1
|
Felice AKG, Schuster C, Kadek A, Filandr F, Laurent CVFP, Scheiblbrandner S, Schwaiger L, Schachinger F, Kracher D, Sygmund C, Man P, Halada P, Oostenbrink C, Ludwig R. Chimeric Cellobiose Dehydrogenases Reveal the Function of Cytochrome Domain Mobility for the Electron Transfer to Lytic Polysaccharide Monooxygenase. ACS Catal 2021; 11:517-532. [PMID: 33489432 PMCID: PMC7818652 DOI: 10.1021/acscatal.0c05294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/11/2020] [Indexed: 12/11/2022]
Abstract
![]()
The natural function of cellobiose
dehydrogenase (CDH) to donate
electrons from its catalytic flavodehydrogenase (DH) domain via its
cytochrome (CYT) domain to lytic polysaccharide monooxygenase (LPMO)
is an example of a highly efficient extracellular electron transfer
chain. To investigate the function of the CYT domain movement in the
two occurring electron transfer steps, two CDHs from the ascomycete Neurospora crassa (NcCDHIIA and NcCDHIIB) and five chimeric CDH enzymes created by domain
swapping were studied in combination with the fungus’ own LPMOs
(NcLPMO9C and NcLPMO9F). Kinetic
and electrochemical methods and hydrogen/deuterium exchange mass spectrometry
were used to study the domain movement, interaction, and electron
transfer kinetics. Molecular docking provided insights into the protein–protein
interface, the orientation of domains, and binding energies. We find
that the first, interdomain electron transfer step from the catalytic
site in the DH domain to the CYT domain depends on steric and electrostatic
interface complementarity and the length of the protein linker between
both domains but not on the redox potential difference between the
FAD and heme b cofactors. After CYT reduction, a
conformational change of CDH from its closed state to an open state
allows the second, interprotein electron transfer (IPET) step from
CYT to LPMO to occur by direct interaction of the b-type heme and the type-2 copper center. Chimeric CDH enzymes favor
the open state and achieve higher IPET rates by exposing the heme b cofactor to LPMO. The IPET, which is influenced by interface
complementarity and the heme b redox potential, is
very efficient with bimolecular rates between 2.9 × 105 and 1.1 × 106 M–1 s–1.
Collapse
Affiliation(s)
- Alfons K. G. Felice
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Christian Schuster
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Alan Kadek
- BIOCEV−Institute of Microbiology, The Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Frantisek Filandr
- BIOCEV−Institute of Microbiology, The Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Christophe V. F. P. Laurent
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
- Department of Material Sciences and Process Engineering, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Stefan Scheiblbrandner
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Lorenz Schwaiger
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Franziska Schachinger
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Daniel Kracher
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Christoph Sygmund
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Petr Man
- BIOCEV−Institute of Microbiology, The Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Petr Halada
- BIOCEV−Institute of Microbiology, The Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Roland Ludwig
- Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU−University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
2
|
Gangwar R, Rasool S, Mishra S. Purified cellobiose dehydrogenase of Termitomyces sp. OE147 fuels cellulose degradation resulting in the release of reducing sugars. Prep Biochem Biotechnol 2020; 51:488-496. [PMID: 33063604 DOI: 10.1080/10826068.2020.1833343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Termitomyces sp. OE 147 is one of the active cellulose degraders in the ecosphere and produces large amount of cellobiose dehydrogenase (CDH) and β-glucosidases when cultivated on cellulose. In order to investigate its effect on cellulose, a highly purified preparation of CDH was obtained from the culture supernatant of the fungus cultivated on cellulose. A combination of ultrafiltration, ion-exchange and gel-filtration chromatography was used to purify CDH by ∼172-fold to a high specific activity of ∼324 U/mg protein on lactose which was used for routine measurement of enzyme activity. The enzyme displayed a pH optimum of 5.0 and stability between pH 5.0 and 8.0 with maximum catalytic efficiency (kcat/Km) of 397 mM-1 s-1 on cellobiose. Incubation of microcrystalline cellulose with the purified CDH led to production of reducing sugars which was accelerated by the addition of FeCl3 during the early stages of incubation. A mass spectrometric analysis revealed fragmentation products of cellulose which were concluded to be cellodextrins, sugars, and corresponding aldonic acids suggesting that CDH can release reducing sugars in the absence of externally added lytic polysaccharide monooxygenases. Polymerized products of glucose were also detected at low intensity.
