1
|
Govindjee G, Amesz B, Garab G, Stirbet A. Remembering Jan Amesz (1934-2001): a great gentleman, a major discoverer, and an internationally renowned biophysicist of both oxygenic and anoxygenic photosynthesis a. PHOTOSYNTHESIS RESEARCH 2024; 160:125-142. [PMID: 38687462 DOI: 10.1007/s11120-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
We present here the research contributions of Jan Amesz (1934-2001) on deciphering the details of the early physico-chemical steps in oxygenic photosynthesis in plants, algae and cyanobacteria, as well as in anoxygenic photosynthesis in purple, green, and heliobacteria. His research included light absorption and the mechanism of excitation energy transfer, primary photochemistry, and electron transfer steps until the reduction of pyridine nucleotides. Among his many discoveries, we emphasize his 1961 proof, with L. N. M. Duysens, of the "series scheme" of oxygenic photosynthesis, through antagonistic effects of Light I and II on the redox state of cytochrome f. Further, we highlight the following research on oxygenic photosynthesis: the experimental direct proof that plastoquinone and plastocyanin function at their respective places in the Z-scheme. In addition, Amesz's major contributions were in unraveling the mechanism of excitation energy transfer and electron transport steps in anoxygenic photosynthetic bacteria (purple, green and heliobacteria). Before we present his research, focusing on his key discoveries, we provide a glimpse of his personal life. We end this Tribute with reminiscences from three of his former doctoral students (Sigi Neerken; Hjalmar Pernentier, and Frank Kleinherenbrink) and from several scientists (Suleyman Allakhverdiev; Robert Blankenship; Richard Cogdell) including two of the authors (G. Garab and A. Stirbet) of this Tribute.
Collapse
Affiliation(s)
- Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Bas Amesz
- Albertus Perkstraat 35, 1217 NL, Hilversum, The Netherlands
| | - Győző Garab
- Biological Research Centre, Institute of Plant Biology, HUN-REN, 6726, Szeged, Hungary
- Department of Physics, Faculty of Science, University of Ostrava, 71000, Ostrava, Czech Republic
| | | |
Collapse
|
2
|
Brütting M, Foerster JM, Kümmel S. Understanding Primary Charge Separation in the Heliobacterial Reaction Center. J Phys Chem Lett 2023; 14:3092-3102. [PMID: 36951395 DOI: 10.1021/acs.jpclett.3c00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The homodimeric reaction center of heliobacteria retains features of the ancestral reaction center and can thus provide insights into the evolution of photosynthesis. Primary charge separation is expected to proceed in a two-step mechanism along either of the two reaction center branches. We reveal the first charge-separation step from first-principles calculations based on time-dependent density functional theory with an optimally tuned range-separated hybrid and ab initio Born-Oppenheimer molecular dynamics: the electron is most likely localized on the electron transfer cofactor 3 (EC3, OH-chlorophyll a), and the hole on the adjacent EC2. Including substantial parts of the surrounding protein environment into the calculations shows that a distinct structural mechanism is decisive for the relative energetic positioning of the electronic excitations: specific charged amino acids in the vicinity of EC3 lower the energy of charge-transfer excitations and thus facilitate efficient charge separation. These results are discussed considering recent experimental insights.
Collapse
|
3
|
Pinevich AV, Averina SG. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Kondo T, Mutoh R, Arai S, kurisu G, Oh-oka H, Fujiyoshi S, Matsushita M. Energy transfer fluctuation observed by single-molecule spectroscopy of red-shifted bacteriochlorophyll in the homodimeric photosynthetic reaction center. J Chem Phys 2022; 156:105102. [DOI: 10.1063/5.0077290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Toru Kondo
- Department of Life Science and Technology, Tokyo Institute of Technology, Japan
| | | | - Shun Arai
- Tokyo Institute of Technology, Japan
| | | | | | | | | |
Collapse
|
5
|
Agostini A, Bortolus M, Ferlez B, Walters K, Golbeck JH, van der Est A, Carbonera D. Differential sensitivity to oxygen among the bacteriochlorophylls g in the type-I reaction centers of Heliobacterium modesticaldum. Photochem Photobiol Sci 2021; 20:747-759. [PMID: 34018156 DOI: 10.1007/s43630-021-00049-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/28/2021] [Indexed: 11/27/2022]
Abstract
The type-I, homodimeric photosynthetic reaction center (RC) of Heliobacteria (HbRC) is the only known RC in which bacteriochlorophyll g (BChl g) is found. It is also simpler than other RCs, having the smallest number of protein subunits and bound chromophores of any type-I RC. In the presence of oxygen, BChl g isomerizes to 81-hydroxychlorophyll aF (Chl aF). This naturally occurring process provides a way of altering the chlorophylls and studying the effect of these changes on energy and electron transfer. Transient absorbance difference spectroscopy reveals that triplet-state formation occurs in the antenna chlorophylls of HbRCs but does not provide site-specific information. Here, we report on an extended optically detected magnetic resonance (ODMR) study of the antenna triplet states in HbRCs with differing levels of conversion of BChl g to Chl aF. The data reveal pools of BChl g molecules with different triplet zero-field splitting parameters and different susceptibilities to chemical oxidation. By relating the detailed spectroscopic characteristics derived from the ODMR data to the recently solved crystallographic structure, we have tentatively identified BChl g molecules in which the probability of triplet formation is high and sites at which BChl g conversion is more likely, providing useful information about the fate of the excitation in the complex.
Collapse
Affiliation(s)
- Alessandro Agostini
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padua, Italy.,Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branisovska 31, 37005, České Budějovice, Czechia
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padua, Italy
| | - Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Biochemistry and Molecular Biology and MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Karim Walters
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Art van der Est
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock, Way, Saint Catharines, ON, L2S 3A1, Canada.
