1
|
Hanson GR, Lane I. Dimethylsulfoxide (DMSO) Reductase, a Member of the DMSO Reductase Family of Molybdenum Enzymes. METALS IN BIOLOGY 2010. [DOI: 10.1007/978-1-4419-1139-1_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
McCrindle SL, Kappler U, McEwan AG. Microbial Dimethylsulfoxide and Trimethylamine-N-Oxide Respiration. Adv Microb Physiol 2005; 50:147-98. [PMID: 16221580 DOI: 10.1016/s0065-2911(05)50004-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last two decades, the biochemistry and genetics of dimethylsulfoxide (DMSO) and trimethylamine-N-oxide (TMAO) respiration has been characterised, particularly in Escherichia coli marine bacteria of the genus Shewanella and the purple phototrophic bacteria, Rhodobacter sphaeroides and R. capsulatus. All of the enzymes (or catalytic subunits) involved the final step in DMSO and TMAO respiration contain a pterin molybdenum cofactor and are members of the DMSO reductase family of molybdoenzymes. In E. coli, the dimethylsulfoxide reductase (DmsABC) can be purified from membranes as a complex, which exhibits quinol-DMSO oxidoreductase activity. The enzyme is anchored to the membrane via the DmsC subunit and its catalytic subunit DmsA is now considered to face the periplasm. Electron transfer to DmsA involves the DmsB subunit, which is a polyferredoxin related to subunits found in other molybdoenzymes such as nitrate reductase and formate dehydrogenase. A characteristic of the DmsAB-type DMSO reductase is its ability to reduce a variety of S- and N-oxides. E. coli contains a trimethylamine-N-oxide reductase (TorA) that is highly specific for N-oxides. This enzyme is located in the periplasm and is connected to the quinone pool via a membrane-bound penta-haem cytochrome (TorC). DorCA in purple phototrophic bacteria of the genus Rhodobacter is very similar to TorCA with the critical difference that DorA catalyses reduction of both DMSO and TMAO. It is known as a DMSO reductase because the S-oxide is the best substrate. Crystal structures of DorA and TorA have revealed critical differences at the Mo active site that may explain the differences between substrate specificity between the two enzymes. DmsA, TorA and DorA possess a "twin arginine" N-terminal signal sequence consistent with their secretion via the TAT secretory system and not the Sec system. The enzymes are secreted with their bound prosthetic groups: this take place in the cytoplasm and the biogenesis involves a chaperone protein, which is cognate for each enzyme. Expression of the DMSO and TMAO respiratory operons is induced in response to a fall in oxygen tension. dmsABC expression is positively controlled by the oxygen-responsive transcription factor, Fnr and ModE, a transcription factor that binds molybdate. In contrast, torCAD expression is not under Fnr- or ModE-control but is dependent upon a sensor histidine kinase-response regulator pair, TorSR, which activate gene expression under conditions of low oxygen tension in the presence of N- or S-oxide. Regulation of dorCDA expression is similar to that seen for torCAD but it appears that the expression of the sensor histidine kinase-response regulator pair, DorSR is regulated by Fnr and there is an additional tier of regulation involving the ModE-homologue MopB, molybdate and the transcription factor DorX. Analysis of microbial genomes has revealed the presence of dms and tor operons in a wide variety of bacteria and in some archaea and duplicate dms and tor operons have been identified in E. coli. Challenges ahead will include the determination of the significance of the presence of the dms operon in bacterial pathogens and the determination of the significance of DMSO respiration in the global turnover of marine organo-sulfur compounds.
