1
|
Reduction of plastocyanin by tyrosine-containing oligopeptides. J Inorg Biochem 2006; 100:1871-8. [PMID: 16963123 DOI: 10.1016/j.jinorgbio.2006.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 06/09/2006] [Accepted: 07/23/2006] [Indexed: 11/22/2022]
Abstract
Oxidized plastocyanin (PC) was reduced with TyrTyrTyr and LysLysLysLysTyrTyrTyr (KKKKYYY) oligopeptides at neutral pH. The TyrTyrTyr site of the peptides provided an electron to the copper active site of PC, whereas the tetralysine site of KKKKYYY functioned as the recognition site for the negative patch of PC. The reciprocal initial rate constant (1/k(int)) increased linearly with the reciprocal TyrTyrTyr concentration and proton concentration, although the electron transfer rate decreased gradually with time. The results showed that PC was reduced by the deprotonated species of TyrTyrTyr. A linear increase of log k(int) with increase in the ionic strength was observed due to decrease in the electrostatic repulsion between negatively charged PC and deprotonated (TyrTyrTyr)(-). PC was reduced faster by an addition of KKKKYYY to the PC-TyrTyrTyr solution, although KKKKYYY could not reduce PC without TyrTyrTyr. The ESI-LCMS spectrum of the products from the reaction between PC and TyrTyrTyr showed molecular ion peaks at m/z 1015.7 and 1037.7, which suggested formation of a dimerized peptide that may be produced from the reaction of a tyrosyl radical. The results indicate that PC and the tyrosine-containing oligopeptides form an equilibrium, PC(ox)/(oligopeptide)(-)-->/<--PC(red)/(oligopeptide)(*). The equilibrium is usually shifted to the left, but could shift to the right when the produced oligopeptide radical reacts with unreacted peptides. For the reaction of PC with KKKKYYY in the absence of TyrTyrTyr, the produced KKKK(YYY)(*) radical peptide could not react with other KKKKYYY peptides, since they were positively charged. In the presence of both KKKKYYY and TyrTyrTyr, PC may interact effectively with KKKKYYY through its tetralysine site and receive an electron from its TyrTyrTyr site, where the produced KKKK(YYY)(*) may interact with TyrTyrTyr peptides.
Collapse
|
2
|
Hirota S, Okumura H, Arie S, Tanaka K, Shionoya M, Takabe T, Funasaki N, Watanabe Y. Interaction of plastocyanin with oligopeptides: effect of lysine distribution within the peptide. J Inorg Biochem 2004; 98:849-55. [PMID: 15134931 DOI: 10.1016/j.jinorgbio.2003.10.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 10/22/2003] [Accepted: 10/31/2003] [Indexed: 11/29/2022]
Abstract
We synthesized and purified four oligopeptides containing four lysines (KKKK, GKKGGKK, KKGGGKK, and KGKGKGK) as models for the plastocyanin (PC) interacting site of cytochrome f. These peptides competitively inhibited electron transfer between cytochrome c and PC. The inhibitory effect increased as the peptide concentrations were increased. The association constants between PC and the peptides did not differ significantly (3500-5100 M(-1)), although the association constant of PC-KGKGKGK was a little larger than the constants between PC and other peptides. Changes in the absorption spectrum of PC were observed when the peptides were added to the PC solution: peaks and troughs were detected at about 460 and 630 nm and at about 560 and 700 nm, respectively, in the difference absorption spectra between the spectra with and without peptides. These changes were attributed to the structural change at the copper site of PC by interaction with the peptides. The structural change was most significant when tetralysine was used. These results show that binding of the oligopeptide to PC is slightly more efficient when lysines are distributed uniformly within the peptide, whereas the structural change of PC becomes larger when the lysines are close to each other within the peptide.
