1
|
Al Said T, Weber S, Schleicher E. OOP-ESEEM Spectroscopy: Accuracies of Distances of Spin-Correlated Radical Pairs in Biomolecules. Front Mol Biosci 2022; 9:890826. [PMID: 35813811 PMCID: PMC9262093 DOI: 10.3389/fmolb.2022.890826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
In addition to the commonly used electron-electron double resonance (ELDOR) technique, there are several other electron paramagnetic resonance (EPR) methods by which structure information can be obtained by exploiting the dipolar coupling between two radicals based on its characteristic r -3 dependence. In this contribution, we explore the potential of out-of-phase-electron-spin echo envelope modulation (OOP-ESEEM) spectroscopy to collect accurate distance information in photo-sensitive (bio) molecules. Although the method has already been applied to spin-correlated radical pairs in several classes of light-active proteins, the accuracy of the information obtained has not yet been extensively evaluated. To do this in a system-independent fashion, OOP-ESEEM time traces simulated with different values of the dipolar and exchange couplings were generated and analyzed in a best-possible way. Excellent agreement between calculated and numerically fitted values over a wide range of distances (between 15 and 45 Å) was obtained. Furthermore, the limitations of the method and the dependence on various experimental parameters could be evaluated.
Collapse
Affiliation(s)
| | | | - Erik Schleicher
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Lukina EA, Suturina E, Reijerse E, Lubitz W, Kulik LV. Spin dynamics of light-induced charge separation in composites of semiconducting polymers and PC60BM revealed using Q-band pulse EPR. Phys Chem Chem Phys 2017; 19:22141-22152. [DOI: 10.1039/c7cp03680a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Q-Band electron spin echo spectroscopy allows distinguishing light-induced polarons of different types in photovoltaic polymer/fullerene composites.
Collapse
Affiliation(s)
- E. A. Lukina
- Voevodsky Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| | - E. Suturina
- School of Chemistry
- University of Southampton
- Southampton
- UK
| | - E. Reijerse
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Muelheim an der Ruhr
- Germany
| | - W. Lubitz
- Max Planck Institute for Chemical Energy Conversion
- D-45470 Muelheim an der Ruhr
- Germany
| | - L. V. Kulik
- Voevodsky Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences
- 630090 Novosibirsk
- Russia
- Novosibirsk State University
- 630090 Novosibirsk
| |
Collapse
|
3
|
Lukina EA, Popov AA, Uvarov MN, Kulik LV. Out-of-Phase Electron Spin Echo Studies of Light-Induced Charge-Transfer States in P3HT/PCBM Composite. J Phys Chem B 2015; 119:13543-8. [DOI: 10.1021/acs.jpcb.5b02142] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ekaterina A. Lukina
- Voevodsky
Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk 630090, Russia
| | - Alexander A. Popov
- Voevodsky
Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk 630090, Russia
| | - Mikhail N. Uvarov
- Voevodsky
Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russia
| | - Leonid V. Kulik
- Voevodsky
Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russia
- Novosibirsk State University, Pirogova
2, Novosibirsk 630090, Russia
| |
Collapse
|
4
|
Savitsky A, Niklas J, Golbeck JH, Möbius K, Lubitz W. Orientation Resolving Dipolar High-Field EPR Spectroscopy on Disordered Solids: II. Structure of Spin-Correlated Radical Pairs in Photosystem I. J Phys Chem B 2013; 117:11184-99. [DOI: 10.1021/jp401573z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- A. Savitsky
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470
Mülheim an der Ruhr, Germany
| | - J. Niklas
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470
Mülheim an der Ruhr, Germany
| | - J. H. Golbeck
- Department of Biochemistry
and
Molecular Biology, Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802,
United States
| | - K. Möbius
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470
Mülheim an der Ruhr, Germany
- Department of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin,
Germany
| | - W. Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, D-45470
Mülheim an der Ruhr, Germany
| |
Collapse
|
5
|
Astashkin AV, Kawamori A. Distance Measurements in Photosynthetic Reaction Centers by Pulsed EPR. BIOPHYSICAL TECHNIQUES IN PHOTOSYNTHESIS 2008. [DOI: 10.1007/978-1-4020-8250-4_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Schiemann O, Prisner TF. Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 2007; 40:1-53. [PMID: 17565764 DOI: 10.1017/s003358350700460x] [Citation(s) in RCA: 435] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy provides a variety of tools to study structures and structural changes of large biomolecules or complexes thereof. In order to unravel secondary structure elements, domain arrangements or complex formation, continuous wave and pulsed EPR methods capable of measuring the magnetic dipole coupling between two unpaired electrons can be used to obtain long-range distance constraints on the nanometer scale. Such methods yield reliably and precisely distances of up to 80 A, can be applied to biomolecules in aqueous buffer solutions or membranes, and are not size limited. They can be applied either at cryogenic or physiological temperatures and down to amounts of a few nanomoles. Spin centers may be metal ions, metal clusters, cofactor radicals, amino acid radicals, or spin labels. In this review, we discuss the advantages and limitations of the different EPR spectroscopic methods, briefly describe their theoretical background, and summarize important biological applications. The main focus of this article will be on pulsed EPR methods like pulsed electron-electron double resonance (PELDOR) and their applications to spin-labeled biosystems.