Collapse
Affiliation(s)
- Rishabh Gangwar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.,School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Shafaq Rasool
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
3
|
Scheiblbrandner S, Ludwig R. Cellobiose dehydrogenase: Bioelectrochemical insights and applications. Bioelectrochemistry 2019; 131:107345. [PMID: 31494387 DOI: 10.1016/j.bioelechem.2019.107345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
Cellobiose dehydrogenase (CDH) is a flavocytochrome with a history of bioelectrochemical research dating back to 1992. During the years, it has been shown to be capable of mediated electron transfer (MET) and direct electron transfer (DET) to a variety of electrodes. This versatility of CDH originates from the separation of the catalytic flavodehydrogenase domain and the electron transferring cytochrome domain. This uncoupling of the catalytic reaction from the electron transfer process allows the application of CDH on many different electrode materials and surfaces, where it shows robust DET. Recent X-ray diffraction and small angle scattering studies provided insights into the structure of CDH and its domain mobility, which can change between a closed-state and an open-state conformation. This structural information verifies the electron transfer mechanism of CDH that was initially established by bioelectrochemical methods. A combination of DET and MET experiments has been used to investigate the catalytic mechanism and the electron transfer process of CDH and to deduce a protein structure comprising of mobile domains. Even more, electrochemical methods have been used to study the redox potentials of the FAD and the haem b cofactors of CDH or the electron transfer rates. These electrochemical experiments, their results and the application of the characterised CDHs in biosensors, biofuel cells and biosupercapacitors are combined with biochemical and structural data to provide a thorough overview on CDH as versatile bioelectrocatalyst.
Collapse
Affiliation(s)
- Stefan Scheiblbrandner
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| | - Roland Ludwig
- Biocatalysis and Biosensing Laboratory, Department of Food Science and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
4
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
5
|
Harada H, Onoda A, Uchihashi T, Watanabe H, Sunagawa N, Samejima M, Igarashi K, Hayashi T. Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis. Chem Sci 2017; 8:6561-6565. [PMID: 28989682 PMCID: PMC5627353 DOI: 10.1039/c7sc01672g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/15/2017] [Indexed: 12/02/2022] Open
Abstract
To visualize the dynamic domain motion of class-I CDH from Phanerochaete chrysosporium (PcCDH) during catalysis using high-speed atomic force microscopy, the apo-form of PcCDH was anchored to a heme-immobilized flat gold surface that can fix the orientation of the CYT domain.
Cellobiose dehydrogenase (CDH) is a dual domain flavocytochrome, which consists of a dehydrogenase (DH) domain containing a flavin adenine dinucleotide and a cytochrome (CYT) domain containing b-type heme. To directly visualize the dynamic domain motion of class-I CDH from Phanerochaete chrysosporium (PcCDH) during catalysis using high-speed atomic force microscopy, the apo-form of PcCDH was anchored to a heme-immobilized flat gold surface that can specifically fix the orientation of the CYT domain. The two domains of CDH are found to be immobile in the absence of cellobiose, whereas the addition of cellobiose triggers an interdomain flip-flop motion involving domain–domain association and dissociation. Our results indicate that dynamic motion of a dual domain enzyme during catalysis induces efficient electron transfer to an external electron acceptor.