Collapse
Affiliation(s)
- Shun Hirota
- Department of Physical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Bergkvist A, Ejdebäck M, Ubbink M, Karlsson BG. Surface interactions in the complex between cytochrome f and the E43Q/D44N and E59K/E60Q plastocyanin double mutants as determined by (1)H-NMR chemical shift analysis. Protein Sci 2001; 10:2623-6. [PMID: 11714931 PMCID: PMC2374039 DOI: 10.1110/ps.27101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2001] [Revised: 08/29/2001] [Accepted: 08/31/2001] [Indexed: 10/21/2022]
Abstract
A combination of site-directed mutagenesis and NMR chemical shift perturbation analysis of backbone and side-chain protons has been used to characterize the transient complex of the photosynthetic redox proteins plastocyanin and cytochrome f. To elucidate the importance of charged residues on complex formation, the complex of cytochrome f and E43Q/D44N or E59K/E60Q spinach plastocyanin double mutants was studied by full analysis of the (1)H chemical shifts by use of two-dimensional homonuclear NMR spectra. Both mutants show a significant overall decrease in chemical shift perturbations compared with wild-type plastocyanin, in agreement with a large decrease in binding affinity. Qualitatively, the E43Q/D44N mutant showed a similar interaction surface as wild-type plastocyanin. The interaction surface in the E59K/E60Q mutant was distinctly different from wild type. It is concluded that all four charged residues contribute to the affinity and that residues E59 and E60 have an additional role in fine tuning the orientation of the proteins in the complex.
Collapse
Affiliation(s)
- A Bergkvist
- Biochemistry and Biophysics, Department of Chemistry, Göteborg University, SE-405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
4
|
Ubbink M, Ejdebäck M, Karlsson BG, Bendall DS. The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 1998; 6:323-35. [PMID: 9551554 DOI: 10.1016/s0969-2126(98)00035-5] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The reduction of plastocyanin by cytochrome f is part of the chain of photosynthetic electron transfer reactions that links photosystems II and I. The reaction is rapid and is influenced by charged residues on both proteins. Previously determined structures show that the plastocyanin copper and cytochrome f haem redox centres are some distance apart from the relevant charged sidechains, and until now it was unclear how a transient electrostatic complex can be formed that brings the redox centres sufficiently close for a rapid reaction. RESULTS A new approach was used to determine the structure of the transient complex between cytochrome f and plastocyanin. Diamagnetic chemical shift changes and intermolecular pseudocontact shifts in the NMR spectrum of plastocyanin were used as input in restrained rigid-body molecular dynamics calculations. An ensemble of ten structures was obtained, in which the root mean square deviation of the plastocyanin position relative to cytochrome f is 1.0 A. Electrostatic interaction is maintained at the same time as the hydrophobic side of plastocyanin makes close contact with the haem area, thus providing a short electron transfer pathway (Fe-Cu distance 10.9 A) via residues Tyr1 or Phe4 (cytochrome f) and the copper ligand His87 (plastocyanin). CONCLUSIONS The combined use of diamagnetic and paramagnetic chemical shift changes makes it possible to obtain detailed information about the structure of a transient complex of redox proteins. The structure suggests that the electrostatic interactions 'guide' the partners into a position that is optimal for electron transfer, and which may be stabilised by short-range interactions.
Collapse
Affiliation(s)
- M Ubbink
- Department of Biochemistry, University of Cambridge, England.
| | | | | | | |
Collapse
|
5
|
Ciocchetti A, Bizzarri AR, Cannistraro S. Long-term molecular dynamics simulation of copper plastocyanin in water. Biophys Chem 1997; 69:185-98. [PMID: 17029927 DOI: 10.1016/s0301-4622(97)00089-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/1997] [Revised: 06/12/1997] [Accepted: 06/12/1997] [Indexed: 10/16/2022]
Abstract
A long molecular dynamics simulation (1.1 ns) of fully hydrated plastocyanin has been performed and analysed to relate protein dynamics to structural elements and functional properties. The solvated structure is described in detail by the analysis of H-bond network. During all the simulation, the crystal H-bond network is maintained in the beta-sheet regions, while several H-bonds are broken or formed on the external surface of the protein. To evaluate whether such changes could be due to conformational rearrangements or to solvent competition, we have examined the average number of H-bonds between protein atoms and water molecules, and the root mean square deviations from crystal structure as a function of protein residues. Protein mobility and flexibility have been examined by positional and dihedral angle rms fluctuations. Finally, cross-correlation maps have revealed the existence of correlated motions among residues connected by hydrogen bonds.
