A policy analysis using Bardach’s Eightfold policy framework was conducted to analyze a clinical groups’ action within this interdisciplinary team. The clinical team considered three viable options to address the problem and evaluated these options against five criteria. Ultimately, a national coverage determination reconsideration would provide a needed opportunity for the coverage of power standing systems. Suggested coverage criteria for power standing systems, based on existing literature and expert clinical experience, are proposed.
Collapse
|
3
|
Bohannon RW, Green MD. Neurologic and musculoskeletal effects of tilt-table standing on adults: a systematic review. J Phys Ther Sci 2021; 33:700-706. [PMID: 34539077 PMCID: PMC8436033 DOI: 10.1589/jpts.33.700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/27/2021] [Indexed: 11/24/2022] Open
Abstract
[Purpose] Tilt table use is associated, most often, with the assessment of syncope. However, it also has applications for patients with neurologic and orthopedic problems. These applications do not appear to be widely applied. The purpose of this review, therefore, was to summarize the research literature addressing the use of tilt tables for treating specific musculoskeletal and neurologic impairments in adults. [Methods] Relevant literature was identified by searches of the PubMed, CINAHL, and Scopus databases and hand searches (December 2018 and October 2020). The methodological quality of the identified research articles was assessed using the PEDro scale. [Results] Of 482 unique articles identified, 20 matched the eligibility criteria of the review and were included. The studies varied widely in the populations studied, procedures used, and responses reported. The studies provide limited support for tilt table standing as an intervention. [Conclusion] However, evidence that some patients with neurologic conditions may respond positively to tilt-table standing is available. Among such individuals are those with decreased ankle range of motion, positive neurologic signs in the lower limbs, and decreased levels of consciousness.
Collapse
|
4
|
Shamsi M, Vaisi-Raygani A, Rostami A, Mirzaei M. The effect of adding TENS to stretch on improvement of ankle range of motion in inactive patients in intensive care units: a pilot trial. BMC Sports Sci Med Rehabil 2019; 11:15. [PMID: 31428432 PMCID: PMC6694557 DOI: 10.1186/s13102-019-0129-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/24/2019] [Indexed: 12/04/2022]
Abstract
Background Patients hospitalized in intensive care units (ICUs) are susceptible to joint contracture and diminished range of motion. This is due to immobility as well as other underlying factors such as brain damage. Joint contracture causes functional disorders thereby diminishing the quality of life of patients following the intensive care period. Recent studies have introduced transcutaneous electrical nerve stimulation (TENS) as a new method for preventing and treating joint contracture. This study was performed to determine the effect of adding TENS to stretch on the range of ankle motion in patients hospitalized in ICUs. Methods Thirty-six patients admitted to the ICU ward of the hospital who were not able to move their legs voluntarily were assigned randomly into experimental (n = 18) and control (n = 18) groups. The intervention group received TENS along with manual stretch in the ankle three times a week for 2 weeks. The control group only received stretch in the ankle for the same time. The extent of dorsiflexion and plantar flexion of the ankle was measured using a standard goniometer. Both groups were evaluated before and one and 2 weeks after the intervention. The obtained data were analyzed by SPSS 21 through analysis of covariance and repeated measures ANOVA tests. Results In both groups, the increase in the ankle range of motion parameters was significant over time (means ranged over 44–48 for plantar flexion and means ranged over 5–11 for dorsiflexion, P < 0.001 for all of time points). The increase in ankle plantar and dorsiflexion in experimental group was significantly more than control group (mean between-group differences ranged over 1.35–3.57 within 95% CI of 1.04 to 4.01, P < 0.001). Conclusion Adding TENS to stretch may provide more improvement in ankle dorsiflexion and plantar flexion. Trial registration Trial registration: This study was registered in the Iranian Clinical Trial Center with the code IRCT2017010814333N64, registered 20 January 2017.