Collapse
Affiliation(s)
- Olav Schiemann
- Institute of Physical and Theoretical Chemistry, Center for Biomolecular Magnetic Resonance, J. W. Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany.
| | | |
Collapse
|
7
|
Hara H, Tenno T, Shirakawa M. Distance determination in human ubiquitin by pulsed double electron-electron resonance and double quantum coherence ESR methods. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 184:78-84. [PMID: 17046296 DOI: 10.1016/j.jmr.2006.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 09/01/2006] [Accepted: 09/08/2006] [Indexed: 05/12/2023]
Abstract
Recently, distance measurements by pulsed ESR (electron spin resonance) have been obtained using pulsed DEER (double electron-electron resonance) and DQC (double quantum coherence) in SDSL (site directed spin labeling) proteins. These methods can observe long range dipole interactions (15-80A). We applied these methods to human ubiquitin proteins. The distance between the 20th and the 35th cysteine was estimated in doubly spin labeled human ubiquitin. Pulsed DEER requires two microwave sources. However, a phase cycle is not usually required in this method. On the other hand, DQC-ESR at X-band ( approximately 9GHz) can acquire a large echo signal by using pulses of short duration and high power, but this method has an ESEEM (electron spin echo envelope modulation) problem. We used a commercial pulsed ESR spectrometer and compared these two methods.
Collapse
Affiliation(s)
- H Hara
- ESR Division, Bruker Biospin K.K., Ibaraki 305-0051, Japan.
| | | | | |
Collapse
|
8
|
Kawamori A, Ono TA, Ishii A, Nakazawa S, Hara H, Tomo T, Minagawa J, Bittl R, Dzuba SA. The functional sites of chlorophylls in D1 and D2 subunits of photosystem II identified by pulsed EPR. PHOTOSYNTHESIS RESEARCH 2005; 84:187-92. [PMID: 16049773 DOI: 10.1007/s11120-005-1000-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2004] [Accepted: 01/20/2005] [Indexed: 05/03/2023]
Abstract
The functional site of ChlZ, an auxiliary electron donor to P680+, was determined by pulsed ELDOR applied to a radical pair of YD * and Chlz+ in oriented PS II membranes from spinach. The radical-radical distance was determined to be 29.5 A and its direction was 50 degrees from the membrane normal, indicating that a chlorophyll on the D2 protein is responsible for the EPR Chlz+ signal. Spin polarized ESEEM (Electronin Spin Echo Envelop Modulation) of a 3Chl and QA - radical pair induced by a laser flash was observed in reaction center D1D2Cytb559 complex, in which QA was functionally reconstituted with DBMIB and reduced chemically. QA -ESEEM showed a characteristic oscillating time profile due to dipolar coupling with 3Chl. By fitting with the dipolar interaction parameters, the distance between 3Chl and QA - was determined to be 25.9 A, indicating that the accessory chlorophyll on the D1 protein is responsible for the 3Chl signal.