Collapse
Affiliation(s)
- A Ciocchetti
- Unità INFM, Dipartimento di Fisica dell'Università, Perugia I-06100, Italy; Dipartimento di Scienze Ambientali, Università della Tuscia, Viterbo I-01100, Italy
| | | | | |
Collapse
|
6
|
Kannt A, Young S, Bendall DS. The role of acidic residues of plastocyanin in its interaction with cytochrome ƒ. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1996. [DOI: 10.1016/s0005-2728(96)00090-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Hope AB, Valente P, Matthews DB. Effects of pH on the kinetics of redox reactions in and around the cytochromebf complex in an isolated system. PHOTOSYNTHESIS RESEARCH 1994; 42:111-20. [PMID: 24306499 DOI: 10.1007/bf02187122] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/1994] [Accepted: 06/21/1994] [Indexed: 05/18/2023]
Abstract
Rate-coefficients describing the electron transfer reactions between P700 and plastocyanin, between cytochromef in cytochromebf complexes and plastocyanin, and between decyl plastoquinol and cytochromebf complexes were determined as a function of pH in the range 4-10 from flash-induced absorbancy changes at four wavelengths. The reactions between P700 and plastocyanin, and between cytochromef and plastocyanin were optimised when there was electrostatic interaction between ionised acidic groups in plastocyanin with a pKa of 4.3-4.7 and ionised basic constituents in P700 (assumed to be in the PSI-F subunit) and in cytochromef, with a pKb of 8.9-9.4. The basic groups are thought to be lysine rather than arginine. This mechanism agrees with that inferred from effects of ionic strength changes on rate-coefficients. The relation between the second-order rate-coefficient for decyl plastoquinol oxidation by thebf complex and pH was characterised by a pKa of 6.1. This is interpreted as showing that the anion radical form of that quinol, which has a pKa of 6, and which becomes progressively protonated when pH is changed from 7 to 5, is essential to reduce cytochromeb-563 (low potential) during quinol oxidation. Above pH 9, permanent effects were observed on this rate-coefficient, which were absent in the reactions between P700, plastocyanin and cytochromef.
Collapse
Affiliation(s)
- A B Hope
- School of Biological Sciences, Flinders University, GPO Box 2100, 5001, Adelaide, SA, Australia
| | | | | |
Collapse
|
8
|
Abstract
Plastocyanin is one of the best characterized of the photosynthetic electron transfer proteins. Since the determination of the structure of poplar plastocyanin in 1978, the structure of algal (Scenedesmus, Enteromorpha, Chlamydomonas) and plant (French bean) plastocyanins has been determined either by crystallographic or NMR methods, and the poplar structure has been refined to 1.33 A resolution. Despite the sequence divergence among plastocyanins of algae and vascular plants (e.g., 62% sequence identity between the Chlamydomonas and poplar proteins), the three-dimensional structures are remarkably conserved (e.g., 0.76 A rms deviation in the C alpha positions between the Chlamydomonas and poplar proteins). Structural features include a distorted tetrahedral copper binding site at one end of an eight-stranded antiparallel beta-barrel, a pronounced negative patch, and a flat hydrophobic surface. The copper site is optimized for its electron transfer function, and the negative and hydrophobic patches are proposed to be involved in recognition of physiological reaction partners. Chemical modification, cross-linking, and site-directed mutagenesis experiments have confirmed the importance of the negative and hydrophobic patches in binding interactions with cytochrome f and Photosystem I, and validated the model of two functionally significant electron transfer paths in plastocyanin. One putative electron transfer path is relatively short (approximately 4 A) and involves the solvent-exposed copper ligand His-87 in the hydrophobic patch, while the other is more lengthy (approximately 12-15 A) and involves the nearly conserved residue Tyr-83 in the negative patch.
Collapse
Affiliation(s)
- M R Redinbo
- Department of Chemistry and Biochemistry and Molecular Biology Institute, University of California, Los Angeles 90024
| | | | | |
Collapse
|
9
|
Gross EL. Plastocyanin: Structure and function. PHOTOSYNTHESIS RESEARCH 1993; 37:103-116. [PMID: 24317707 DOI: 10.1007/bf02187469] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/1993] [Accepted: 05/18/1993] [Indexed: 06/02/2023]
Abstract
The aim of this review is to analyze the current state of knowledge concerning the blue copper protein plastocyanin (PC) focusing on its interactions with its reaction partners cytochromef and P700. Plastocyanin is a 10 kD blue copper protein which is located in the lumen of the thylakoid where it functions as a mobileelectron carrier shuttling electrons from cytochromef to P700 in Photosystem I. PC is a typical β-barrel protein containing a single copper center which is ligated to two histidines, a methionine and a cysteine in a distorted tetrahedral geometry. PC has two potential binding sites for reaction partners. Site 1 consists of the H87 ligand to the copper and Site 2 consists of Y83 which is surrounded by two clusters of negative charges which are highly conserved in higher plant PCs.The interaction of PC with cytochromef has been studied extensively. It is electrostatic in nature with negative charges on PC interacting with positive charges on cytochromef. Evidence from cross-linking, chemical modification, kinetics and site-directed mutagenesis studies implicate Site 2 as the binding site for Cytf. The interaction is thought to occur in two stages: an initial diffusional approach guided by electrostatic interactions, followed by more precise docking to form a final electron transfer complex.Due to the multisubunit nature of the Photosystem I complex, the evidence is not as clear for the binding site for P700. However, a small positively-charged subunit (Subunit III) of Photosystem I has been implicated in PC binding. Also, both chemical modification and site-directed mutagenesis experiments have suggested that PC interacts with P700 via Site 1.