Collapse
Affiliation(s)
- MohammadBagher Shamsi
- 1School of Allied Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aliakbar Vaisi-Raygani
- 2Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asghar Rostami
- 2Department of Nursing, School of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran.,3Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Mirzaei
- 1School of Allied Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Loading in an Upright Tilting Hospital Bed Elicits Minimal Muscle Activation in Healthy Adults. JOURNAL OF ACUTE CARE PHYSICAL THERAPY 2019. [DOI: 10.1097/jat.0000000000000093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Jiang J, Lee KM, Ji J. Review of anatomy-based ankle–foot robotics for mind, motor and motion recovery following stroke: design considerations and needs. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2018. [DOI: 10.1007/s41315-018-0065-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Leung J, Stroud K. Long-Term Resolution of Severe Ankle Contractures Using Botulinum Toxin, Serial Casting, Splinting, and Motor Retraining. Physiother Can 2018; 70:152-159. [PMID: 29755171 DOI: 10.3138/ptc.2016-76] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purpose: Serial casting for ankle contractures is traditionally performed in prone, a position that patients may not easily tolerate. Also, although serial casting is effective in correcting contracture, its effect dissipates quickly. This case report describes a procedure for performing casting for ankle contractures in a supine or sitting position. It also describes a process that enables the effect of serial casting to be maintained long term. Client Description: The client was an adult who had suffered traumatic brain injury and severe bilateral ankle contractures. Intervention: He received botulinum toxin and serial casting for his bilateral ankle contractures, one ankle at 8 months and the other at 13 months after the injury. He then underwent a programme of splinting and motor training. Measures and Outcome: The client gained more than 40° dorsiflexion for both ankles after receiving botulinum toxin injections and serial casting. The improvement in ankle range enabled him to progress to walking practice. Ankle splinting was gradually reduced. On discharge at 25 months post-injury, the ankle joint range was maintained. Implications: The use of botulinum toxin and serial casting, followed by an intensive programme of splinting and motor training, may be an option to consider for effective long-term resolution of severe contractures after acquired brain injury.
Collapse
Affiliation(s)
- Joan Leung
- Brain Injury Unit, Royal Rehab, Ryde, N.S.W., Australia
| | | |
Collapse
|
8
|
Healy A, Farmer S, Pandyan A, Chockalingam N. A systematic review of randomised controlled trials assessing effectiveness of prosthetic and orthotic interventions. PLoS One 2018; 13:e0192094. [PMID: 29538382 PMCID: PMC5851539 DOI: 10.1371/journal.pone.0192094] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/16/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Assistive products are items which allow older people and people with disabilities to be able to live a healthy, productive and dignified life. It has been estimated that approximately 1.5% of the world's population need a prosthesis or orthosis. OBJECTIVE The objective of this study was to systematically identify and review the evidence from randomized controlled trials assessing effectiveness and cost-effectiveness of prosthetic and orthotic interventions. METHODS Literature searches, completed in September 2015, were carried out in fourteen databases between years 1995 and 2015. The search results were independently screened by two reviewers. For the purpose of this manuscript, only randomized controlled trials which examined interventions using orthotic or prosthetic devices were selected for data extraction and synthesis. RESULTS A total of 342 randomised controlled trials were identified (319 English language and 23 non-English language). Only 4 of these randomised controlled trials examined prosthetic interventions and the rest examined orthotic interventions. These orthotic interventions were categorised based on the medical conditions/injuries of the participants. From these studies, this review focused on the medical condition/injuries with the highest number of randomised controlled trials (osteoarthritis, fracture, stroke, carpal tunnel syndrome, plantar fasciitis, anterior cruciate ligament, diabetic foot, rheumatoid and juvenile idiopathic arthritis, ankle sprain, cerebral palsy, lateral epicondylitis and low back pain). The included articles were assessed for risk of bias using the Cochrane Risk of Bias tool. Details of the clinical population examined, the type of orthotic/prosthetic intervention, the comparator/s and the outcome measures were extracted. Effect sizes and odds ratios were calculated for all outcome measures, where possible. CONCLUSIONS At present, for prosthetic and orthotic interventions, the scientific literature does not provide sufficient high quality research to allow strong conclusions on their effectiveness and cost-effectiveness.