Collapse
Affiliation(s)
- Sharon L McCrindle
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | |
Collapse
|
3
|
Tichi MA, Tabita FR. Interactive control of Rhodobacter capsulatus redox-balancing systems during phototrophic metabolism. J Bacteriol 2001; 183:6344-54. [PMID: 11591679 PMCID: PMC100130 DOI: 10.1128/jb.183.21.6344-6354.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In nonsulfur purple bacteria, redox homeostasis is achieved by the coordinate control of various oxidation-reduction balancing mechanisms during phototrophic anaerobic respiration. In this study, the ability of Rhodobacter capsulatus to maintain a balanced intracellular oxidation-reduction potential was considered; in addition, interrelationships between the control of known redox-balancing systems, the Calvin-Benson-Bassham, dinitrogenase and dimethyl sulfoxide reductase systems, were probed in strains grown under both photoheterotrophic and photoautotrophic growth conditions. By using cbb(I) (cbb form I operon)-, cbb(II)-, nifH-, and dorC-reporter gene fusions, it was demonstrated that each redox-balancing system responds to specific metabolic circumstances under phototrophic growth conditions. In specific mutant strains of R. capsulatus, expression of both the Calvin-Benson-Bassham and dinitrogenase systems was influenced by dimethyl sulfoxide respiration. Under photoheterotrophic growth conditions, coordinate control of redox-balancing systems was further manifested in ribulose 1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase deletion strains. These findings demonstrated the existence of interactive control mechanisms that govern the diverse means by which R. capsulatus maintains redox poise during photoheterotrophic and photoautotrophic growth.
Collapse
Affiliation(s)
- M A Tichi
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
4
|
Shaw AL, Hochkoeppler A, Bonora P, Zannoni D, Hanson GR, McEwan AG. Characterization of DorC from Rhodobacter capsulatus, a c-type cytochrome involved in electron transfer to dimethyl sulfoxide reductase. J Biol Chem 1999; 274:9911-4. [PMID: 10187763 DOI: 10.1074/jbc.274.15.9911] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dorC gene of the dimethyl sulfoxide respiratory (dor) operon of Rhodobacter capsulatus encodes a pentaheme c-type cytochrome that is involved in electron transfer from ubiquinol to periplasmic dimethyl sulfoxide reductase. DorC was expressed as a C-terminal fusion to an 8-amino acid FLAG epitope and was purified from detergent-solubilized membranes by ion exchange chromatography and immunoaffinity chromatography. The DorC protein had a subunit Mr = 46,000, and pyridine hemochrome analysis indicated that it contained 5 mol heme c/mol DorC polypeptide, as predicted from the derived amino acid sequence of the dorC gene. The reduced form of DorC exhibited visible absorption maxima at 551.5 nm (alpha-band), 522 nm (beta-band), and 419 nm (Soret band). Redox potentiometry of the heme centers of DorC identified five components (n = 1) with midpoint potentials of -34, -128, -184, -185, and -276 mV. Despite the low redox potentials of the heme centers, DorC was reduced by duroquinol and was oxidized by dimethyl sulfoxide reductase.
Collapse
Affiliation(s)
- A L Shaw
- Department of Microbiology, The University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | |
Collapse
|
5
|
Czjzek M, Dos Santos JP, Pommier J, Giordano G, Méjean V, Haser R. Crystal structure of oxidized trimethylamine N-oxide reductase from Shewanella massilia at 2.5 A resolution. J Mol Biol 1998; 284:435-47. [PMID: 9813128 DOI: 10.1006/jmbi.1998.2156] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The periplasmic trimethylamine N-oxide (TMAO) reductase from the marine bacteria Shewanella massilia is involved in a respiratory chain, having trimethylamine N-oxide as terminal electron acceptor. This molybdoenzyme belongs to the dimethyl sulfoxide (DMSO) reductase family, but has a different substrate specificity than its homologous enzyme. While the DMSO reductases reduce a broad spectra of organic S-oxide and N-oxide compounds, TMAO reductase from Shewanella massilia reduces only TMAO as the natural compound. The crystal structure was solved by molecular replacement with the coordinates of the DMSO reductase from Rhodobacter sphaeroides. The overall fold of the protein structure is essentially the same as the DMSO reductase structures, organized into four domains. The molybdenum coordination sphere is closest to that described in the DMSO reductase of Rhodobacter capsulatus. The structural differences found in the protein environment of the active site could be related to the differences in substrate specificity of these enzymes. In close vicinity of the molybdenum ion a tyrosine residue is missing in the TMAO reductase, leaving a greater space accessible to the solvent. This tyrosine residue has contacts to the oxo groups in the DMSO reductase structures. The arrangement and number of charged residues lining the inner surface of the funnel-like entrance to the active site, is different in the TMAO reductase than in the DMSO reductases from Rhodobacter species. Furthermore a surface loop at the top of the active-site funnel, for which no density was present in the DMSO reductase structures, is well defined in the oxidized form of the TMAO reductase structure, and is located on the border of the funnel-like entrance of the active center.