Collapse
Affiliation(s)
- E L Gross
- Department of Biochemistry, The Ohio State University, 43210, Columbus, OH, USA
| |
Collapse
|
10
|
Hope AB. The chloroplast cytochrome bf complex: a critical focus on function. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1143:1-22. [PMID: 8388722 DOI: 10.1016/0005-2728(93)90210-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A B Hope
- School of Biological Sciences, Flinders University, Adelaide, Australia
| |
Collapse
|
11
|
Gray JC. Cytochrome f: Structure, function and biosynthesis. PHOTOSYNTHESIS RESEARCH 1992; 34:359-74. [PMID: 24408832 DOI: 10.1007/bf00029811] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/1992] [Accepted: 05/15/1992] [Indexed: 05/08/2023]
Abstract
Cytochrome f is an intrinsic membrane component of the cytochrome bf complex, transferring electrons from the Rieske FeS protein to plastocyanin in the thylakoid lumen. The protein is held in the thylakoid membrane by a single transmembrane span located near its C-terminus with a globular hydrophilic domain extending into the lumen. The globular domain of the turnip protein has recently been crystallised, offering the prospect of a detailed three-dimensional structure. Reaction with plastocyanin involves localised positive charges on cytochrome f interacting with the acidic patch on plastocyanin and electron transfer via the surface-exposed tyrosine residue (Tyr83) of plastocyanin. Apocytochrome f is encoded in the chloroplast genome and is synthesised with an N-terminal presequence which targets the protein to the thylakoid membrane. The synthesis of cytochrome f is coordinated with the synthesis of the other subunits of the cytochrome bf complex.
Collapse
Affiliation(s)
- J C Gray
- Department of Plant Sciences, University of Cambridge, Downing Street, CB2 3EA, Cambridge, UK
| |
Collapse
|
12
|
Effects of NO2-modification of Tyr83 on the reactivity of spinach plastocyanin with cytochrome f. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/0005-2728(92)90184-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
de Silva DGAH, Beoku-Betts D, Kyritsis P, Govindaraju K, Powls R, Tomkinson NP, Sykes AG. Protein–protein cross-reactions involving plastocyanin, cytochrome f and azurin: self-exchange rate constants and related studies with inorganic complexes. ACTA ACUST UNITED AC 1992. [DOI: 10.1039/dt9920002145] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Widger WR. The cloning and sequencing of Synechococcus sp. PCC 7002 petCA operon: Implications for the cytochrome c-553 binding domain of cytochrome f. PHOTOSYNTHESIS RESEARCH 1991; 30:71-84. [PMID: 24415256 DOI: 10.1007/bf00042005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/1990] [Accepted: 08/14/1991] [Indexed: 06/03/2023]
Abstract
The genes encoding the Rieske iron-sulfur protein and cytochrome f from a unicellular, naturally transformable, photoheterotrophic cyanobacterium, Synechococcus sp. PCC 7002, formerly Agmenellum quadruplicatum, have been isolated and sequenced. The two genes were found to be on a single operon, petCA.The Synechococcus sp. PCC 7002 iron-sulfur protein contains 181 amino acids, the conserved putative iron-binding domains CTHLGCV, residues 108-114, and CPCHGS, residues 128-133, no presequence and has a 73% sequence identity to the Nostoc PCC 7906 iron-sulfur protein. The 325 amino acid apocytochrome f sequence contains a 42 amino acid presequence, a CANCH heme binding domain, residues 20-24 from the presumed start of the mature protein, and a predicted hydrophobic membrane-spanning domain, residues 250-269. The mature cytochrome f sequence has a 71.5% sequence identity with Nostoc PCC 7906 cytochrome f and possesses a large (-14) negative charge and low calculated pI of 4.47 compared to higher plant chloroplast sequences. Nine separate domains showing differences in charged residues among cyanobacteria and plants have been identified and the possibility that these domains are involved in the ionic interactions with plastocyanin or cytochrome c-553 is discussed.
