1
|
Bandyopadhyay A, Ye Z, Benedikty Z, Trtilek M, Pakrasi HB. Antenna Modification Leads to Enhanced Nitrogenase Activity in a High Light-Tolerant Cyanobacterium. mBio 2021; 12:e0340821. [PMID: 34933453 PMCID: PMC8689445 DOI: 10.1128/mbio.03408-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/11/2023] Open
Abstract
Biological nitrogen fixation is an energy-intensive process that contributes significantly toward supporting life on this planet. Among nitrogen-fixing organisms, cyanobacteria remain unrivaled in their ability to fuel the energetically expensive nitrogenase reaction with photosynthetically harnessed solar energy. In heterocystous cyanobacteria, light-driven, photosystem I (PSI)-mediated ATP synthesis plays a key role in propelling the nitrogenase reaction. Efficient light transfer to the photosystems relies on phycobilisomes (PBS), the major antenna protein complexes. PBS undergo degradation as a natural response to nitrogen starvation. Upon nitrogen availability, these proteins are resynthesized back to normal levels in vegetative cells, but their occurrence and function in heterocysts remain inconclusive. Anabaena 33047 is a heterocystous cyanobacterium that thrives under high light, harbors larger amounts of PBS in its heterocysts, and fixes nitrogen at higher rates compared to other heterocystous cyanobacteria. To assess the relationship between PBS in heterocysts and nitrogenase function, we engineered a strain that retains large amounts of the antenna proteins in its heterocysts. Intriguingly, under high light intensities, the engineered strain exhibited unusually high rates of nitrogenase activity compared to the wild type. Spectroscopic analysis revealed altered PSI kinetics in the mutant with increased cyclic electron flow around PSI, a route that contributes to ATP generation and nitrogenase activity in heterocysts. Retaining higher levels of PBS in heterocysts appears to be an effective strategy to enhance nitrogenase function in cyanobacteria that are equipped with the machinery to operate under high light intensities. IMPORTANCE The function of phycobilisomes, the large antenna protein complexes in heterocysts has long been debated. This study provides direct evidence of the involvement of these proteins in supporting nitrogenase activity in Anabaena 33047, a heterocystous cyanobacterium that has an affinity for high light intensities. This strain was previously known to be recalcitrant to genetic manipulation and, hence, despite its many appealing traits, remained largely unexplored. We developed a genetic modification system for this strain and generated a ΔnblA mutant that exhibited resistance to phycobilisome degradation upon nitrogen starvation. Physiological characterization of the strain indicated that PBS degradation is not essential for acclimation to nitrogen deficiency and retention of PBS is advantageous for nitrogenase function.
Collapse
Affiliation(s)
| | - Zi Ye
- Department of Biology, Washington University, St. Louis, Missouri, USA
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | |
Collapse
|
2
|
Lee NK, Oh HM, Kim HS, Ahn CY. Higher production of C-phycocyanin by nitrogen-free (diazotrophic) cultivation of Nostoc sp. NK and simplified extraction by dark-cold shock. BIORESOURCE TECHNOLOGY 2017; 227:164-170. [PMID: 28024193 DOI: 10.1016/j.biortech.2016.12.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 05/23/2023]
Abstract
Nostoc sp. NK (KCTC 12772BP) was isolated and cultivated in a BG11 medium and a nitrate-free BG11 medium (BG110). To enhance C-phycocyanin (C-PC) content in the cells, different fluorescent lamps (white, plant, and red) were used as light sources for complementary chromatic adaptation (CCA). The maximum biomass productivity was 0.42g/L/d and 0.32g/L/d under BG11 and BG110 conditions, respectively. The maximum C-PC contents were 8.4% (w/w) under white lamps, 13.6% (w/w) under plant lamps, and 18% (w/w) under BG110 and the red light condition. The maximum C-PC productivity was 57.4mg/L/d in BG110 under the red lamp condition. These results indicate that a higher C-PC content could be obtained under a diazotrophic condition and a CCA reaction. The C-PC could be released naturally from cells without any extraction processes, when Nostoc sp. NK was cultivated in the BG110 medium with CO2 aeration and put in dark conditions at 5°C.