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via Marzolo, 1, 35131, Padua, Italy.
| |
Collapse
|
6
|
Excitonic structure and charge separation in the heliobacterial reaction center probed by multispectral multidimensional spectroscopy. Nat Commun 2021; 12:2801. [PMID: 33990569 PMCID: PMC8121816 DOI: 10.1038/s41467-021-23060-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/09/2021] [Indexed: 12/29/2022] Open
Abstract
Photochemical reaction centers are the engines that drive photosynthesis. The reaction center from heliobacteria (HbRC) has been proposed to most closely resemble the common ancestor of photosynthetic reaction centers, motivating a detailed understanding of its structure-function relationship. The recent elucidation of the HbRC crystal structure motivates advanced spectroscopic studies of its excitonic structure and charge separation mechanism. We perform multispectral two-dimensional electronic spectroscopy of the HbRC and corresponding numerical simulations, resolving the electronic structure and testing and refining recent excitonic models. Through extensive examination of the kinetic data by lifetime density analysis and global target analysis, we reveal that charge separation proceeds via a single pathway in which the distinct A0 chlorophyll a pigment is the primary electron acceptor. In addition, we find strong delocalization of the charge separation intermediate. Our findings have general implications for the understanding of photosynthetic charge separation mechanisms, and how they might be tuned to achieve different functional goals. The primary energy conversion step in photosynthesis, charge separation, takes place in the reaction center. Here the authors investigate the heliobacterial reaction center using multispectral two-dimensional electronic spectroscopy, identifying the primary electron acceptor and revealing the charge separation mechanism.
Collapse
|
7
|
Brütting M, Foerster JM, Kümmel S. Investigating Primary Charge Separation in the Reaction Center of Heliobacterium modesticaldum. J Phys Chem B 2021; 125:3468-3475. [PMID: 33788561 DOI: 10.1021/acs.jpcb.0c10283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We compute the primary charge separation step in the homodimeric reaction center (RC) of Heliobacterium modesticaldum from first principles. Using time-dependent density functional theory with the optimally tuned range-separated hybrid functional ωPBE, we calculate the excitations of a system comprising the special pair, the adjacent accessory bacteriochlorophylls, and the most relevant parts of the surrounding protein environment. The structure of the excitation spectrum can be rationalized from coupling of the individual bacteriochlorophyll pigments similar to molecular J- and H-aggregates. We find excited states corresponding to forward-charge transfer along the individual branches of the RC of H. modesticaldum. In the spectrum, these are located at an energy between the coupled Qy and Qx transitions. With ab initio Born-Oppenheimer molecular dynamics simulations, we reveal the influence of thermal vibrations on the excited states. The results show that the energy gap between the coupled Qy and the forward-charge transfer excitations is ∼0.4 eV, which we consider to conflict with the concept of a direct transfer mechanism. Our calculations, however, reveal a certain spectral overlap of the forward-charge transfer and the coupled Qx excitations. The reliability and robustness of the results are demonstrated by several numerical tests.
Collapse
|
8
|
Kondo T, Mutoh R, Tabe H, Kurisu G, Oh-Oka H, Fujiyoshi S, Matsushita M. Cryogenic Single-Molecule Spectroscopy of the Primary Electron Acceptor in the Photosynthetic Reaction Center. J Phys Chem Lett 2020; 11:3980-3986. [PMID: 32352789 DOI: 10.1021/acs.jpclett.0c00891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photosynthetic reaction center (RC) converts light energy into electrochemical energy. The RC of heliobacteria (hRC) is a primitive homodimeric RC containing 58 bacteriochlorophylls and 2 chlorophyll as. The chlorophyll serves as the primary electron acceptor (Chl a-A0) responsible for light harvesting and charge separation. The single-molecule spectroscopy of Chl a-A0 can be used to investigate heterogeneities of the RC photochemical function, though the low fluorescence quantum yield (0.1%) makes it difficult. Here, we show the fluorescence excitation spectroscopy of individual Chl a-A0s in single hRCs at 6 K. The fluorescence quantum yield and absorption cross section of Chl a-A0 increase 2- and 4-fold, respectively, compared to those at room temperature. The two Chl a-A0s in single hRCs are identified as two distinct peaks in the fluorescence excitation spectrum, exhibiting different excitation polarization dependences. The spectral changes caused by photobleaching indicate the energy transfer across subunits in the hRC.
Collapse
Affiliation(s)
- Toru Kondo
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Tabe
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirozo Oh-Oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Satoru Fujiyoshi
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Michio Matsushita
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| |
Collapse
|
9
|
Dewey ED, Stokes LM, Burchell BM, Shaffer KN, Huntington AM, Baker JM, Nadendla S, Giglio MG, Bender KS, Touchman JW, Blankenship RE, Madigan MT, Sattley WM. Analysis of the Complete Genome of the Alkaliphilic and Phototrophic Firmicute Heliorestis convoluta Strain HH T. Microorganisms 2020; 8:E313. [PMID: 32106460 PMCID: PMC7143216 DOI: 10.3390/microorganisms8030313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/16/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
Despite significant interest and past work to elucidate the phylogeny and photochemistry of species of the Heliobacteriaceae, genomic analyses of heliobacteria to date have been limited to just one published genome, that of the thermophilic species Heliobacterium (Hbt.) modesticaldum str. Ice1T. Here we present an analysis of the complete genome of a second heliobacterium, Heliorestis (Hrs.) convoluta str. HHT, an alkaliphilic, mesophilic, and morphologically distinct heliobacterium isolated from an Egyptian soda lake. The genome of Hrs. convoluta is a single circular chromosome of 3.22 Mb with a GC content of 43.1% and 3263 protein-encoding genes. In addition to culture-based observations and insights gleaned from the Hbt. modesticaldum genome, an analysis of enzyme-encoding genes from key metabolic pathways supports an obligately photoheterotrophic lifestyle for Hrs. convoluta. A complete set of genes encoding enzymes for propionate and butyrate catabolism and the absence of a gene encoding lactate dehydrogenase distinguishes the carbon metabolism of Hrs. convoluta from its close relatives. Comparative analyses of key proteins in Hrs. convoluta, including cytochrome c553 and the Fo alpha subunit of ATP synthase, with those of related species reveal variations in specific amino acid residues that likely contribute to the success of Hrs. convoluta in its highly alkaline environment.