Collapse
Affiliation(s)
- Aoife Healy
- School of Life Sciences and Education, Staffordshire University, Stoke On Trent, United Kingdom
| | - Sybil Farmer
- School of Life Sciences and Education, Staffordshire University, Stoke On Trent, United Kingdom
| | - Anand Pandyan
- School of Life Sciences and Education, Staffordshire University, Stoke On Trent, United Kingdom
- School of Health & Rehabilitation, Keele University, Keele, United Kingdom
| | - Nachiappan Chockalingam
- School of Life Sciences and Education, Staffordshire University, Stoke On Trent, United Kingdom
| |
Collapse
|
9
|
Harvey LA, Katalinic OM, Herbert RD, Moseley AM, Lannin NA, Schurr K. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev 2017; 1:CD007455. [PMID: 28146605 PMCID: PMC6464268 DOI: 10.1002/14651858.cd007455.pub3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Contractures are a common complication of neurological and non-neurological conditions, and are characterised by a reduction in joint mobility. Stretch is widely used for the treatment and prevention of contractures. However, it is not clear whether stretch is effective. This review is an update of the original 2010 version of this review. OBJECTIVES The aim of this review was to determine the effects of stretch on contractures in people with, or at risk of developing, contractures.The outcomes of interest were joint mobility, quality of life, pain, activity limitations, participation restrictions, spasticity and adverse events. SEARCH METHODS In November 2015 we searched CENTRAL, DARE, HTA; MEDLINE; Embase; CINAHL; SCI-EXPANDED; PEDro and trials registries. SELECTION CRITERIA We included randomised controlled trials and controlled clinical trials of stretch applied for the purpose of treating or preventing contractures. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials, extracted data, and assessed risk of bias. The outcomes of interest were joint mobility, quality of life, pain, activity limitations, participation restrictions and adverse events. We evaluated outcomes in the short term (up to one week after the last stretch) and in the long term (more than one week). We expressed effects as mean differences (MD) or standardised mean differences (SMD) with 95% confidence intervals (CI). We conducted meta-analyses with a random-effects model. We assessed the quality of the body of evidence for the main outcomes using GRADE. MAIN RESULTS Forty-nine studies with 2135 participants met the inclusion criteria. No study performed stretch for more than seven months. Just over half the studies (51%) were at low risk of selection bias; all studies were at risk of detection bias for self reported outcomes such as pain and at risk of performance bias due to difficulty of blinding the intervention. However, most studies were at low risk of detection bias for objective outcomes including range of motion, and the majority of studies were free from attrition and selective reporting biases. The effect of these biases were unlikely to be important, given that there was little benefit with treatment. There was high-quality evidence that stretch did not have clinically important short-term effects on joint mobility in people with neurological conditions (MD 2°; 95% CI 0° to 3°; 26 studies with 699 participants) or non-neurological conditions (SMD 0.2, 95% CI 0 to 0.3, 19 studies with 925 participants).In people with neurological conditions, it was uncertain whether stretch had clinically important short-term effects on pain (SMD 0.2; 95% CI -0.1 to 0.5; 5 studies with 174 participants) or activity limitations (SMD 0.2; 95% CI -0.1 to 0.5; 8 studies with 247 participants). No trials examined the short-term effects of stretch on quality of life or participation restrictions in people with neurological conditions. Five studies involving 145 participants reported eight adverse events including skin breakdown, bruising, blisters and pain but it was not possible to statistically analyse these data.In people with non-neurological conditions, there was high-quality evidence that stretch did not have clinically important short-term effects on pain (SMD -0.2, 95% CI -0.4 to 0.1; 7 studies with 422 participants) and moderate-quality evidence that stretch did not have clinically important short-term effects on quality of life (SMD 0.3, 95% CI -0.1 to 0.7; 2 studies with 97 participants). The short-term effect of stretch on activity limitations (SMD 0.1; 95% CI -0.2 to 0.3; 5 studies with 356 participants) and participation restrictions were uncertain (SMD -0.2; 95% CI -0.6 to 0.1; 2 studies with 192 participants). Nine studies involving 635 participants reported 41 adverse events including numbness, pain, Raynauds' phenomenon, venous thrombosis, need for manipulation