Collapse
Affiliation(s)
- Na Kyeong Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Green Chemistry and Environmental Biotechnology, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Zhang T, Gong H, Wen X, Lu C. Salt stress induces a decrease in excitation energy transfer from phycobilisomes to photosystem II but an increase to photosystem I in the cyanobacterium Spirulina platensis. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:951-8. [PMID: 20417984 DOI: 10.1016/j.jplph.2009.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/02/2009] [Accepted: 12/02/2009] [Indexed: 05/21/2023]
Abstract
The effects of salt stress (0-0.8M NaCl) on excitation energy transfer from phycobilisomes to photosystem I (PSI) and photosystem II (PSII) in the cyanobacterium Spirulina platensis were investigated. Salt stress resulted in a significant decrease in photosynthetic oxygen evolution activity and PSII electron transport activity, but a significant increase in PSI electron transport activity. Analyses of the polyphasic fluorescence transients (OJIP) showed that, with an increase in salt concentration, the fluorescence yield at the phases J, I and P declined considerably and the transient almost leveled off at 0.8M NaCl. Analyses of the JIP test demonstrated that salt stress led to a decrease in the maximal efficiency of PSII photochemistry, the probability of electron transfer beyond Q(A), and the yield of electron transport beyond Q(A). In addition, salt stress resulted in a decrease in the electron transport per PSII reaction center, but an increase in the absorption per PSII reaction center. However, there was no significant change in the trapping per PSII reaction center. Furthermore, there was a decrease in the concentration of the active PSII reaction centers. Analyses of 77K chlorophyll fluorescence emission spectra excited either at 436 or 580nm showed that salt stress inhibited excitation energy transfer from phycobilisomes to PSII but induced an increase in the efficiency of energy transfer from phycobilisomes to PSI. Based on these results, it is suggested that, through a down-regulation of PSII reaction centers and a shift of excitation energy transfer in favor of PSI, the PSII apparatus was protected from excess excitation energy.
Collapse
Affiliation(s)
- Tao Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
5
|
Kota S, Misra HS. Identification of a DNA processing complex fromDeinococcus radiodurans. Biochem Cell Biol 2008; 86:448-58. [DOI: 10.1139/o08-122] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An efficient DNA strand break repair contributes to the radioresistance of Deinococcus radiodurans , which harbors the DNA repair pathways nearly identical to Escherichia coli . The molecular mechanisms of these proteins functioning in 2 diverse classes of bacteria seem to be different. The macromolecular interactions and formation of multiprotein complexes in vivo have gained significant importance in explaining the mechanism of the complex cellular processes. Here, we report the identification of a novel DNA metabolic protein complex from D. radiodurans. A similar complex has, however, not been found in E. coli. Mass spectrometric analysis showed the presence of a few known DNA repair proteins, molecular chaperones, and a large number of uncharacterized proteins from D. radiodurans R1. Biochemical and immunoblotting results indicated the presence of the protein promoting DNA repair A, DNA polymerase, Mg2+, and (or) Mn2+-dependent 5′→3′ exonuclease activity along with protein kinase activity and phosphoproteins. DNA ligase activity was completely dependent upon the ATP requirement, as no ligase activity was seen in the presence of NAD as a cofactor. These results suggest the molecular interactions of the known DNA repair proteins with uncharacterized proteins in the macromolecular complex and the regulation of DNA degradation with the involvement of ATP and protein kinase functions.
Collapse
Affiliation(s)
- Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai – 400 085, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai – 400 085, India
| |
Collapse
|
6
|
Küpper H, Šetlík I, Seibert S, Prášil O, Šetlikova E, Strittmatter M, Levitan O, Lohscheider J, Adamska I, Berman-Frank I. Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. THE NEW PHYTOLOGIST 2008; 179:784-798. [PMID: 18513224 DOI: 10.1111/j.1469-8137.2008.02497.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
* As iron (Fe) deficiency is a main limiting factor of ocean productivity, its effects were investigated on interactions between photosynthesis and nitrogen fixation in the marine nonheterocystous diazotrophic cyanobacterium Trichodesmium IMS101. * Biophysical methods such as fluorescence kinetic microscopy, fast repetition rate (FRR) fluorimetry, and in vivo and in vitro spectroscopy of pigment composition were used, and nitrogenase activity and the abundance of key proteins were measured. * Fe limitation caused a fast down-regulation of nitrogenase activity and protein levels. By contrast, the abundance of Fe-requiring photosystem I (PSI) components remained constant. Total levels of phycobiliproteins remained unchanged according to single-cell in vivo spectra. However, the regular 16-kDa phycoerythrin band decreased and finally disappeared 16-20 d after initiation of Fe limitation, concomitant with the accumulation of a 20-kDa protein cross-reacting with the phycoerythrin antibody. Concurrently, nitrogenase expression and activity increased. Fe limitation dampened the daily cycle of photosystem II (PSII) activity characteristic of diazotrophic Trichodesmium cells. Further, it increased the number and prolonged the time period of occurrence of cells with elevated basic fluorescence (F(0)). Additionally, it increased the effective cross-section of PSII, probably as a result of enhanced coupling of phycobilisomes to PSII, and led to up-regulation of the Fe stress protein IsiA. * Trichodesmium survives short-term Fe limitation by selectively down-regulating nitrogen fixation while maintaining but re-arranging the photosynthetic apparatus.