Collapse
Affiliation(s)
- M Czjzek
- Laboratoire d'Architecture et Fonction de Macromolécules Biologiques, AFMB-CNRS Marseille, IBSM, 31 chemin Joseph Aiguier, Marseille Cedex 20, 13402, France.
| | | | | | | | | | | |
Collapse
|
6
|
Vogt C, Fischer U. Influence of reduced inorganic sulfur compounds and oxygen on DMS oxidation and DMSO reduction by the marine purple ‘nonsulfur’ bacterium Rhodovulum sul idophilum strain W4. Microbiol Res 1998. [DOI: 10.1016/s0944-5013(98)80004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Mouncey NJ, Choudhary M, Kaplan S. Characterization of genes encoding dimethyl sulfoxide reductase of Rhodobacter sphaeroides 2.4.1T: an essential metabolic gene function encoded on chromosome II. J Bacteriol 1997; 179:7617-24. [PMID: 9401017 PMCID: PMC179721 DOI: 10.1128/jb.179.24.7617-7624.1997] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rhodobacter sphaeroides 2.4.1T is a purple nonsulfur facultative phototrophic bacterium which exhibits remarkable metabolic diversity as well as genomic complexity. Under anoxic conditions, in the absence of light and the presence of dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO), R. sphaeroides 2.4.1T utilizes DMSO or TMAO as the terminal electron acceptor for anaerobic respiration, which is mediated by the molybdoenzyme DMSO reductase. Sequencing of a 13-kb region of chromosome II revealed the presence of 10 putative open reading frames, of which 5 possess homology to genes encoding the TMAO reductase (the tor system) of Escherichia coli. The dorS and dorR genes encode a sensor-regulator pair of the two-component sensory transduction protein family, homologous to the torS and torR gene products. The dorC gene was shown to encode a 44-kDa DMSO-inducible c-type cytochrome. The dorB gene encodes a membrane protein of unknown function homologous to the torD gene product. The dorA gene encodes DMSO reductase, containing the molybdopterin active site. Mutations were constructed in each of these dor genes, and the resulting mutants were shown to be impaired for DMSO-dependent anaerobic growth in the dark. The mutant strains exhibited negligible levels of DMSO reductase activity compared to the wild-type strain under similar growth conditions. Further, no DorA protein was detected in DorS and DorR mutant strains with anti-DorA antisera, suggesting that the products of these genes are required for the positive regulation of dor expression in response to DMSO. This characterization of the dor gene cluster is the first evidence that genes of chromosome CII encode metabolic functions which are essential under particular growth conditions.
Collapse
Affiliation(s)
- N J Mouncey
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center Medical School, Houston 77030, USA
| | | | | |
Collapse
|
8
|
Knäblein J, Dobbek H, Ehlert S, Schneider F. Isolation, cloning, sequence analysis and X-ray structure of dimethyl sulfoxide/trimethylamine N-oxide reductase from Rhodobacter capsulatus. Biol Chem 1997; 378:293-302. [PMID: 9165084 DOI: 10.1515/bchm.1997.378.3-4.293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The periplasmic enzyme dimethyl sulfoxide/trimethylamine N-oxide reductase (DMSOR/TMAOR) from the photosynthetic purple bacterium Rhodobacter capsulatus functions as the terminal electron acceptor in its respiratory chain. The enzyme catalyzes the reduction of highly oxidized substrates like dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO). At a molybdenum redox centre, two single electrons are transferred from cytochrome c556 to the substrate, e.g. DMSO, generating dimethyl sulfide (DMS) and water. The operon encoding this enzyme was isolated, cloned and sequenced, and its chromosomal location determined. It was shown by analytical and crystallographic data that DMSOR and TMAOR are identical enzymes. Degenerate primers were derived from short peptide sequences and a 700 bp fragment was amplified by nested PCR, subsequently cloned and radioactively labeled to screen a prepared lambda DASH library. Positive lambda clones were subcloned into pBluescript and subsequently transformed into Escherichia coli to sequence the DMSOR/TMAOR operon. By an optimized protein purification high yields (5 mg protein/l culture) with a specific activity of 30 U/mg were obtained. The molecular mass was experimentally determined by electrospray mass spectroscopy (MS) to be 85034 Da and from the deduced amino acid sequence of the apoenzyme to be 85033 Da. The enzyme was crystallized in space group P4(1)2(1)2 with unit cell dimensions of a = b = 80.7 A and c = 229.2 A diffracting beyond 1.8 A. The three-dimensional structure was solved by a combination of multiple isomorphous replacement (MIR) and molecular replacement techniques. The atomic model was refined to an R-factor of 0.169 for 57394 independent reflections. The spherical protein consists of four domains with a funnel-like cavity that leads to the freely accessible metal-ion redox center. The sole bis(molybdopterin guanine dinucleotide)molybdenum cofactor (1541 Da) of the single chain protein has the molybdenum ion bound to the cis-dithiolene group of only one molybdopterin guanine dinucleotide (MGD) molecule. In addition, two oxo ligands and the oxygen of a serine side chain are bound to the molybdenum ion.