Collapse
Affiliation(s)
- Emma D. Dewey
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Lynn M. Stokes
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Brad M. Burchell
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Kathryn N. Shaffer
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Austin M. Huntington
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Jennifer M. Baker
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| | - Suvarna Nadendla
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.N.); (M.G.G.)
| | - Michelle G. Giglio
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.N.); (M.G.G.)
| | - Kelly S. Bender
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA; (K.S.B.); (M.T.M.)
| | | | - Robert E. Blankenship
- Departments of Biology and Chemistry, Washington University in Saint Louis, St. Louis, MO 63130, USA;
| | - Michael T. Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA; (K.S.B.); (M.T.M.)
| | - W. Matthew Sattley
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; (E.D.D.); (L.M.S.); (B.M.B.); (K.N.S.); (A.M.H.); (J.M.B.)
| |
Collapse
|
10
|
Ortega-Ramos M, Canniffe DP, Radle MI, Neil Hunter C, Bryant DA, Golbeck JH. Engineered biosynthesis of bacteriochlorophyll g F in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:501-509. [PMID: 29496394 DOI: 10.1016/j.bbabio.2018.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/01/2018] [Accepted: 02/23/2018] [Indexed: 01/29/2023]
Abstract
Engineering photosynthetic bacteria to utilize a heterologous reaction center that contains a different (bacterio) chlorophyll could improve solar energy conversion efficiency by allowing cells to absorb a broader range of the solar spectrum. One promising candidate is the homodimeric type I reaction center from Heliobacterium modesticaldum. It is the simplest known reaction center and uses bacteriochlorophyll (BChl) g, which absorbs in the near-infrared region of the spectrum. Like the more common BChls a and b, BChl g is a true bacteriochlorin. It carries characteristic C3-vinyl and C8-ethylidene groups, the latter shared with BChl b. The purple phototrophic bacterium Rhodobacter (Rba.) sphaeroides was chosen as the platform into which the engineered production of BChl gF, where F is farnesyl, was attempted. Using a strain of Rba. sphaeroides that produces BChl bP, where P is phytyl, rather than the native BChl aP, we deleted bchF, a gene that encodes an enzyme responsible for the hydration of the C3-vinyl group of a precursor of BChls. This led to the production of BChl gP. Next, the crtE gene was deleted, thereby producing BChl g carrying a THF (tetrahydrofarnesol) moiety. Additionally, the bchGRs gene from Rba. sphaeroides was replaced with bchGHm from Hba. modesticaldum. To prevent reduction of the tail, bchP was deleted, which yielded BChl gF. The construction of a strain producing BChl gF validates the biosynthetic pathway established for its synthesis and satisfies a precondition for assembling the simplest reaction center in a heterologous organism, namely the biosynthesis of its native pigment, BChl gF.
Collapse
Affiliation(s)
- Marcia Ortega-Ramos
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Daniel P Canniffe
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Matthew I Radle
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
11
|
Ferlez B, Agostini A, Carbonera D, Golbeck JH, van der Est A. Triplet Charge Recombination in Heliobacterial Reaction Centers Does Not Produce a Spin-Polarized EPR Spectrum. Z PHYS CHEM 2016. [DOI: 10.1515/zpch-2016-0825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In photosynthetic reaction centers, reduction of the secondary acceptors leads to triplet charge recombination of the primary radical pair (RP). This process is spin selective and in a magnetic field it populates only the T0 state of the donor triplet state. As a result, the triplet state of the donor has a distinctive spin polarization pattern that can be measured by transient electron paramagnetic resonance (TREPR) spectroscopy. In heliobacterial reaction centers (HbRCs), the primary donor, P800, is composed of two bacteriochlorophyll g′ molecules and its triplet state has not been studied as extensively as those of other reaction centers. Here, we present TREPR and optically detected magnetic resonance (ODMR) data of 3P800 and show that although it can be detected by ODMR it is not observed in the TREPR data. We demonstrate that the absence of the TREPR spectrum is a result of the fact that the zero-field splitting (ZFS) tensor of 3P800 is maximally rhombic, which results in complete cancelation of the absorptive and emissive polarization in randomly oriented samples.
Collapse
Affiliation(s)
- Bryan Ferlez
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Alessandro Agostini
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - Donatella Carbonera
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo, 1, 35131 Padova, Italy
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America
- Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr.19, 79104 Freiburg, Germany
| | - Art van der Est
- Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Albertstr.19, 79104 Freiburg, Germany
- Departments of Chemistry and Physics, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, Canada L2S 3A1
| |
Collapse
|
12
|
Nowicka B, Kruk J. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res 2016; 186-187:99-118. [PMID: 27242148 DOI: 10.1016/j.micres.2016.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 04/01/2016] [Indexed: 11/29/2022]
Abstract
Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
13
|
Ferlez B, Dong W, Siavashi R, Redding K, Hou HJM, Golbeck JH, van der Est A. The Effect of Bacteriochlorophyll g Oxidation on Energy and Electron Transfer in Reaction Centers from Heliobacterium modesticaldum. J Phys Chem B 2015; 119:13714-25. [PMID: 26030062 DOI: 10.1021/acs.jpcb.5b03339] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The heliobacteria are a family of strictly anaerobic, Gram-positive, photoheterotrophs in the Firmicutes. They make use of a homodimeric type I reaction center (RC) that contains ∼20 antenna bacteriochlorophyll (BChl) g molecules, a special pair of BChl g' molecules (P800), two 8(1)-OH-Chl aF molecules (A0), a [4Fe-4S] iron-sulfur cluster (FX), and a carotenoid (4,4'-diaponeurosporene). It is known that in the presence of light and oxygen BChl g is converted to a species with an absorption spectrum identical to that of Chl a. Here, we show that main product of the conversion is 8(1)-OH-Chl aF. Smaller amounts of two other oxidized Chl aF species are also produced. In the presence of light and oxygen, the kinetics of the conversion are monophasic and temperature dependent, with an activation energy of 66 ± 2 kJ mol(-1). In the presence of oxygen in the dark, the conversion occurs in two temperature-dependent kinetic phases: a slow phase followed by a fast phase with an activation energy of 53 ± 1 kJ mol(-1). The loss of BChl g' occurs at the same rate as the loss of Bchl g; hence, the special pair converts at the same rate as the antenna Chl's. However, the loss of P800 photooxidiation and flavodoxin reduction is not linear with the loss of BChl g. In anaerobic RCs, the charge recombination between P800(+) and FX(-) at 80 K is monophasic with a lifetime of 4.2 ms, but after exposure to oxygen, an additional phase with a lifetime of 0.3 ms is observed. Transient EPR data show that the line width of P800(+) increases as BChl g is converted to Chl aF and the rate of electron transfer from A0 to FX, as estimated from the net polarization generated by singlet-triplet mixing during the lifetime of P800(+)A0(-), is unchanged. The transient EPR data also show that conversion of the BChl g results in increased formation of triplet states of both BChl g and Chl aF. The nonlinear loss of P800 photooxidiation and flavodoxin reduction, the biphasic backreaction kinetics, and the increased EPR line width of P800(+) are all consistent with a model in which the BChl g'/BChl g' and BChl g'/Chl aF' special pairs are functional but the Chl aF'/Chl aF' special pair is not.