under anaesthesia, wound infections, haematoma, flexion deficits and swelling but it was not possible to statistically analyse these data. AUTHORS' CONCLUSIONS There was high-quality evidence that stretch did not have clinically important effects on joint mobility in people with or without neurological conditions if performed for less than seven months. Sensitivity analyses indicate results were robust in studies at risk of selection and detection biases in comparison to studies at low risk of bias. Sub-group analyses also suggest the effect of stretch is consistent in people with different types of neurological or non-neurological conditions. The effects of stretch performed for periods longer than seven months have not been investigated. There was moderate- and high-quality evidence that stretch did not have clinically important short-term effects on quality of life or pain in people with non-neurological conditions, respectively. The short-term effects of stretch on quality of life and pain in people with neurological conditions, and the short-term effects of stretch on activity limitations and participation restrictions for people with and without neurological conditions are uncertain.
Collapse
Affiliation(s)
- Lisa A Harvey
- Kolling Institute, Northern Sydney Local Health DistrictJohn Walsh Centre for Rehabilitation ResearchRoyal North Shore HospitalSt LeonardsNSWAustralia2065
| | - Owen M Katalinic
- Telstra HealthEmerging Systems18/9 Hoyle AvenueCastle HillNSWAustralia2154
| | - Robert D Herbert
- Neuroscience Research AustraliaBarker StreetRandwickSydneyAustralia2031
| | - Anne M Moseley
- The George Institute for Global Health, Sydney Medical School, The University of SydneyPO Box M201Missenden RdSydneyNSWAustralia2050
| | - Natasha A Lannin
- La Trobe UniversityOccupational Therapy, Department of Community and Clinical Allied Health, School of Allied Health, College of Science, Health and EngineeringMelbourneVictoriaAustralia
| | - Karl Schurr
- Bankstown HospitalPhysiotherapy DepartmentLocked Bag 1600BankstownNSWAustralia2200
| | | |
Collapse
|
10
|
Kim DY, Kim YH, Lee J, Chang WH, Kim MW, Pyun SB, Yoo WK, Ohn SH, Park KD, Oh BM, Lim SH, Jung KJ, Ryu BJ, Im S, Jee SJ, Seo HG, Rah UW, Park JH, Sohn MK, Chun MH, Shin HS, Lee SJ, Lee YS, Park SW, Park YG, Paik NJ, Lee SG, Lee JK, Koh SE, Kim DK, Park GY, Shin YI, Ko MH, Kim YW, Yoo SD, Kim EJ, Oh MK, Chang JH, Jung SH, Kim TW, Kim WS, Kim DH, Park TH, Lee KS, Hwang BY, Song YJ. Clinical Practice Guideline for Stroke Rehabilitation in Korea 2016. BRAIN & NEUROREHABILITATION 2017. [DOI: 10.12786/bn.2017.10.e11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Deog Young Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
| | - Jongmin Lee
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Korea
| | - Min-Wook Kim
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, Korea
| | - Woo-Kyoung Yoo
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Korea
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Korea
| | - Ki Deok Park
- Department of Rehabilitation Medicine, Gachon University College of Medicine, Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Seong Hoon Lim
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Kang Jae Jung
- Department of Physical Medicine and Rehabilitation, Eulji University Hospital & Eulji University School of Medicine, Korea
| | - Byung-Ju Ryu
- Department of Physical Medicine and Rehabilitation, Sahmyook Medical Center, Korea
| | - Sun Im
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Sung Ju Jee
- Department of Rehabilitation Medicine, Chungnam National University College of Medicine, Korea
| | - Han Gil Seo
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Ueon Woo Rah
- Department of Physical Medicine and Rehabilitation, Ajou University School of Medicine, Korea
| | - Joo Hyun Park
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Min Kyun Sohn
- Department of Rehabilitation Medicine, Chungnam National University College of Medicine, Korea
| | - Min Ho Chun
- Department of Rehabilitation Medicine, Asan Medical Center, University of Ulsan College of Medicine, Korea
| | - Hee Suk Shin
- Department of Rehabilitation Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Korea
| | - Seong Jae Lee
- Department of Rehabilitation Medicine, College of Medicine Dankook University, Korea
| | - Yang-Soo Lee
- Department of Rehabilitation Medicine, Kyungpook National University School of Medicine, Korea
| | - Si-Woon Park
- Department of Rehabilitation Medicine, Catholic Kwandong University International St Mary's Hospital, Korea
| | - Yoon Ghil Park
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Korea
| | - Nam Jong Paik
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Sam-Gyu Lee
- Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Korea
| | - Ju Kang Lee
- Department of Rehabilitation Medicine, Gachon University College of Medicine, Korea
| | - Seong-Eun Koh
- Department of Rehabilitation Medicine, Konkuk University School of Medicine, Korea
| | - Don-Kyu Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Chung-Ang University, Korea
| | - Geun-Young Park
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Korea
| | - Yong Il Shin
- Department of Rehabilitation Medicine, Pusan National University Hospital, Korea
| | - Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School, Korea
| | - Yong Wook Kim
- Department of Rehabilitation Medicine, Yonsei University College of Medicine, Korea
| | - Seung Don Yoo
- Department of Physical Medicine and Rehabilitation, Kyung Hee University College of Medicine, Korea
| | - Eun Joo Kim
- Department of Physical Medicine and Rehabilitation, National Rehabilitation Hospital, Korea
| | - Min-Kyun Oh
- Department of Rehabilitation Medicine and Institute of Health Sciences, Gyeongsang National University College of Medicine, Korea
| | - Jae Hyeok Chang
- Department of Rehabilitation Medicine, Pusan National University Hospital, Korea
| | - Se Hee Jung
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Tae-Woo Kim
- TBI rehabilitation center, National Traffic Injury Rehabilitation Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Won-Seok Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Korea
| | - Dae Hyun Kim
- Department of Physical Medicine and Rehabilitation, Veterans Health Service Medical Center, Korea
| | - Tai Hwan Park
- Department of Neurology, Seoul Medical Center, Korea
| | - Kwan-Sung Lee
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Korea
| | - Byong-Yong Hwang
- Department of Physical Therapy, Yong-In University College of Health & Welfare, Korea
| | - Young Jin Song
- Department of Rehabilitation Medicine, Asan Medical Center, Korea
| |
Collapse
|
11
|
Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, Deruyter F, Eng JJ, Fisher B, Harvey RL, Lang CE, MacKay-Lyons M, Ottenbacher KJ, Pugh S, Reeves MJ, Richards LG, Stiers W, Zorowitz RD. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2016; 47:e98-e169. [PMID: 27145936 DOI: 10.1161/str.0000000000000098] [Citation(s) in RCA: 1624] [Impact Index Per Article: 203.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE The aim of this guideline is to provide a synopsis of best clinical practices in the rehabilitative care of adults recovering from stroke. METHODS Writing group members were nominated by the committee chair on the basis of their previous work in relevant topic areas and were approved by the American Heart Association (AHA) Stroke Council's Scientific Statement Oversight Committee and the AHA's Manuscript Oversight Committee. The panel reviewed relevant articles on adults using computerized searches of the medical literature through 2014. The evidence is organized within the context of the AHA framework and is classified according to the joint AHA/American College of Cardiology and supplementary AHA methods of classifying the level of certainty and the class and level of evidence. The document underwent extensive AHA internal and external peer review, Stroke Council Leadership review, and Scientific Statements Oversight Committee review before consideration and approval by the AHA Science Advisory and Coordinating Committee. RESULTS Stroke rehabilitation requires a sustained and coordinated effort from a large team, including the patient and his or her goals, family and friends, other caregivers (eg, personal care attendants), physicians, nurses, physical and occupational therapists, speech-language pathologists, recreation therapists, psychologists, nutritionists, social workers, and others. Communication and coordination among these team members are paramount in maximizing the effectiveness and efficiency of rehabilitation and underlie this entire guideline. Without communication and coordination, isolated efforts to rehabilitate the stroke survivor are unlikely to achieve their full potential. CONCLUSIONS As systems of care evolve in response to healthcare reform efforts, postacute care and rehabilitation are often considered a costly area of care to be trimmed but without recognition of their clinical impact and ability to reduce the risk of downstream medical morbidity resulting from immobility, depression, loss of autonomy, and reduced functional independence. The provision of comprehensive rehabilitation programs with adequate resources, dose, and duration is an essential aspect of stroke care and should be a priority in these redesign efforts. (Stroke.2016;47:e98-e169. DOI: 10.1161/STR.0000000000000098.).