Collapse
Affiliation(s)
- J Knäblein
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | |
Collapse
|
9
|
Schindelin H, Kisker C, Hilton J, Rajagopalan KV, Rees DC. Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 1996; 272:1615-21. [PMID: 8658134 DOI: 10.1126/science.272.5268.1615] [Citation(s) in RCA: 369] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The molybdoenzyme dimethylsulfoxide (DMSO) reductase contributes to the release of dimethylsulfide, a compound that has been implicated in cloud nucleation and global climate regulation. The crystal structure of DMSO reductase from Rhodobacter sphaeroides reveals a monooxo molybdenum cofactor containing two molybdopterin guanine dinucleotides that asymmetrically coordinate the molybdenum through their dithiolene groups. One of the pterins exhibits different coordination modes to the molybdenum between the oxidized and reduced states, whereas the side chain oxygen of Ser147 coordinates the metal in both states. The change in pterin coordination between the Mo(VI) and Mo(IV) forms suggests a mechanism for substrate binding and reduction by this enzyme. Sequence comparisons of DMSO reductase with a family of bacterial oxotransferases containing molybdopterin guanine dinucleotide indicate a similar polypeptide fold and active site with two molybdopterins within this family.
Collapse
Affiliation(s)
- H Schindelin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | |
Collapse
|
10
|
Reyes F, Roldán MD, Klipp W, Castillo F, Moreno-Vivián C. Isolation of periplasmic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Mol Microbiol 1996; 19:1307-18. [PMID: 8730872 DOI: 10.1111/j.1365-2958.1996.tb02475.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The phototrophic bacterium Rhodobacter sphaeroides DSM 158 has a periplasmic nitrate reductase which is induced by nitrate and it is not repressed by ammonium or oxygen. In a Tn5 mutant lacking nitrate reductase activity, transposon insertion is localized in a 1.2 kb EcoRI fragment. A 0.6 kb BamHI-EcoRI segment of this region was used as a probe to isolate, from the wild-type strain, a 6.8 kb PstI fragment carrying the putative genes coding for the periplasmic nitrate reductase. In vivo protein expression and DNA sequence analysis reveal the presence in this region of three genes, napABC, probably organized in an operon. These genes are required for nitrate reduction, as deduced by mutational and complementation studies. The napA gene codes for a protein with a high homology to the periplasmic nitrate reductase from Alcaligenes eutrophus and, to a lesser extent, to other prokaryotic nitrate reductases and molybdenum-containing enzymes. The napB gene product has two haem c-binding sites and shows a high homology with the cytochrome c-type subunit of the periplasmic nitrate reductase from A. eutrophus. NAPA and NAPB proteins appear to be translated with signal peptides of 29 and 24 residues, respectively, indicating that mature proteins are located in the periplasm. The napC gene codes for a 25 kDa protein with a transmembrane sequence of 17 hydrophobic residues. NAPC has four haem c-binding sites and is homologous to the membrane-bound c-type cytochromes encoded by Pseudomonas stutzeri nirT and Escherichia coli torC genes. The phenotypes of defined insertion mutants constructed for each gene also indicate that periplasmic nitrate reductase from R. sphaeroides DSM 158 is a dimeric complex of a 90 kDa catalytic subunit (NAPA) and a 15 kDa cytochrome c (NAPB), which receives electrons from a membrane-anchored tetrahaem protein (NAPC), thus allowing electron flow between membrane and periplasm. This nitrate-reducing system differs from the assimilatory and respiratory bacterial nitrate reductases at the level of cellular localization, regulatory properties, biochemical characteristics and gene organization.