Collapse
Affiliation(s)
| | | | | | - Kevin Redding
- Department of Chemistry & Biochemistry, Arizona State University , Tempe, Arizona 85287, United States
| | - Harvey J M Hou
- Department of Physical Sciences, Alabama State University , Montgomery, Alabama 36104, United States
| | | | | |
Collapse
|
14
|
Yang JH, Sarrou I, Martin-Garcia JM, Zhang S, Redding KE, Fromme P. Purification and biochemical characterization of the ATP synthase from Heliobacterium modesticaldum. Protein Expr Purif 2015; 114:1-8. [PMID: 25979464 DOI: 10.1016/j.pep.2015.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 11/26/2022]
Abstract
Heliobacterium modesticaldum is an anaerobic photosynthetic bacterium that grows optimally at pH 6-7 and 52°C and is the only phototrophic member of the Firmicutes phylum family (gram-positive bacteria with low GC content). The ATP synthase of H. modesticaldum was isolated and characterized at the biochemical and biophysical levels. The isolated holoenzyme exhibited the subunit patterns of F-type ATP synthases containing a 5-subunit hydrophilic F1 subcomplex and a 3-subunit hydrophobic F0 subcomplex. ATP hydrolysis by the isolated HF1F0 ATP synthase was successfully detected after pretreatment with different detergents by an in-gel ATPase activity assay, which showed that the highest activity was detected in the presence of mild detergents such as LDAO; moreover, high catalytic activity in the gel was already detected after the initial incubation period of 0.5h. In contrast, HF1F0 showed extremely low ATPase activity in harsher detergents such as TODC. The isolated fully functional enzyme will form the basis for future structural studies.
Collapse
Affiliation(s)
- Jay-How Yang
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Iosifina Sarrou
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA; Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology-Hellas, Nikolaou Plastira 100, GR-70013 Heraklion, Crete, Greece
| | - Jose M Martin-Garcia
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Shangji Zhang
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Kevin E Redding
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Petra Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA; Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
15
|
Redding KE, Sarrou I, Rappaport F, Santabarbara S, Lin S, Reifschneider KT. Modulation of the fluorescence yield in heliobacterial cells by induction of charge recombination in the photosynthetic reaction center. PHOTOSYNTHESIS RESEARCH 2014; 120:221-235. [PMID: 24318506 DOI: 10.1007/s11120-013-9957-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/25/2013] [Indexed: 06/02/2023]
Abstract
Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800 (+)A0 (-) with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800 (+)A0 (-), some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence.
Collapse
Affiliation(s)
- Kevin E Redding
- Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., Tempe, AZ, 85287-1604, USA,
| | | | | | | | | | | |
Collapse
|
16
|
Energy Conservation in Heliobacteria: Photosynthesis and Central Carbon Metabolism. THE STRUCTURAL BASIS OF BIOLOGICAL ENERGY GENERATION 2014. [DOI: 10.1007/978-94-017-8742-0_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Sousa FL, Shavit-Grievink L, Allen JF, Martin WF. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis. Genome Biol Evol 2013; 5:200-16. [PMID: 23258841 PMCID: PMC3595025 DOI: 10.1093/gbe/evs127] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
An open question regarding the evolution of photosynthesis is how cyanobacteria came to possess the two reaction center (RC) types, Type I reaction center (RCI) and Type II reaction center (RCII). The two main competing theories in the foreground of current thinking on this issue are that either 1) RCI and RCII are related via lineage divergence among anoxygenic photosynthetic bacteria and became merged in cyanobacteria via an event of large-scale lateral gene transfer (also called "fusion" theories) or 2) the two RC types are related via gene duplication in an ancestral, anoxygenic but protocyanobacterial phototroph that possessed both RC types before making the transition to using water as an electron donor. To distinguish between these possibilities, we studied the evolution of the core (bacterio)chlorophyll biosynthetic pathway from protoporphyrin IX (Proto IX) up to (bacterio)chlorophyllide a. The results show no dichotomy of chlorophyll biosynthesis genes into RCI- and RCII-specific chlorophyll biosynthetic clades, thereby excluding models of fusion at the origin of cyanobacteria and supporting the selective-loss hypothesis. By considering the cofactor demands of the pathway and the source genes from which several steps in chlorophyll biosynthesis are derived, we infer that the cell that first synthesized chlorophyll was a cobalamin-dependent, heme-synthesizing, diazotrophic anaerobe.