Collapse
Affiliation(s)
- Hendrik Küpper
- Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz, Germany
- University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice, Czech Republic
| | - Ivan Šetlík
- University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice, Czech Republic
- Academy of Sciences of the Czech Republic, Institute of Microbiology, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-37981 Třeboň, Czech Republic
| | - Sven Seibert
- Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz, Germany
| | - Ondrej Prášil
- University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice, Czech Republic
- Academy of Sciences of the Czech Republic, Institute of Microbiology, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-37981 Třeboň, Czech Republic
| | - Eva Šetlikova
- University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice, Czech Republic
- Academy of Sciences of the Czech Republic, Institute of Microbiology, Department of Autotrophic Microorganisms, Opatovický mlýn, CZ-37981 Třeboň, Czech Republic
| | - Martina Strittmatter
- Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz, Germany
| | - Orly Levitan
- Bar Ilan University, Mina and Everard Goodman Faculty of Life Sciences, Ramat Gan, 52900, Israel
| | - Jens Lohscheider
- Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz, Germany
| | - Iwona Adamska
- Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz, Germany
| | - Ilana Berman-Frank
- Bar Ilan University, Mina and Everard Goodman Faculty of Life Sciences, Ramat Gan, 52900, Israel
| |
Collapse
|
7
|
Khairnar NP, Kamble VA, Mangoli SH, Apte SK, Misra HS. Involvement of a periplasmic protein kinase in DNA strand break repair and homologous recombination in Escherichia coli. Mol Microbiol 2007; 65:294-304. [PMID: 17630970 DOI: 10.1111/j.1365-2958.2007.05779.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The involvement of signal transduction in the repair of radiation-induced damage to DNA has been known in eukaryotes but remains understudied in bacteria. This article for the first time demonstrates a role for the periplasmic lipoprotein (YfgL) with protein kinase activity transducing a signal for DNA strand break repair in Escherichia coli. Purified YfgL protein showed physical as well as functional interaction with pyrroloquinoline-quinone in solution and the protein kinase activity of YfgL was strongly stimulated in the presence of pyrroloquinoline-quinone. Transgenic E. coli cells producing Deinococcus radiodurans pyrroloquinoline-quinone synthase showed nearly four log cycle improvement in UVC dark survival and 10-fold increases in gamma radiation resistance as compared with untransformed cells. Pyrroloquinoline-quinone enhanced the UV resistance of E. coli through the YfgL protein and required the active recombination repair proteins. The yfgL mutant showed higher sensitivity to UVC, mitomycin C and gamma radiation as compared with wild-type cells and showed a strong impairment in homologous DNA recombination. The mutant expressing an active YfgL in trans recovered the lost phenotypes to nearly wild-type levels. The results strongly suggest that the periplasmic phosphoquinolipoprotein kinase YfgL plays an important role in radiation-induced DNA strand break repair and homologous recombination in E. coli.