Collapse
Affiliation(s)
- A Kawamori
- School of Science and Technology, Kwansei Gakuin University, Sanda, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bittl R, Weber S. Transient radical pairs studied by time-resolved EPR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:117-26. [PMID: 15721610 DOI: 10.1016/j.bbabio.2004.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 03/05/2004] [Indexed: 12/20/2022]
Abstract
Photogenerated short-lived radical pairs (RP) are common in biological photoprocesses such as photosynthesis and enzymatic DNA repair. They can be favorably probed by time-resolved electron paramagnetic resonance (EPR) methods with adequate time resolution. Two EPR techniques have proven to be particularly useful to extract information on the working states of photoinduced biological processes that is only difficult or sometimes even impossible to obtain by other types of spectroscopy. Firstly, transient EPR yields crucial information on the chemical nature and the geometry of the individual RP halves in a doublet-spin pair generated by a short laser pulse. This time-resolved method is applicable in all magnetic field/microwave frequency regimes that are used for continuous-wave EPR, and is nowadays routinely utilized with a time resolution reaching about 10 ns. Secondly, a pulsed EPR method named out-of-phase electron spin echo envelope modulation (OOP-ESEEM) is increasingly becoming popular. By this pulsed technique, the mutual spin-spin interaction between the RP halves in a doublet-spin pair manifests itself as an echo modulation detected as a function of the microwave-pulse spacing of a two-pulse echo sequence subsequent to a laser pulse. From the dipolar coupling, the distance between the radicals is readily derived. Since the spin-spin interaction parameters are typically not observable by transient EPR, the two techniques complement each other favorably. Both EPR methods have recently been applied to a variety of light-induced RPs in photobiology. This review summarizes the results obtained from such studies in the fields of plant and bacterial photosynthesis and DNA repair mediated by the enzyme DNA photolyase.
Collapse
Affiliation(s)
- Robert Bittl
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | | |
Collapse
|
10
|
|
11
|
Lubitz W. Pulse EPR and ENDOR studies of light-induced radicals and triplet states in photosystem II of oxygenic photosynthesis. Phys Chem Chem Phys 2002. [DOI: 10.1039/b206551g] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Abstract
Pulsed electron paramagnetic resonance (EPR) methods such as ESEEM, PELDOR, relaxation time measurements, transient EPR, high-field/high-frequency EPR, and pulsed ENDOR, have been used successfully to investigate the local structure and dynamics of paramagnetic centers in biological samples. These methods allow different contributions to the EPR spectra to be distinguished and can help unravel complicated EPR spectra consisting of overlapping resonance lines, as are often found in disordered protein samples. The basic principles, specific potentials, technical requirements, and limitations of these advanced EPR techniques will be reviewed together with recent applications to metal centers, organic radicals, and spin labels in proteins.
Collapse
Affiliation(s)
- T Prisner
- Institute for Physical and Theoretical Chemistry, J. W. Goethe-University Frankfurt, Marie-Curie-Strasse 11, Frankfurt am Main, D-60439 Germany.
| | | | | |
Collapse
|
13
|
Selective excitation in pulsed EPR of spin-correlated radical pairs: electron–electron interactions, zero-, single-, and double-quantum relaxation and spectral diffusion. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00271-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Kuroiwa S, Tonaka M, Kawamori A, Akabori K. The position of cytochrome b(559) relative to Q(A) in photosystem II studied by electron-electron double resonance (ELDOR). BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1460:330-7. [PMID: 11106773 DOI: 10.1016/s0005-2728(00)00199-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The electron-electron double resonance (ELDOR) method was applied to measure the dipole interaction between cytochrome (Cyt) b(+)(559) and the primary acceptor quinone (Q(-)(A)), observed at g=2.0045 with the peak to peak width of about 9 G, in Photosystem II (PS II) in which the non-heme Fe(2+) was substituted by Zn(2+). The paramagnetic centers of Cyt b(+)(559)Y(D)Q(-)(A) were trapped by illumination at 273 K for 8 min, followed by dark adaptation for 3 min and freezing into 77 K. The distance between the pair Cyt b(+)(559)-Q(-)(A) was estimated from the dipole interaction constant fitted to the observed ELDOR time profile to be 40+/-1 A. In the membrane oriented PS II particles the angle between the vector from Q(A) to Cyt b(559) and the membrane normal was determined to be 80+/-5 degrees. The position of Cyt b(559) relative to Q(A) suggests that the heme plane is located on the stromal side of the thylakoid membrane. ELDOR was not observed for Cyt b(+)(559) Y(D) spin pair, suggesting the distance between them is more than 50 A.