Collapse
Affiliation(s)
- Filipa L Sousa
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
18
|
Amino acid-assimilating phototrophic heliobacteria from soda lake environments: Heliorestis acidaminivorans sp. nov. and ‘Candidatus Heliomonas lunata’. Extremophiles 2012; 16:585-95. [DOI: 10.1007/s00792-012-0458-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/19/2012] [Indexed: 10/28/2022]
|
19
|
Sarrou I, Khan Z, Cowgill J, Lin S, Brune D, Romberger S, Golbeck JH, Redding KE. Purification of the photosynthetic reaction center from Heliobacterium modesticaldum. PHOTOSYNTHESIS RESEARCH 2012; 111:291-302. [PMID: 22383054 DOI: 10.1007/s11120-012-9726-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/06/2012] [Indexed: 05/31/2023]
Abstract
We have developed a purification protocol for photoactive reaction centers (HbRC) from Heliobacterium modesticaldum. HbRCs were purified from solubilized membranes in two sequential chromatographic steps, resulting in the isolation of a fraction containing a single polypeptide, which was identified as PshA by LC-MS/MS of tryptic peptides. All polypeptides reported earlier as unknown proteins (in Heinnickel et al., Biochemistry 45:6756-6764, 2006; Romberger et al., Photosynth Res 104:293-303, 2010) are now identified by mass spectrometry to be the membrane-bound cytochrome c (553) and four different ABC-type transporters. The purified PshA homodimer binds the following pigments: 20 bacteriochlorophyll (BChl) g, two BChl g', two 8(1)-OH-Chl a (F), and one 4,4'-diaponeurosporene. It lacks the PshB polypeptide binding the F(A) and F(B) [4Fe-4S] clusters. It is active in charge separation and exhibits a trapping time of 23 ps, as judged by time-resolved fluorescence studies. The charge recombination rate of the P(800) (+)F(X)(-) state is 10-15 ms, as seen before. The purified HbRC core was able to reduce cyanobacterial flavodoxin in the light, exhibiting a K (M) of 10 μM and a k (cat) of 9.5 s(-1) under near-saturating light. There are ~1.6 menaquinones per HbRC in the purified complex. Illumination of frozen HbRC in the presence of dithionite can cause creation of a radical at g = 2.0046, but this is not a semiquinone. Furthermore, we show that high-purity HbRCs are very stable in anoxic conditions and even remain active in the presence of oxygen under low light.
Collapse
Affiliation(s)
- Iosifina Sarrou
- Department of Chemistry and Biochemistry, Arizona State University, 1711 S. Rural Rd., Tempe, AZ 85287-1604, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Romberger SP, Golbeck JH. The FX iron-sulfur cluster serves as the terminal bound electron acceptor in heliobacterial reaction centers. PHOTOSYNTHESIS RESEARCH 2012; 111:285-290. [PMID: 22297911 DOI: 10.1007/s11120-012-9723-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/13/2012] [Indexed: 05/31/2023]
Abstract
Phototrophs of the family Heliobacteriaceae contain the simplest known Type I reaction center (RC), consisting of a homodimeric (PshA)(2) core devoid of bound cytochromes and antenna proteins. Unlike plant and cyanobacterial Photosystem I in which the F(A)/F(B) protein, PsaC, is tightly bound to P(700)-F(X) cores, the RCs of Heliobacterium modesticaldum contain two F(A)/F(B) proteins, PshBI and PshBII, which are loosely bound to P(800)-F(X) cores. These two 2[4Fe-4S] ferredoxins have been proposed to function as mobile redox proteins, reducing downstream metabolic partners much in the same manner as does [2Fe-2S] ferredoxin or flavodoxin (Fld) in PS I. Using P(800)-F(X) cores devoid of PshBI and PshBII, we show that iron-sulfur cluster F(X) directly reduces Fld without the involvement of F(A) or F(B) (Fld is used as a proxy for soluble redox proteins even though a gene encoding Fld is not identified in the H. modesticaldum genome). The reduction of Fld is suppressed by the addition of PshBI or PshBII, an effect explained by competition for the electron on F(X). In contrast, P(700)-F(X) cores require the presence of the PsaC, and hence, the F(A)/F(B) clusters for Fld (or ferredoxin) reduction. Thus, in H. modesticaldum, the interpolypeptide F(X) cluster serves as the terminal bound electron acceptor. This finding implies that the homodimeric (PshA)(2) cores should be capable of donating electrons to a wide variety of yet-to-be characterized soluble redox partners.
Collapse
Affiliation(s)
- Steven P Romberger
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
21
|
Kargul J, Barber J. Structure and Function of Photosynthetic Reaction Centres. MOLECULAR SOLAR FUELS 2011. [DOI: 10.1039/9781849733038-00107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extensive biochemical, biophysical, molecular biological and structural studies on a wide range of prokaryotic and eukaryotic photosynthetic organisms has revealed common features of their reaction centres where light induced charge separation and stabilization occurs. There is little doubt that all reaction centres have evolved from a common ancestor and have been optimized to maximum efficiency. As such they provide principles that can be used as a blueprint for developing artificial photo-electrochemical catalytic systems to generate solar fuels. This chapter summarises the common features of the organization of cofactors, electron transfer pathways and protein environments of reaction centres of anoxygenic and oxygenic phototrophs. In particular, the latest molecular details derived from X-ray crystallography are discussed in context of the specific catalytic functions of the Type I and Type II reaction centres.