Collapse
|
12
|
Sung EJ, Chun MH, Hong JY, Do KH. Effects of a Resting Foot Splint in Early Brain Injury Patients. Ann Rehabil Med 2016; 40:135-41. [PMID: 26949680 PMCID: PMC4775746 DOI: 10.5535/arm.2016.40.1.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/07/2015] [Indexed: 11/06/2022] Open
Abstract
Objective To assess the effectiveness of the resting foot splint to prevent ankle contracture. Methods We performed a randomized controlled trial in 33 patients with brain injury with ankle dorsiflexor weakness (muscle power ≤grade 2). Both groups continued conventional customized physical therapy, but the patients in the foot splint group were advised to wear a resting foot splint for more than 12 hours per day for 3 weeks. The data were assessed before and 3 weeks after the study. The primary outcome was the change in ankle dorsiflexion angle after 3 weeks. Results Before the study, there were no differences between groups in gender, age, time post-injury, brain injury type, initial edema, spasticity, passive range of ankle dorsiflexion, Fugl-Meyer score (FMS), or Functional Ambulation Classification. A significant improvement in ankle dorsiflexion angle, and FMS was found after 3 weeks in both groups. The splint group showed more spasticity than the control group after 3 weeks (p=0.04). The change of ankle dorsiflexion angle, foot circumference, spasticity, and FMS after adjusting initial value and spasticity were not significantly different between the 2 groups. Conclusion Wearing a resting foot splint for 3 weeks did not affect joint mobility in patients with subacute brain injury regularly attending personalized rehabilitation programs. Further studies of larger sample sizes with well controlled in spasticity are required to evaluate the effects of the resting foot splint.