Collapse
Affiliation(s)
- F Reyes
- Departamento de Bioquimica y Biología Molecular, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | | | | | | | |
Collapse
|
11
|
Bennett B, Benson N, McEwan AG, Bray RC. Multiple states of the molybdenum centre of dimethylsulphoxide reductase from Rhodobacter capsulatus revealed by EPR spectroscopy. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:321-31. [PMID: 7925452 DOI: 10.1111/j.1432-1033.1994.00321.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The dimethylsulphoxide reductase of Rhodobacter capsulatus contains a pterin molybdenum cofactor molecule as its only prosthetic group. Kinetic studies were consistent with re-oxidation of the enzyme being rate limiting in the turnover of dimethylsulphoxide in the presence of the benzyl viologen radical. EPR spectra of molybdenum(V) were generated by reducing the highly purified enzyme under a variety of conditions, and with careful control it was possible to generate at least five clearly distinct EPR signals. These could be simulated, indicating that each corresponds to a single chemical species. Structures of the signal-giving species are discussed in light of the EPR parameters and of information from the literature. Three of the signals show coupling of molybdenum to an exchangeable proton and, in the corresponding species, the metal is presumed to bear a hydroxyl ligand. One signal with gav 1.96 shows a very strong similarity to a signal for the desulpho form of xanthine oxidase, while two others with gav values of 1.98 show a distinct similarity to signals from nitrate reductase of Escherichia coli. These data indicate an unusual flexibility in the active site of dimethylsulphoxide reductase, as well as emphasising structural similarities between molybdenum enzymes bearing different forms of the pterin cofactor. Interchange among the different species must involve either a change of coordination geometry, a ligand exchange, or both. The latter may involve replacement of an amino acid residue co-ordinating molybdenum via O or N, for a cysteine co-ordinating via S. Since the two signals with gav 1.96 were obtained only under specific conditions of reduction of the enzyme by dithionite, it is postulated that their generation may be triggered by reduction of the pteridine of the molybdenum cofactor from a dihydro state to the tetrahydro state.
Collapse
Affiliation(s)
- B Bennett
- Biochemistry Laboratory, School of Chemistry and Molecular Sciences, University of Sussex, Brighton, England
| | | | | | | |
Collapse
|
12
|
Méjean V, Iobbi-Nivol C, Lepelletier M, Giordano G, Chippaux M, Pascal MC. TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol 1994; 11:1169-79. [PMID: 8022286 DOI: 10.1111/j.1365-2958.1994.tb00393.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The trimethylamine N-oxide (TMAO) respiratory system is subject to a strict positive control by the substrate. This property was exploited in the performance of miniMu replicon-mediated in vivo cloning of the promoter region of gene(s) positively regulated by TMAO. This region, located at 22 min on the chromosome, was shown to control the expression of a transcription unit composed of three open reading frames, designated torC, torA and torD, respectively. The presence of five putative c-type haem-binding sites within the TorC sequence, as well as the specific biochemical characterization, indicated that torC encodes a 43,300 Da c-type cytochrome. The second open reading frame, torA, was identified as the structural gene for TMAO reductase. A comparison of the predicted amino-terminal sequence of the torA gene product to that of the purified TMAO reductase indicated cleavage of a 39 amino acid signal peptide, which is in agreement with the periplasmic location of the enzyme. The predicted TorA protein contains the five molybdenum cofactor-binding motifs found in other molybdoproteins and displays extensive sequence homology with BisC and DmsA proteins. As expected, insertions in torA led to the loss of TMAO reductase. The 22,500 Da polypeptides encoded by the third open reading frame does not share any similarity with proteins listed in data banks.
Collapse
Affiliation(s)
- V Méjean
- Laboratoire de Chimie Bactérienne, CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
13
|
McEwan AG. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie Van Leeuwenhoek 1994; 66:151-64. [PMID: 7747929 DOI: 10.1007/bf00871637] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Purple non-sulfur phototrophic bacteria, exemplified by Rhodobacter capsulatus and Rhodobacter sphaeroides, exhibit a remarkable versatility in their anaerobic metabolism. In these bacteria the photosynthetic apparatus, enzymes involved in CO2 fixation and pathways of anaerobic respiration are all induced upon a reduction in oxygen tension. Recently, there have been significant advances in the understanding of molecular properties of the photosynthetic apparatus and the control of the expression of genes involved in photosynthesis and CO2 fixation. In addition, anaerobic respiratory pathways have been characterised and their interaction with photosynthetic electron transport has been described. This review will survey these advances and will discuss the ways in which photosynthetic electron transport and oxidation-reduction processes are integrated during photoautotrophic and photoheterotrophic growth.