Collapse
Affiliation(s)
- Joanna Kargul
- Division of Molecular Biosciences, Faculty of Natural Sciences Imperial College London, London, SW7 2AZ UK
| | - James Barber
- Division of Molecular Biosciences, Faculty of Natural Sciences Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
22
|
Nowicka B, Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1587-605. [PMID: 20599680 DOI: 10.1016/j.bbabio.2010.06.007] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 12/23/2022]
Abstract
Isoprenoid quinones are one of the most important groups of compounds occurring in membranes of living organisms. These compounds are composed of a hydrophilic head group and an apolar isoprenoid side chain, giving the molecules a lipid-soluble character. Isoprenoid quinones function mainly as electron and proton carriers in photosynthetic and respiratory electron transport chains and these compounds show also additional functions, such as antioxidant function. Most of naturally occurring isoprenoid quinones belong to naphthoquinones or evolutionary younger benzoquinones. Among benzoquinones, the most widespread and important are ubiquinones and plastoquinones. Menaquinones, belonging to naphthoquinones, function in respiratory and photosynthetic electron transport chains of bacteria. Phylloquinone K(1), a phytyl naphthoquinone, functions in the photosynthetic electron transport in photosystem I. Ubiquinones participate in respiratory chains of eukaryotic mitochondria and some bacteria. Plastoquinones are components of photosynthetic electron transport chains of cyanobacteria and plant chloroplasts. Biosynthetic pathway of isoprenoid quinones has been described, as well as their additional, recently recognized, diverse functions in bacterial, plant and animal metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
23
|
Collins AM, Redding KE, Blankenship RE. Modulation of fluorescence in Heliobacterium modesticaldum cells. PHOTOSYNTHESIS RESEARCH 2010; 104:283-292. [PMID: 20461555 DOI: 10.1007/s11120-010-9554-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/14/2010] [Indexed: 05/29/2023]
Abstract
In what appears to be a common theme for all phototrophs, heliobacteria exhibit complex modulations of fluorescence yield when illuminated with actinic light and probed on a time scale of micros to minutes. The fluorescence yield from cells of Heliobacterium modesticaldum remained nearly constant for the first 10-100 ms of illumination and then rose to a maximum level with one or two inflections over the course of many seconds. Fluorescence then declined to a steady-state value within about one minute. In this analysis, the origins of the fluorescence induction in whole cells of heliobacteria are investigated by treating cells with a combination of electron accepters, donors, and inhibitors of the photosynthetic electron transport, as well as varying the temperature. We conclude that fluorescence modulation in H. modesticaldum results from acceptor-side limitation in the reaction center (RC), possibly due to charge recombination between P(800) (+) and A(0) (-).
Collapse
Affiliation(s)
- Aaron M Collins
- Departments of Biology and Chemistry, Washington University in St. Louis, MO 63130, USA
| | | | | |
Collapse
|
24
|
Ohashi S, Iemura T, Okada N, Itoh S, Furukawa H, Okuda M, Ohnishi-Kameyama M, Ogawa T, Miyashita H, Watanabe T, Itoh S, Oh-oka H, Inoue K, Kobayashi M. An overview on chlorophylls and quinones in the photosystem I-type reaction centers. PHOTOSYNTHESIS RESEARCH 2010; 104:305-19. [PMID: 20165917 DOI: 10.1007/s11120-010-9530-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 01/16/2010] [Indexed: 05/08/2023]
Abstract
Minor but key chlorophylls (Chls) and quinones in photosystem (PS) I-type reaction centers (RCs) are overviewed in regard to their molecular structures. In the PS I-type RCs, the prime-type chlorophylls, namely, bacteriochlorophyll (BChl) a' in green sulfur bacteria, BChl g' in heliobacteria, Chl a' in Chl a-type PS I, and Chl d' in Chl d-type PS I, function as the special pairs, either as homodimers, (BChl a')(2) and (BChl g')(2) in anoxygenic organisms, or heterodimers, Chl a/a' and Chl d/d' in oxygenic photosynthesis. Conversions of BChl g to Chl a and Chl a to Chl d take place spontaneously under mild condition in vitro. The primary electron acceptors, A (0), are Chl a-derivatives even in anoxygenic PS I-type RCs. The secondary electron acceptors are naphthoquinones, whereas the side chains may have been modified after the birth of cyanobacteria, leading to succession from menaquinone to phylloquinone in oxygenic PS I.
Collapse
Affiliation(s)
- Shunsuke Ohashi
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
|
27
|
Abstract
Phototrophic sulfur bacteria are characterized by oxidizing various inorganic sulfur compounds for use as electron donors in carbon dioxide fixation during anoxygenic photosynthetic growth. These bacteria are divided into the purple sulfur bacteria (PSB) and the green sulfur bacteria (GSB). They utilize various combinations of sulfide, elemental sulfur, and thiosulfate and sometimes also ferrous iron and hydrogen as electron donors. This review focuses on the dissimilatory and assimilatory metabolism of inorganic sulfur compounds in these bacteria and also briefly discusses these metabolisms in other types of anoxygenic phototrophic bacteria. The biochemistry and genetics of sulfur compound oxidation in PSB and GSB are described in detail. A variety of enzymes catalyzing sulfur oxidation reactions have been isolated from GSB and PSB (especially Allochromatium vinosum, a representative of the Chromatiaceae), and many are well characterized also on a molecular genetic level. Complete genome sequence data are currently available for 10 strains of GSB and for one strain of PSB. We present here a genome-based survey of the distribution and phylogenies of genes involved in oxidation of sulfur compounds in these strains. It is evident from biochemical and genetic analyses that the dissimilatory sulfur metabolism of these organisms is very complex and incompletely understood. This metabolism is modular in the sense that individual steps in the metabolism may be performed by different enzymes in different organisms. Despite the distant evolutionary relationship between GSB and PSB, their photosynthetic nature and their dependency on oxidation of sulfur compounds resulted in similar ecological roles in the sulfur cycle as important anaerobic oxidizers of sulfur compounds.