Collapse
Affiliation(s)
- Nivedita P Khairnar
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai--400085, India
| | | | | | | | | |
Collapse
|
8
|
Ying L, Huang X, Huang B, Xie J, Zhao J, Sheng Zhao X. Fluorescence Emission and Absorption Spectra of Single Anabaena sp. Strain PCC7120 Cells¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2002)0760310feaaso2.0.co2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Wen X, Gong H, Lu C. Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem II but not to photosystem I in a cyanobacterium Spirulina platensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:389-95. [PMID: 15907691 DOI: 10.1016/j.plaphy.2005.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 03/03/2005] [Indexed: 05/02/2023]
Abstract
The effects of high temperature (30-52.5 degrees C) on excitation energy transfer from phycobilisomes (PBS) to photosystem I (PSI) and photosystem II (PSII) in a cyanobacterium Spirulina platensis grown at 30 degrees C were studied by measuring 77 K chlorophyll (Chl) fluorescence emission spectra. Heat stress had a significant effect on 77 K Chl fluorescence emission spectra excited either at 436 or 580 nm. In order to reveal what parts of the photosynthetic apparatus were responsible for the changes in the related Chl fluorescence emission peaks, we fitted the emission spectra by Gaussian components according to the assignments of emission bands to different components of the photosynthetic apparatus. The 643 and 664 nm emissions originate from C-phycocyanin (CPC) and allophycocyanin (APC), respectively. The 685 and 695 nm emissions originate mainly from the core antenna complexes of PSII, CP43 and CP47, respectively. The 725 and 751 nm band is most effectively produced by PSI. There was no significant change in F725 and F751 during heat stress, suggesting that heat stress had no effects on excitation energy transfer from PBS to PSI. On the other hand, heat stress induced an increase in the ratio of Chl fluorescence yield of PBS to PSII, indicating that heat stress inhibits excitation energy transfer from PBS to PSII. However, this inhibition was not associated with an inhibition of excitation energy transfer from CPC to APC since no significant changes in F643 occurred at high temperatures. A dramatic enhancement of F664 occurring at 52.5 degrees C indicates that excitation energy transfer from APC to the PSII core complexes is suppressed at this temperature, possibly due to the structural changes within the PBS core but not to a detachment of PBS from PSII, resulting in an inhibition of excitation energy transfer from APC to PSII core complexes (CP47 + CP43). A decrease in F685 and F695 in heat-stressed cells with excitation at 436 nm seems to suggest that heat stress did not inhibit excitation energy transfer from the Chl a binding proteins CP47 and CP43 to the PSII reaction center and the decreased Chl fluorescence yields from CP43 and CP47 could be explained by the inhibition of the energy transfer from APC to PSII core complexes (CP47 + CP43).
Collapse
Affiliation(s)
- Xiaogang Wen
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | |
Collapse
|
10
|
Küpper H, Ferimazova N, Setlík I, Berman-Frank I. Traffic lights in trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. PLANT PHYSIOLOGY 2004; 135:2120-33. [PMID: 15299119 PMCID: PMC520784 DOI: 10.1104/pp.104.045963] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We investigated interactions between photosynthesis and nitrogen fixation in the non-heterocystous marine cyanobacterium Trichodesmium IMS101 at the single-cell level by two-dimensional (imaging) microscopic measurements of chlorophyll fluorescence kinetics. Nitrogen fixation was closely associated with the appearance of cells with high basic fluorescence yield (F(0)), termed bright cells. In cultures aerated with normal air, both nitrogen fixation and bright cells appeared in the middle of the light phase. In cultures aerated with 5% oxygen, both processes occurred at a low level throughout most of the day. Under 50% oxygen, nitrogen fixation commenced at the beginning of the light phase but declined soon afterwards. Rapid reversible switches between fluorescence levels were observed, which indicated that the elevated F(0) of the bright cells originates from reversible uncoupling of the photosystem II (PSII) antenna from the PSII reaction center. Two physiologically distinct types of bright cells were observed. Type I had about double F(0) compared to the normal F(0) in the dark phase and a PSII activity, measured as variable fluorescence (F(v) = F(m) - F(0)), similar to normal non-diazotrophic cells. Correlation of type I cells with nitrogen fixation, oxygen concentration, and light suggests that this physiological state is connected to an up-regulation of the Mehler reaction, resulting in oxygen consumption despite functional PSII. Type II cells had more than three times the normal F(0) and hardly any PSII activity measurable by variable fluorescence. They did not occur under low-oxygen concentrations, but appeared under high-oxygen levels outside the diazotrophic period, suggesting that this state represents a reaction to oxidative stress not necessarily connected to nitrogen fixation. In addition to the two high-fluorescence states, cells were observed to reversibly enter a low-fluorescence state. This occurred mainly after a cell went through its bright phase and may represent a fluorescence-quenching recovery phase.