Collapse
Affiliation(s)
- Eun Jung Sung
- Department of Physical Medicine and Rehabilitation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Ho Chun
- Department of Physical Medicine and Rehabilitation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ja Young Hong
- Department of Physical Medicine and Rehabilitation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Hee Do
- Department of Physical Medicine and Rehabilitation, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Paleg G, Livingstone R. Systematic review and clinical recommendations for dosage of supported home-based standing programs for adults with stroke, spinal cord injury and other neurological conditions. BMC Musculoskelet Disord 2015; 16:358. [PMID: 26576548 PMCID: PMC4650310 DOI: 10.1186/s12891-015-0813-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/12/2015] [Indexed: 11/19/2022] Open
Abstract
Background Sitting for more than 8 h a day has been shown to negatively impact health and mortality while standing is the recommended healthier alternative. Home-based standing programs are commonly recommended for adults who cannot stand and/or walk independently. The aim of this systematic review is to review effectiveness of home-based standing programs for adults with neurological conditions including stroke and spinal cord injury; and to provide dosage guidelines to address body structure and function, activity and participation outcomes. Methods Eight electronic databases were searched, including Cochrane Library databases, MEDLINE, CINAHL and EMBASE. From 376 articles, 36 studies addressing impact of a standing intervention on adults with sub-acute or chronic neurological conditions and published between 1980 and September 2015 were included. Two reviewers independently screened titles, reviewed abstracts, evaluated full-text articles and rated quality and strength of evidence. Evidence level was rated using Oxford Centre for Evidence Based Medicine Levels and quality evaluated using a domain-based risk-of-bias rating. Outcomes were divided according to ICF components, diagnoses and dosage amounts from individual studies. GRADE and the Evidence-Alert Traffic-Lighting system were used to determine strength of recommendation and adjusted in accordance with risk-of-bias rating. Results Stronger evidence supports the impact of home-based supported standing programs on range of motion and activity, primarily for individuals with stroke or spinal cord injury while mixed evidence supports impact on bone mineral density. Evidence for other outcomes and populations is weak or very weak. Conclusions Standing should occur 30 min 5 times a week for a positive impact on most outcomes while 60 min daily is suggested for mental function and bone mineral density. Electronic supplementary material The online version of this article (doi:10.1186/s12891-015-0813-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ginny Paleg
- Montgomery County Infants and Toddlers Program, Rockville, MD, USA.
| | - Roslyn Livingstone
- Sunny Hill Health Centre for Children, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Novak AC, Olney SJ, Bagg S, Brouwer B. Gait Changes Following Botulinum Toxin A Treatment in Stroke. Top Stroke Rehabil 2015; 16:367-76. [DOI: 10.1310/tsr1605-367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, Kwakkel G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS One 2014; 9:e87987. [PMID: 24505342 PMCID: PMC3913786 DOI: 10.1371/journal.pone.0087987] [Citation(s) in RCA: 687] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/30/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Physical therapy (PT) is one of the key disciplines in interdisciplinary stroke rehabilitation. The aim of this systematic review was to provide an update of the evidence for stroke rehabilitation interventions in the domain of PT. METHODS AND FINDINGS Randomized controlled trials (RCTs) regarding PT in stroke rehabilitation were retrieved through a systematic search. Outcomes were classified according to the ICF. RCTs with a low risk of bias were quantitatively analyzed. Differences between phases poststroke were explored in subgroup analyses. A best evidence synthesis was performed for neurological treatment approaches. The search yielded 467 RCTs (N = 25373; median PEDro score 6 [IQR 5-7]), identifying 53 interventions. No adverse events were reported. Strong evidence was found for significant positive effects of 13 interventions related to gait, 11 interventions related to arm-hand activities, 1 intervention for ADL, and 3 interventions for physical fitness. Summary Effect Sizes (SESs) ranged from 0.17 (95%CI 0.03-0.70; I(2) = 0%) for therapeutic positioning of the paretic arm to 2.47 (95%CI 0.84-4.11; I(2) = 77%) for training of sitting balance. There is strong evidence that a higher dose of practice is better, with SESs ranging from 0.21 (95%CI 0.02-0.39; I(2) = 6%) for motor function of the paretic arm to 0.61 (95%CI 0.41-0.82; I(2) = 41%) for muscle strength of the paretic leg. Subgroup analyses yielded significant differences with respect to timing poststroke for 10 interventions. Neurological treatment approaches to training of body functions and activities showed equal or unfavorable effects when compared to other training interventions. Main limitations of the present review are not using individual patient data for meta-analyses and absence of correction for multiple testing. CONCLUSIONS There is strong evidence for PT interventions favoring intensive high repetitive task-oriented and task-specific training in all phases poststroke. Effects are mostly restricted to the actually trained functions and activities. Suggestions for prioritizing PT stroke research are given.