Collapse
Affiliation(s)
- S Kuroiwa
- Faculty of Science, Kwansei Gakuin University, Uegahara 1-1-155, Nishinomiya 662-8501, Japan
| | | | | | | |
Collapse
|
15
|
Zech SG, Hofbauer W, Kamlowski A, Fromme P, Stehlik D, Lubitz W, Bittl R. A Structural Model for the Charge Separated State in Photosystem I from the Orientation of the Magnetic Interaction Tensors. J Phys Chem B 2000. [DOI: 10.1021/jp002125w] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stephan G. Zech
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany, and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Wulf Hofbauer
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany, and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Andreas Kamlowski
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany, and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Petra Fromme
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany, and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Dietmar Stehlik
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany, and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Wolfgang Lubitz
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany, and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Robert Bittl
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany, and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
16
|
Dorlet P, Rutherford AW, Un S. Orientation of the tyrosyl D, pheophytin anion, and semiquinone Q(A)(*)(-) radicals in photosystem II determined by high-field electron paramagnetic resonance. Biochemistry 2000; 39:7826-34. [PMID: 10869189 DOI: 10.1021/bi000175l] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The radical forms of two cofactors and an amino acid in the photosystem II (PS II) reaction center were studied by using high-field EPR both in frozen solution and in oriented multilayers. Their orientation with respect to the membrane was determined by using one-dimensionally oriented samples. The ring plane of the stable tyrosyl radical, Y(D)(*), makes an angle of 64 degrees +/- 5 degrees with the membrane plane, and the C-O direction is tilted by 72 degrees +/- 5 degrees in the plane of the radical compared to the membrane plane. The semiquinone, Q(A)(*)(-), generated by chemical reduction in samples lacking the non-heme iron, has its ring plane at an angle of 72 degrees +/- 5 degrees to the membrane plane, and the O-O axis is tilted by 21 degrees +/- 5 degrees in the plane of the quinone compared to the membrane plane. This orientation is similar to that of Q(A)(*)(-) in purple bacteria reaction centers except for the tilt angle which is slightly bigger. The pheophytin anion was generated by photoaccumulation under reducing conditions. Its ring plane is almost perpendicular to the membrane with an angle of 70 degrees +/- 5 degrees with respect to the membrane plane. This is very similar to the orientation of the pheophytin in purple bacteria reaction centers. The position of the g tensor with respect to the molecule is tentatively assigned for the anion radical on the basis of this comparison. In this work, the treatment of orientation data from EPR spectroscopy applied to one-dimensionally oriented multilayers is examined in detail, and improvements over previous approaches are given.
Collapse
Affiliation(s)
- P Dorlet
- Section de Bioénergétique, Département de Biologie Cellulaire et Moléculaire, CNRS URA 2096, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
17
|
Hulsebosch RJ, Borovykh IV, Paschenko SV, Gast P, Hoff AJ. Radical Pair Dynamics and Interactions in Quinone-Reconstituted Photosynthetic Reaction Centers of Rb. sphaeroides R26: A Multifrequency Magnetic Resonance Study. J Phys Chem B 1999. [DOI: 10.1021/jp990677c] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. J. Hulsebosch
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - I. V. Borovykh
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - S. V. Paschenko
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - P. Gast
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - A. J. Hoff
- Department of Biophysics, Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
18
|
Fursman C, Hore P. Distance determination in spin-correlated radical pairs in photosynthetic reaction centres by electron spin echo envelope modulation. Chem Phys Lett 1999. [DOI: 10.1016/s0009-2614(99)00185-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Zech SG, Kurreck J, Renger G, Lubitz W, Bittl R. Determination of the distance between Y(Z)ox* and QA-* in photosystem II by pulsed EPR spectroscopy on light-induced radical pairs. FEBS Lett 1999; 442:79-82. [PMID: 9923609 DOI: 10.1016/s0014-5793(98)01628-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Out-of-phase electron spin echo envelope modulation (ESEEM) spectroscopy was used to determine the distances within two consecutive radical pair states initiated by a laser flash in photosystem II membrane fragments at pH 11. The distance between the spin density centers of the primary electron donor cation radical, P680+*, and the reduced plastoquinone acceptor, QA-*, has been found to be 27.7+/-0.7 A in agreement with previous results. Near room temperature and at high pH, P680+* is reduced by Y(Z), a redox active tyrosine residue, on a sub-microsecond timescale. As a consequence, the subsequent radical pair state, Y(Z)ox*-QA-*, could be investigated after almost complete reduction of P680+* by Y(Z). The determined dipolar electronic spin-spin coupling within the radical pair Y(Z)ox*QA-* corresponds to a distance of 34+/-1 A between the two molecules.
Collapse
Affiliation(s)
- S G Zech
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Germany
| | | | | | | | | |
Collapse
|
20
|
Iwaki M, Itoh S, Hara H, Kawamori A. Spin-Polarized Radical Pair in Photosystem I Reaction Center That Contains Different Quinones and Fluorenones as the Secondary Electron Acceptor. J Phys Chem B 1998. [DOI: 10.1021/jp9821477] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Electron spin echo envelope modulation by electronic spin–spin interactions in radical pairs undergoing electron transfer. Chem Phys Lett 1998. [DOI: 10.1016/s0009-2614(98)00883-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|