Collapse
Affiliation(s)
- A G McEwan
- Department of Microbiology, University of Queensland, Brisbane, Australia
| |
Collapse
|
14
|
Hanlon SP, Holt RA, McEwan AG. The 44-kDac-type cytochrome induced inRhodobacter capsulatusduring growth with dimethylsulphoxide as an electron acceptor is a cytochromecperoxidase. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05476.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Weiner JH, Rothery RA, Sambasivarao D, Trieber CA. Molecular analysis of dimethylsulfoxide reductase: a complex iron-sulfur molybdoenzyme of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1102:1-18. [PMID: 1324728 DOI: 10.1016/0005-2728(92)90059-b] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J H Weiner
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
16
|
Chatani Y, Tanaka E, Tobe K, Hattori A, Sato M, Tamemoto H, Nishizawa N, Nomoto H, Takeya T, Kadowaki T. Mitogen-induced tyrosine-phosphorylated 41- and 43-kDa proteins are family members of extracellular signal-regulated kinases/microtubule-associated protein 2 kinases. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50179-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
17
|
Ferguson SJ. The functions and synthesis of bacterial c-type cytochromes with particular reference to Paracoccus denitrificans and Rhodobacter capsulatus. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1058:17-20. [PMID: 1646010 DOI: 10.1016/s0005-2728(05)80259-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S J Ferguson
- Department of Biochemistry, University of Oxford, U.K
| |
Collapse
|
18
|
Richardson DJ, McEwan AG, Page MD, Jackson JB, Ferguson SJ. The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3- reductase of Rhodobacter capsulatus and resolution of a soluble NO3(-)-reductase--cytochrome-c552 redox complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 194:263-70. [PMID: 2174775 DOI: 10.1111/j.1432-1033.1990.tb19452.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The involvement of cytochromes in the electron-transport pathway to the periplasmic NO3- reductase of Rhodobacter capsulatus was studied in cells grown photoheterotrophically in the presence of nitrate with butyrate as carbon source. The specific rate of NO3- reduction by such cells was five times higher than when malate was carbon source. Reduced minus NO3(-)-oxidized spectra of cells had peaks in the alpha-band region for cytochromes at 552 nm and 559 nm, indicating the involvement of c- and b-type cytochromes in the electron-transport pathway to NO3-. The total ferricyanide-oxidizable cytochrome that was also oxidized in the steady state by NO3- was greater in cells grown with butyrate rather than malate. Low concentrations of cyanide inhibited NO3- reduction. Neither CN-, nor a previously characterized inhibitor of NO3- reduction, 2-n-heptyl-4-hydroxyquinoline N-oxide, prevented the oxidation of the cytochromes by NO3-. This suggested a site of action for these inhibitors on the reducing side of the b- and c-type cytochromes involved in electron transport to the NO3- reductase. The predominant cytochrome in a periplasmic fraction prepared from cells of R. capsulatus grown on butyrate medium was cytochrome c2 but a c-type cytochrome with an alpha-band reduced absorbance maximum at 552 nm could also be identified. The reduced form of this latter cytochrome, but not that of cytochrome c2, was oxidized upon addition of NO3- to a periplasmic fraction. The NO3(-)-oxidizable cytochrome co-purified with the periplasmic NO3- reductase through fractionation procedures that included ammonium sulphate precipitation, gel filtration at low and high salt concentrations, and ion-exchange chromatography. A NO3(-)-reductase-cytochrome-c552 redox complex that comprised two types of polypeptide, a nitrate reductase subunit and a c-type cytochrome subunit, was purified. The polypeptides were separated when the complex was chromatographed on a phenyl-Sepharose hydrophobic chromatography column.