Collapse
|
28
|
Roy E, Rohmer T, Gast P, Jeschke G, Alia A, Matysik J. Characterization of the Primary Radical Pair in Reaction Centers of Heliobacillus mobilis by 13C Photo-CIDNP MAS NMR. Biochemistry 2008; 47:4629-35. [DOI: 10.1021/bi800030g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Esha Roy
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Thierry Rohmer
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Peter Gast
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Gunnar Jeschke
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - A. Alia
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Jörg Matysik
- Leiden Institute of Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands, Leiden Institute of Physics, P.O. box 9504, 2300 RA Leiden, The Netherlands, and Physikalische Chemie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
29
|
Abstract
The reaction center (RC) of heliobacteria contains iron-sulfur centers as terminal electron acceptors, analogous to those of green sulfur bacteria as well as photosystem I in cyanobacteria and higher plants. Therefore, they all belong to the so-called type 1 RCs, in contrast to the type 2 RCs of purple bacteria and photosystem II containing quinone molecules. Although the architecture of the heliobacterial RC as a protein complex is still unknown, it forms a homodimer made up of two identical PshA core proteins, where two symmetrical electron transfer pathways along the C2 axis are assumed to be equally functional. Electrons are considered to be transferred from membrane-bound cytochrome c (PetJ) to a special pair P800, a chlorophyll a-like molecule A0, (a quinone molecule A1) and a [4Fe-4S] center Fx and, finally, to 2[4Fe-4S] centers FA/FB. No definite evidence has been obtained for the presence of functional quinone acceptor A1. An additional interesting point is that the electron transfer reaction from cytochrome c to P800 proceeds in a collisional mode. It is highly dependent on the temperature, ion strength and/or viscosity in a reaction medium, suggesting that a heme-binding moiety fluctuates in an aqueous phase with its amino-terminus anchored to membranes.
Collapse
Affiliation(s)
- Hirozo Oh-oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan.
| |
Collapse
|
30
|
Heinnickel M, Golbeck JH. Heliobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2007; 92:35-53. [PMID: 17457690 DOI: 10.1007/s11120-007-9162-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 03/23/2007] [Indexed: 05/15/2023]
Abstract
Heliobacteria contain Type I reaction centers (RCs) and a homodimeric core, but unlike green sulfur bacteria, they do not contain an extended antenna system. Given their simplicity, the heliobacterial RC (HbRC) should be ideal for the study of a prototypical homodimeric RC. However, there exist enormous gaps in our knowledge, particularly with regard to the nature of the secondary and tertiary electron acceptors. To paraphrase S. Neerken and J. Amesz (2001 Biochim Biophys Acta 1507:278-290): with the sole exception of primary charge separation, little progress has been made in recent years on the HbRC, either with respect to the polypeptide composition, or the nature of the electron acceptor chain, or the kinetics of forward and backward electron transfer. This situation, however, has changed. First, the low molecular mass polypeptide that contains the terminal FA and FB iron-sulfur clusters has been identified. The change in the lifetime of the flash-induced kinetics from 75 ms to 15 ms on its removal shows that the former arises from the P798+ [FA/FB]- recombination, and the latter from P798+ FX- recombination. Second, FX has been identified in HbRC cores by EPR and Mössbauer spectroscopy, and shown to be a [4Fe-4S]1+,2+ cluster with a ground spin state of S=3/2. Since all of the iron in HbRC cores is in the FX cluster, a ratio of approximately 22 Bchl g/P798 could be calculated from chemical assays of non-heme iron and Bchl g. Third, the N-terminal amino acid sequence of the FA/FB-containing polypeptide led to the identification and cloning of its gene. The expressed protein can be rebound to isolated HbRC cores, thereby regaining both the 75 ms kinetic phase resulting from P798+ [FA/FB]- recombination and the light-induced EPR resonances of FA- and FB-. The gene was named 'pshB' and the protein 'PshB' in keeping with the accepted nomenclature for Type I RCs. This article reviews the current state of knowledge on the structure and function of the HbRC.
Collapse
Affiliation(s)
- Mark Heinnickel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
31
|
Mix LJ, Haig D, Cavanaugh CM. Phylogenetic analyses of the core antenna domain: investigating the origin of photosystem I. J Mol Evol 2005; 60:153-63. [PMID: 15785845 DOI: 10.1007/s00239-003-0181-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2003] [Accepted: 07/29/2004] [Indexed: 10/25/2022]
Abstract
Phototrophy, the conversion of light to biochemical energy, occurs throughout the Bacteria and plants, however, debate continues over how different phototrophic mechanisms and the bacteria that contain them are related. There are two types of phototrophic mechanisms in the Bacteria: reaction center type 1 (RC1) has core and core antenna domains that are parts of a single polypeptide, whereas reaction center type 2 (RC2) is composed of short core proteins without antenna domains. In cyanobacteria, RC2 is associated with separate core antenna proteins that are homologous to the core antenna domains of RC1. We reconstructed evolutionary relationships among phototrophic mechanisms based on a phylogeny of core antenna domains/proteins. Core antenna domains of 46 polypeptides were aligned, including the RC1 core proteins of heliobacteria, green sulfur bacteria, and photosystem I (PSI) of cyanobacteria and plastids, plus core antenna proteins of photosystem II (PSII) from cyanobacteria and plastids. Maximum likelihood, parsimony, and neighbor joining methods all supported a single phylogeny in which PSII core antenna proteins (PsbC, PsbB) arose within the cyanobacteria from duplications of the RC1-associated core antenna domains and accessory antenna proteins (IsiA, PcbA, PcbC) arose from duplications of PsbB. The data indicate an evolutionary history of RC1 in which an initially homodimeric reaction center was vertically transmitted to green sulfur bacteria, heliobacteria, and an ancestor of cyanobacteria. A heterodimeric RC1 (=PSI) then arose within the cyanobacterial lineage. In this scenario, the current diversity of core antenna domains/proteins is explained without a need to invoke horizontal transfer.