Collapse
Affiliation(s)
- Hirofumi Harada
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan . ;
| | - Akira Onoda
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan . ;
| | - Takayuki Uchihashi
- Department of Physics , Nagoya University , Furo-cho, Chikusa-ku , Nagoya , 464-8602 , Japan .
| | - Hiroki Watanabe
- Faculty of Natural Science and Technology , Kanazawa University , Kakuma , Kanazawa , 920-1192 , Japan
| | - Naoki Sunagawa
- Department of Biomaterials Sciences , Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku , 113-8657 , Japan .
| | - Masahiro Samejima
- Department of Biomaterials Sciences , Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku , 113-8657 , Japan .
| | - Kiyohiko Igarashi
- Department of Biomaterials Sciences , Graduate School of Agricultural and Life Sciences , The University of Tokyo , Bunkyo-ku , 113-8657 , Japan . .,VTT Technical Research Centre of Finland , P.O. Box 1000, Tietotie 2 , Espoo FI-02044 VTT , Finland
| | - Takashi Hayashi
- Department of Applied Chemistry , Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan . ;
| |
Collapse
|
6
|
Loose JSM, Forsberg Z, Kracher D, Scheiblbrandner S, Ludwig R, Eijsink VGH, Vaaje‐Kolstad G. Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase. Protein Sci 2016; 25:2175-2186. [PMID: 27643617 PMCID: PMC5119556 DOI: 10.1002/pro.3043] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) represent a recent addition to the carbohydrate-active enzymes and are classified as auxiliary activity (AA) families 9, 10, 11, and 13. LPMOs are crucial for effective degradation of recalcitrant polysaccharides like cellulose or chitin. These enzymes are copper-dependent and utilize a redox mechanism to cleave glycosidic bonds that is dependent on molecular oxygen and an external electron donor. The electrons can be provided by various sources, such as chemical compounds (e.g., ascorbate) or by enzymes (e.g., cellobiose dehydrogenases, CDHs, from fungi). Here, we demonstrate that a fungal CDH from Myriococcum thermophilum (MtCDH), can act as an electron donor for bacterial family AA10 LPMOs. We show that employing an enzyme as electron donor is advantageous since this enables a kinetically controlled supply of electrons to the LPMO. The rate of chitin oxidation by CBP21 was equal to that of cosubstrate (lactose) oxidation by MtCDH, verifying the usage of two electrons in the LPMO catalytic mechanism. Furthermore, since lactose oxidation correlates directly with the rate of LPMO catalysis, a method for indirect determination of LPMO activity is implicated. Finally, the one electron reduction of the CBP21 active site copper by MtCDH was determined to be substantially faster than chitin oxidation by the LPMO. Overall, MtCDH seems to be a universal electron donor for both bacterial and fungal LPMOs, indicating that their electron transfer mechanisms are similar.
Collapse
Affiliation(s)
- Jennifer S. M. Loose
- Department of ChemistryBiotechnology and Food Science, Norwegian University of Life SciencesNO‐1430 ÅsNorway
| | - Zarah Forsberg
- Department of ChemistryBiotechnology and Food Science, Norwegian University of Life SciencesNO‐1430 ÅsNorway
| | - Daniel Kracher
- Department of Food Science and Technology, Food Biotechnology LaboratoryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Stefan Scheiblbrandner
- Department of Food Science and Technology, Food Biotechnology LaboratoryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Roland Ludwig
- Department of Food Science and Technology, Food Biotechnology LaboratoryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Vincent G. H. Eijsink
- Department of ChemistryBiotechnology and Food Science, Norwegian University of Life SciencesNO‐1430 ÅsNorway
| | - Gustav Vaaje‐Kolstad
- Department of ChemistryBiotechnology and Food Science, Norwegian University of Life SciencesNO‐1430 ÅsNorway
| |
Collapse
|
7
|
Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw. Appl Microbiol Biotechnol 2012; 97:4873-85. [PMID: 22940800 DOI: 10.1007/s00253-012-4355-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/30/2012] [Accepted: 08/08/2012] [Indexed: 01/09/2023]
Abstract