Collapse
Affiliation(s)
- Janne Marieke Veerbeek
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Erwin van Wegen
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Roland van Peppen
- Department of Physiotherapy, University of Applied Sciences Utrecht, Utrecht, The Netherlands
| | - Philip Jan van der Wees
- Scientific Institute for Quality of Healthcare (IQ healthcare), Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Erik Hendriks
- Department of Epidemiology, Maastricht University, Maastricht, The Netherlands
| | - Marc Rietberg
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, MOVE Research Institute Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Neurorehabilitation, Reade Center for Rehabilitation and Rheumatology, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Offenbächer M, Sauer S, Rieß J, Müller M, Grill E, Daubner A, Randzio O, Kohls N, Herold-Majumdar A. Contractures with special reference in elderly: definition and risk factors – a systematic review with practical implications. Disabil Rehabil 2013; 36:529-38. [DOI: 10.3109/09638288.2013.800596] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Newman M, Barker K. The effect of supported standing in adults with upper motor neurone disorders: a systematic review. Clin Rehabil 2012; 26:1059-77. [DOI: 10.1177/0269215512443373] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meredith Newman
- Physiotherapy Research Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Karen Barker
- Physiotherapy Research Unit, Nuffield Orthopaedic Centre, Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
18
|
Katalinic OM, Harvey LA, Herbert RD, Moseley AM, Lannin NA, Schurr K. Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev 2010:CD007455. [PMID: 20824861 DOI: 10.1002/14651858.cd007455.pub2] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Contractures are a common complication of neurological and musculoskeletal conditions, and are characterised by a reduction in joint mobility. Stretch is widely used for the treatment and prevention of contractures. However, it is not clear whether stretch is effective. OBJECTIVES To determine the effects of stretch on contractures in people with, or at risk of, contractures. SEARCH STRATEGY Electronic searches were conducted on CENTRAL, DARE, HTA (The Cochrane Library); MEDLINE; CINAHL; EMBASE; SCI-EXPANDED; and PEDro (April 2009). SELECTION CRITERIA Randomised controlled trials and controlled clinical trials of stretch applied for the purpose of treating or preventing contractures were included. DATA COLLECTION AND ANALYSIS Two review authors independently selected trials, extracted data, and assessed risk of bias. The primary outcomes of interest were joint mobility and quality of life. The secondary outcomes were pain, spasticity, activity limitation and participation restriction. Outcomes were evaluated immediately after intervention, in the short term (one to seven days) and in the long term (> one week). Effects were expressed as mean differences or standardised mean differences with 95% confidence intervals (CI). Meta-analyses were conducted with a random-effects model. MAIN RESULTS Thirty-five studies with 1391 participants met the inclusion criteria. No study performed stretch for more than seven months. In people with neurological conditions, there was moderate to high quality evidence to indicate that stretch does not have clinically important immediate (mean difference 3 degrees ; 95% CI 0 to 7), short-term (mean difference 1 degrees ; 95% CI 0 to 3) or long-term (mean difference 0 degrees ; 95% CI -2 to 2) effects on joint mobility. The results were similar for people with non-neurological conditions. For all conditions, there is little or no effect of stretch on pain, spasticity, activity limitation, participation restriction or quality of life. AUTHORS' CONCLUSIONS Stretch does not have clinically important effects on joint mobility in people with, or at risk of, contractures if performed for less than seven months. The effects of stretch performed for periods longer than seven months have not been investigated.
Collapse
Affiliation(s)
- Owen M Katalinic
- Rehabilitation Studies Unit, Northern Clinical School, Sydney Medical School, The University of Sydney, PO Box 6, Ryde, NSW, Australia, 1680
| | | | | | | | | | | |
Collapse
|
19
|
Erworbene Kontrakturen der Gelenke im höheren Lebensalter. Z Gerontol Geriatr 2010; 43:147-57. [PMID: 20069303 DOI: 10.1007/s00391-009-0089-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
|
20
|
Harvey LA, Herbert RD, Glinsky J, Moseley AM, Bowden J. Effects of 6 months of regular passive movements on ankle joint mobility in people with spinal cord injury: a randomized controlled trial. Spinal Cord 2008; 47:62-6. [DOI: 10.1038/sc.2008.71] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|