Collapse
Affiliation(s)
- D J Richardson
- School of Biochemistry, University of Birmingham, England
| | | | | | | | | |
Collapse
|
19
|
|
20
|
In vivo redox poising of the cyclic electron transport system of Rhodobacter capsulatus and the effects of the auxiliary oxidants, nitrate, nitrous oxide and trimethylamine N-oxide, as revealed by multiple short flash excitation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90186-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Esposti MD. Prediction and comparison of the haem-binding sites in membrane haemoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 977:249-65. [PMID: 2686753 DOI: 10.1016/s0005-2728(89)80079-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article contains a comparative review of the structural properties of membrane haemoproteins, with particular emphasis on the possible similarities of the haem-binding peptides. A procedure is suggested for identifying the peptides which may bind membrane-buried haems on the basis of the primary sequences of the proteins. The integration of this procedure with the information deduced by refined hydropathy analysis indicates that the basic structural model for the haemoproteins which interact with quinones may be a transmembrane helical bundle containing the haem(s) at its centre. Structural similarities exist in the sequence of hydrophobic segments that are predicted to bind the membrane-buried haems of b-cytochromes which interact with quinones. The predicted haem-binding sites show similarities also with the peptides that bind the non-haem iron in the bacterial reaction centres, and this may be correlated to the common function of interacting with quinones and their intermediates. The analysis of the amino-acid composition of the proposed ligand peptides in the membrane haemoproteins examined has provided a molecular rationale for explaining the highly anisotropic low-spin EPR signal which is characteristic of many membrane-bound b-cytochromes.
Collapse
Affiliation(s)
- M D Esposti
- Department of Biology, University of Bologna, Italy
| |
Collapse
|
22
|
Richardson DJ, McEwan AG, Jackson JB, Ferguson SJ. Electron transport pathways to nitrous oxide in Rhodobacter species. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 185:659-69. [PMID: 2556273 DOI: 10.1111/j.1432-1033.1989.tb15163.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Electron transport components involved in nitrous oxide reduction in several strains of Rhodobacter capsulatus and in the denitrifying strain of Rhodobacter sphaeroides (f. sp. denitrificans) have been investigated. Detailed titrations with antimycin A and myxothiazol, inhibitors of the cytochrome bc1 complex, show that part of the electron flow to nitrous oxide passes through this complex. The sensitivity to myxothiazol varies between strains and growth conditions of R. capsulatus; the higher rates of nitrous oxide reduction correlate with the higher sensitivities. Partial inhibition of the nitrous oxide reductase enzyme with azide decreased the sensitivity to myxothiazol of the strains that had the highest nitrous oxide reductase activity. 2. Inhibition of nitrous oxide reduction in cells of R. capsulatus by myxothiazol could be restored under dark conditions by addition of N,N,N',N'-tetramethyl-p-phenylene diamine. The highest activities observed after addition of this electron carrier were found in the strains that had the highest sensitivity to myxothiazol, consistent with the premise that this inhibitor is more effective at the higher flux rates to nitrous oxide. 3. Addition of nitrous oxide to cells of R. capsulatus strain N22DNAR+ under darkness caused oxidation of both b- and c-type cytochromes. The oxidation of b cytochromes was less pronounced in the presence of myxothiazol, consistent with a role for the cytochrome bc1 complex in the electron pathway to nitrous oxide. Ferricyanide, in the absence of myxothiazol, caused a similar extent of oxidation of b cytochromes, but a greater oxidation of c-type, suggesting that there was a pool of c-type cytochrome that was not oxidisable by nitrous oxide. The time course showed that both the b- and c-type cytochromes were oxidised within a few seconds of the addition of nitrous oxide. During the following seconds there was a partial re-reduction of the cytochromes such that after approximately 1 min a lower steady-state of oxidation was attained and this persisted until the nitrous oxide was exhausted. 4. A mutant, MTCBC1, of R. capsulatus that specifically lacked a functional cytochrome bc1 complex reduced nitrous oxide, albeit at 30% of the rate shown by the parent strain MT1131. A reduced minus nitrous-oxide-oxidised difference spectrum for MTCBC1 in the absence of myxothiazol was similar to the corresponding difference spectrum observed for strain N22DNAR+ in the presence of myxothiazol. It is suggested that these difference spectra identify the cytochrome components, including a b-type, involved in a pathway that is alternative to, and independent of, the cytochrome bc1 complex.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- D J Richardson
- School of Biochemistry, University of Birmingham, England
| | | | | | | |
Collapse
|