Collapse
Affiliation(s)
- Hendrik Küpper
- Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, Universität Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
11
|
Berman-Frank I, Lundgren P, Falkowski P. Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 2003; 154:157-64. [PMID: 12706503 DOI: 10.1016/s0923-2508(03)00029-9] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The biological reduction of N(2) is catalyzed by nitrogenase, which is irreversibly inhibited by molecular oxygen. Cyanobacteria are the only diazotrophs (nitrogen-fixing organisms) that produce oxygen as a by-product of the photosynthetic process, and which must negotiate the inevitable presence of molecular oxygen with an essentially anaerobic enzyme. In this review, we present an analysis of the geochemical conditions under which nitrogenase evolved and examine how the evolutionary history of the enzyme complex corresponds to the physiological, morphological, and developmental strategies for reducing damage by molecular oxygen. Our review highlights biogeochemical constraints on diazotrophic cyanobacteria in the contemporary world.
Collapse
Affiliation(s)
- Ilana Berman-Frank
- Environmental Biophysics and Molecular Ecology Program, Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|
12
|
Misra HS, Khairnar NP, Mahajan SK. An alternate photosynthetic electron donor system for PSI supports light dependent nitrogen fixation in a non-heterocystous cyanobacterium, Plectonema boryanum. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:33-39. [PMID: 12685043 DOI: 10.1078/0176-1617-00846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plectonema boryanum exhibits temporal separation of photosynthesis and nitrogen fixation under diazotrophic conditions. During nitrogen fixation, the photosynthetic electron transport chain becomes impaired, which leads to the uncoupling of the PSII and PSI activities. A 30-40% increase in PSI activity and continuous generation of ATP through light-dependent processes seem to support the nitrogen fixation. The use of an artificial electron carrier that shuttles electrons between the plastoquinone pool and plastocyanin, bypassing cytochrome b/f complex, enhanced the photosynthetic electron transport activity five to six fold during nitrogen fixation. Measuring of full photosynthetic electron transport activity using methyl voilogen as a terminal acceptor revealed that the photosynthetic electron transport components beyond plastocyanin might be functional. Further, glycolate can act as a source of electrons for PSI for the nitrogen fixing cells, which have residual PSII activity. Under conditions when PSI becomes largely independent of PSII and glycolate provides electrons for PSI activity, the light-dependent nitrogen fixation also was stimulated by glycolate. These results suggest that during nitrogen fixation, when the photosynthetic electron transport from PSII is inhibited at the level of cytochrome b/f complex, an alternate electron donor system for PSI may be required for the cells to carry out light dependent nitrogen fixation.
Collapse
Affiliation(s)
- Hari S Misra
- Molecular Biology & Agriculture Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India.
| | | | | |
Collapse
|
13
|
Ying L, Huang X, Huang B, Xie J, Zhao J, Zhao XS. Fluorescence emission and absorption spectra of single Anabaena sp. strain PCC7120 cells. Photochem Photobiol 2002; 76:310-3. [PMID: 12403452 DOI: 10.1562/0031-8655(2002)076<0310:feaaso>2.0.co;2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The fluorescence emission and absorption spectra of single Anabaena sp. strain PCC7120 cells including vegetative cells and heterocysts have been studied in intact filaments in vivo with confocal microscopy and grating spectrography. The diameters of the excitation and detection areas in the cells are less than 1.0 microm. Heterogeneities within the same cell and among different cells are observed. The evident spectral heterogeneities in heterocysts, not reported previously, are attributed to the different stages of the evolution of phycobilisomes in heterocysts. The photosystem II in heterocysts were found to be not metabolized completely.
Collapse
Affiliation(s)
- Lizhen Ying
- State Key Laboratory of Molecular Dynamic and Stable Structures, Department of Chemical Biology, College of Chemistry, Peking University, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Postius C, Neuschaefer-Rube O, Haid V, Böger P. N2-fixation and complementary chromatic adaptation in non-heterocystous cyanobacteria from Lake Constance. FEMS Microbiol Ecol 2001. [DOI: 10.1111/j.1574-6941.2001.tb00859.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|