Cellobiose dehydrogenases (CDHs) are extracellular glycosylated haemoflavoenzymes produced by many different wood-degrading and phytopathogenic fungi. Putative cellobiose dehydrogenase genes are recurrently discovered by genome sequencing projects in various phylogenetically distinct fungi. The genomes from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina were screened for candidate cdh genes, and one and three putative gene models were evidenced, respectively. Two putative cdh genes were selected and successfully expressed for the first time in Aspergillus niger. CDH activity was measured for both constructions (CDHcc and CDHpa), and both recombinant CDHs were purified to homogeneity and subsequently characterised. Kinetic constants were determined for several carbohydrates including β-1,4-linked di- and oligosaccharides. Optimal temperature and pH were 60 °C and 5 for CDHcc and 65-70 °C and 6 for CDHpa. Both CDHs showed a broad range of pH stability between 4 and 8. The effect of both CDHs on saccharification of micronized wheat straw by an industrial Trichoderma reesei secretome was determined. The addition of each CDH systematically decreased the release of total reducing sugars, but to different extents and according to the CDH concentration. Analytical methods were carried out to quantify the release of glucose, xylose and gluconic acid. An increase of glucose and xylose was measured at a low CDHcc concentration. At moderated and high CDHcc and CDHpa concentrations, glucose was severely reduced with a concomitant increase of gluconic acid. In conclusion, these results give new insights into the physical and chemical parameters and diversity of basidiomycetous and ascomycetous CDHs. These findings also demonstrated that CDH drastically influenced the saccharification on a natural substrate, and thus, CDH origin, concentration and potential enzymatic partners should be carefully considered in future artificial secretomes for biofuel applications.
Collapse
|
8
|
Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VGH. Novel enzymes for the degradation of cellulose. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:45. [PMID: 22747961 PMCID: PMC3492096 DOI: 10.1186/1754-6834-5-45] [Citation(s) in RCA: 590] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/18/2012] [Indexed: 05/02/2023]
Abstract
The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases) by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first "extracting" these chains from their crystalline matrix.
Collapse
Affiliation(s)
- Svein Jarle Horn
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Aas, Norway
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Aas, Norway
| | - Bjørge Westereng
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Aas, Norway
| | - Vincent GH Eijsink
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, Aas, Norway
| |
Collapse
|
9
|
Ludwig R, Harreither W, Tasca F, Gorton L. Cellobiose Dehydrogenase: A Versatile Catalyst for Electrochemical Applications. Chemphyschem 2010; 11:2674-97. [DOI: 10.1002/cphc.201000216] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Substrate specificity of Myriococcum thermophilum cellobiose dehydrogenase on mono-, oligo-, and polysaccharides related to in situ production of H2O2. Appl Microbiol Biotechnol 2009; 85:75-83. [DOI: 10.1007/s00253-009-2062-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/25/2009] [Accepted: 05/25/2009] [Indexed: 11/26/2022]
|
11
|
Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 2007; 44:77-87. [PMID: 16971147 DOI: 10.1016/j.fgb.2006.07.007] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/20/2006] [Indexed: 11/17/2022]
Abstract
The US Department of Energy has assembled a high quality draft genome of Phanerochaete chrysosporium, a white rot Basidiomycete capable of completely degrading all major components of plant cell walls including cellulose, hemicellulose and lignin. Hundreds of sequences are predicted to encode extracellular enzymes including an impressive number of oxidative enzymes potentially involved in lignocellulose degradation. Herein, we summarize the number, organization, and expression of genes encoding peroxidases, copper radical oxidases, FAD-dependent oxidases, and multicopper oxidases. Possibly relevant to extracellular oxidative systems are genes involved in posttranslational processes and a large number of hypothetical proteins.