Collapse
Affiliation(s)
- Lucas J Mix
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
32
|
Enkh-Amgalan J, Kawasaki H, Seki T. NifH and NifD sequences of heliobacteria: a new lineage in the nitrogenase phylogeny. FEMS Microbiol Lett 2005; 243:73-9. [PMID: 15668003 DOI: 10.1016/j.femsle.2004.11.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/24/2004] [Accepted: 11/24/2004] [Indexed: 11/26/2022] Open
Abstract
We determined almost complete nifH and nifD genes from representatives of all recognized genera of heliobacteria, the strictly anaerobic phototrophs belonging to the low GC gram-positive bacteria. The heliobacterial sequences formed a highly supported monophyletic group that is clearly distinct from any known diazotrophs, in both NifH and NifD trees. According to the classification of nitrogenase genes in four major clusters, the clade of heliobacterial sequences belonged to cluster I and did not cluster with any of the Clostridium (cluster III) or Paenibacillus (cluster I) species, the close neighbors of heliobacteria based on the 16S rRNA phylogeny. One partial anfH or alternative nitrogenase sequence was detected from Heliobacterium gestii. Although Heliophilum fasciatum is known to fix nitrogen based on the acetylene reduction test, nifH and/or nifD genes were not detected by either the PCR amplification or Southern hybridization methods.
Collapse
Affiliation(s)
- Jigjiddorj Enkh-Amgalan
- The International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-city, Osaka 565-0871, Japan
| | | | | |
Collapse
|
33
|
Polívka T, Sundström V. Ultrafast dynamics of carotenoid excited States-from solution to natural and artificial systems. Chem Rev 2004; 104:2021-71. [PMID: 15080720 DOI: 10.1021/cr020674n] [Citation(s) in RCA: 647] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomás Polívka
- Department of Chemical Physics, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
34
|
Proton ENDOR spectroscopy of the anion radicals of the chlorophyll primary electron acceptors in type I photosynthetic reaction centres. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00284-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Heathcote P, Jones MR, Fyfe PK. Type I photosynthetic reaction centres: structure and function. Philos Trans R Soc Lond B Biol Sci 2003; 358:231-43. [PMID: 12594931 PMCID: PMC1693109 DOI: 10.1098/rstb.2002.1178] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We review recent advances in the study of the photosystem I reaction centre, following the determination of a spectacular 2.5 A resolution crystal structure for this complex of Synechococcus elongatus. Photosystem I is proving different to type II reaction centres in structure and organization, and the mechanism of transmembrane electron transfer, and is providing insights into the control of function in reaction centres that operate at very low redox potentials. The photosystem I complex of oxygenic organisms has a counterpart in non-oxygenic bacteria, the strictly anaerobic phototrophic green sulphur bacteria and heliobacteria. The most distinctive feature of these type I reaction centres is that they contain two copies of a large core polypeptide (i.e. a homodimer), rather than a heterodimeric arrangement of two related, but different, polypeptides as in the photosystem I complex. To compare the structural organization of the two forms of type I reaction centre, we have modelled the structure of the central region of the reaction centre from green sulphur bacteria, using sequence alignments and the structural coordinates of the S. elongatus Photosystem I complex. The outcome of these modelling studies is described, concentrating on regions of the type I reaction centre where important structure-function relationships have been demonstrated or inferred.
Collapse
Affiliation(s)
- Peter Heathcote
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
36
|
Green BR. The Evolution of Light-harvesting Antennas. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
37
|
Takaichi S, Oh-Oka H, Maoka T, Jung DO, Madigan MT. Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 2003; 179:95-100. [PMID: 12560987 DOI: 10.1007/s00203-002-0504-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2002] [Revised: 10/08/2002] [Accepted: 10/28/2002] [Indexed: 10/20/2022]
Abstract
Pigments of three species of alkaliphilic heliobacteria of the genus Heliorestis, H. daurensis, H. baculata and an undescribed species Heliorestis strain HH, were identified using spectroscopic methods. In these species, bacteriochlorophyll g esterified with farnesol was present, as for other heliobacteria. The carotenoids consisted of 4,4'-diaponeurosporene, also found in other heliobacteria, plus the novel pigments OH-diaponeurosporene glucoside esters (C16:0 and C16:1). In addition, trace amounts of biosynthetic intermediates, OH-diaponeurosporene and OH-diaponeurosporene glucoside, were found. Trace amounts of a carotenoid with 20 carbon atoms, 8,8'-diapo-zeta-carotene, were also found in these species as well as in the non-alkaliphilic heliobacteria. The non-alkaliphilic species Heliophilum fasciatum also contained trace amounts of the two OH-diaponeurosporene glucoside esters. The results are used to predict the pathway of carotenoid biosynthesis in heliobacteria.
Collapse
Affiliation(s)
- Shinichi Takaichi
- Biological Laboratory, Nippon Medical School, Nakahara, Kawasaki 211-0063, Japan.
| | | | | | | | | |
Collapse
|
38
|
Green BR, Anderson JM, Parson WW. Photosynthetic Membranes and Their Light-Harvesting Antennas. LIGHT-HARVESTING ANTENNAS IN PHOTOSYNTHESIS 2003. [DOI: 10.1007/978-94-017-2087-8_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
39
|
Fyfe PK, Jones MR, Heathcote P. Insights into the evolution of the antenna domains of Type-I and Type-II photosynthetic reaction centres through homology modelling. FEBS Lett 2002; 530:117-23. [PMID: 12387877 DOI: 10.1016/s0014-5793(02)03436-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The (bacterio)chlorophylls of photosynthetic antenna and reaction centre complexes are bound to the protein via a fifth, axial ligand to the central magnesium atom. A number of the amino acids identified as providing such ligands are conserved between the large antenna of the cyanobacterial Type-I reaction centre and smaller antennas of the Type-I reaction centres of green sulphur bacteria and heliobacteria, and these numbers match closely the estimated number of antenna bacteriochlorophylls in the latter. The possible organisation of the antenna in the latter reaction centres is discussed, as is the mechanism by which the more pigment-rich antenna of the cyanobacterial reaction centre evolved. The homology modelling approach is also extended to the six-helix antenna proteins CP47 and CP43 associated with the Photosystem II reaction centre.
Collapse
Affiliation(s)
- Paul K Fyfe
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, UK
| | | | | |
Collapse
|