Collapse
Affiliation(s)
- W R Widger
- Department of Biochemical and Biophysical Sciences, University of Houston, 77204, Houston, TX, USA
| |
Collapse
|
15
|
Gross EL, Molnar S, Curtiss A, Reuter RA, Berg SP. The use of monoclonal antibodies to study the structure and function of cytochrome f. Arch Biochem Biophys 1991; 289:244-55. [PMID: 1716877 DOI: 10.1016/0003-9861(91)90468-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Monoclonal antibodies (MAbs) were prepared against native cytochrome f (cyt f) isolated from turnip leaves. The two MAbs obtained, designated MAb-JB2 and MAb-ED4, were Western blot positive to purified turnip cytochrome f and also reacted with inside-out (ISO) but not right-side-out (RSO) spinach thylakoid membranes. MAb-ED4 reacted with a covalent adduct formed by crosslinking cyt f and plastocyanin (PC), whereas MAb-JB2 did not. In contrast, MAb-JB2 reacted with the isolated cyt b6/f complex but MAb-ED4 did not. These results indicate that MAb-JB2 binds to cyt f at or near the PC binding site on f, whereas MAb-ED4 binds to a portion of cyt f which is not exposed in the cyt b6/f complex. The location of the epitopes in the primary sequence of cyt f was determined by trypsin hydrolysis, HPLC separation of tryptic peptides, and ELISA identification of the purified peptides. The molecular weights of the purified peptides, determined by gel exclusion chromatography, were found to be 5040 and 3130 Da for MAb-JB2 and MAb-ED4, respectively. Amino acid sequencing showed that the first eight amino acids of the MAb-ED4 positive peptide were L-D-Q-P-L-T-S-N. These results suggest that the 3130-Da peptide has 28 amino acids extending from Leu 223 to Arg 250. This peptide is located on the N-terminal (lumen) side of the postulated membrane-spanning sequence. The first eight amino acids of the MAb-JB2-positive peptide were N-I-L-V-I-G-P-V. This sequence and the peptide molecular weight indicate that the epitope for MAb-JB2 is located within a 44-amino acid peptide extending from Asn 111 to Arg 154.
Collapse
Affiliation(s)
- E L Gross
- Department of Biochemistry, Ohio State University, Columbus 43210
| | | | | | | | | |
Collapse
|
16
|
Hibino T, Douwe de Boer A, Weisbeek PJ, Takabe T. Reconstitution of mature plastocyanin from precursor apo-plastocyanin expressed in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:107-12. [PMID: 2049372 DOI: 10.1016/s0005-2728(05)80226-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The precursor plastocyanin from Silene pratensis (white campion) has been expressed in Escherichia coli. The precursor protein was accumulated in insoluble aggregates and partially purified as an apo-protein. The purified precursor apo-plastocyanin was processed to the mature apo-plastocyanin by chloroplast extracts. N-terminal amino-acid sequencing indicated that the processed protein was identical to the N-terminal amino-acid residues of mature plastocyanin that was deduced from the nucleotide sequence. The copper could be incorporated into the apo-plastocyanin of mature size in vitro, but could not into the precursor apo-plastocyanin under the same conditions. Absorption spectra and reduction potential of the reconstituted mature plastocyanin were indistinguishable from those of the purified spinach plastocyanin. The electron transfer activities of the reconstituted plastocyanin with both the Photosystem I reaction center (P700) and cytochrome f were almost the same as those of the purified spinach plastocyanin.
Collapse
Affiliation(s)
- T Hibino
- Department of Chemistry, Faculty of Science and Technology, Meijo University, Nagoya, Japan
| | | | | | | |
Collapse
|
17
|
|
18
|
Merchant S, Hill K, Kim JH, Thompson J, Zaitlin D, Bogorad L. Isolation and characterization of a complementary DNA clone for an algal pre-apoplastocyanin. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38356-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
19
|
|