Collapse
Affiliation(s)
- Phil Kersten
- Forest Products Laboratory, USDA, One Gifford Pinchot Drive, Madison, WI 53705, USA
| | | |
Collapse
|
12
|
Karapetyan KN, Fedorova TV, Vasil'chenko LG, Ludwig R, Haltrich D, Rabinovich ML. Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp. INBI 2-26(–) and comparison with basidiomycetous cellobiose dehydrogenases. J Biotechnol 2006; 121:34-48. [PMID: 16112765 DOI: 10.1016/j.jbiotec.2005.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 06/02/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
Abstract
The extracellular cellobiose dehydrogenase (CDH) obtained from Chaetomium sp. INBI 2-26(-) has a molecular mass of 95 kDa and an isoelectric point of 5. This novel CDH is highly specific for the oxidation of cellobiose (K(m,app) 4.5 microM) and lactose (K(m,app) 56 microM). With 2,6-dichloroindophenol (DCIP) and cytochrome c(3+) (cyt c(3+)) as electron acceptors, CDH was most active at pH 6. The turnover number of the enzyme for cellobiose, lactose, DCIP and cyt c(3+) was in the range of 9-14s(-1) at 20 degrees C and pH 6. The UV-visible spectrum revealed the flavohemoprotein nature of the enzyme. The cytochrome b domain of the enzyme was reduced by ascorbate, dithionite, as well as specifically by cellobiose in a wide range of pH. The apparent first order rate constants of the spontaneous re-oxidation of the reduced heme domain were estimated as 0.01 and 0.00039 s(-1) at pH 4.5 and 6.5, respectively. The half-inactivation time of CDH at pH 6 and 55 degrees C was ca. 100 min; the stability at pH 8 and, particularly, pH 4 was remarkably lower. Cellobiose stabilized the enzyme against thermal inactivation, whereas DCIP in turn sensitized the enzyme. The new enzyme revealed low affinity for crystalline cellulose, but was capable of binding onto H(3)PO(4)-swollen filter paper. The results show significant differences to already known CDHs and perspectives for several biotechnological applications, where CDH with maximal activity at neutral pH and high affinity for cellobiose and lactose night have some advantages.
Collapse
Affiliation(s)
- K N Karapetyan
- A.N. Bach Institute of Biochemistiy, Russian Academy of Sciences, 33, Leninsky Prospect, 119071 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
13
|
Igarashi K, Yoshida M, Matsumura H, Nakamura N, Ohno H, Samejima M, Nishino T. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium. FEBS J 2005; 272:2869-77. [PMID: 15943818 DOI: 10.1111/j.1742-4658.2005.04707.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellobiose dehydrogenase (CDH) is an extracellular flavocytochrome containing flavin and b-type heme, and plays a key role in cellulose degradation by filamentous fungi. To investigate intermolecular electron transfer from CDH to cytochrome c, Phe166, which is located in the cytochrome domain and approaches one of propionates of heme, was mutated to Tyr, and the thermodynamic and kinetic properties of the mutant (F166Y) were compared with those of the wild-type (WT) enzyme. The mid-point potential of heme in F166Y was measured by cyclic voltammetry, and was estimated to be 25 mV lower than that of WT at pH 4.0. Although presteady-state reduction of flavin was not affected by the mutation, the rate of subsequent electron transfer from flavin to heme was halved in F166Y. When WT or F166Y was reduced with cellobiose and then mixed with cytochrome c, heme re-oxidation and cytochrome c reduction occurred synchronously, suggesting that the initial electron is transferred from reduced heme to cytochrome c. Moreover, in both enzymes the observed rate of the initial phase of cytochrome c reduction was concentration dependent, whereas the second phase of cytochrome c reduction was dependent on the rate of electron transfer from flavin to heme, but not on the cytochrome c concentration. In addition, the electron transfer rate from flavin to heme was identical to the steady-state reduction rate of cytochrome c in both WT and F166Y. These results clearly indicate that the first and second electrons of two-electron-reduced CDH are both transferred via heme, and that the redox reaction of CDH involves an electron-transfer chain mechanism in cytochrome c reduction.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Phanerochaete chrysosporium Genomics. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1874-5334(05)80016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
15
|
|