1
|
Möbius K, Lubitz W, Savitsky A. Jim Hyde and the ENDOR Connection: A Personal Account. APPLIED MAGNETIC RESONANCE 2017; 48:1149-1183. [PMID: 29151676 PMCID: PMC5668355 DOI: 10.1007/s00723-017-0959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Indexed: 06/07/2023]
Abstract
In this minireview, we report on our year-long EPR work, such as electron-nuclear double resonance (ENDOR), pulse electron double resonance (PELDOR) and ELDOR-detected NMR (EDNMR) at X-band and W-band microwave frequencies and magnetic fields. This report is dedicated to James S. Hyde and honors his pioneering contributions to the measurement of spin interactions in large (bio)molecules. From these interactions, detailed information is revealed on structure and dynamics of macromolecules embedded in liquid-solution or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultra-fast electronics for signal data handling and processing have pushed the limits of EPR spectroscopy and its multi-frequency extensions to new horizons concerning sensitivity of detection, selectivity of molecular interactions and time resolution. Among the most important advances is the upgrading of EPR to high magnetic fields, very much in analogy to what happened in NMR. The ongoing progress in EPR spectroscopy is exemplified by reviewing various multi-frequency electron-nuclear double-resonance experiments on organic radicals, light-generated donor-acceptor radical pairs in photosynthesis, and site-specifically nitroxide spin-labeled bacteriorhodopsin, the light-driven proton pump, as well as EDNMR and ENDOR on nitroxides. Signal and resolution enhancements are particularly spectacular for ENDOR, EDNMR and PELDOR on frozen-solution samples at high Zeeman fields. They provide orientation selection for disordered samples approaching single-crystal resolution at canonical g-tensor orientations-even for molecules with small g-anisotropies. Dramatic improvements of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Thus, unique structural and dynamic information is revealed that can hardly be obtained by other analytical techniques. Micromolar concentrations of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems-offering exciting applications for physicists, chemists, biochemists and molecular biologists.
Collapse
Affiliation(s)
- Klaus Möbius
- Department of Physics, Free University Berlin, Arnimallee 14, 14195 Berlin, Germany
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Anton Savitsky
- Max-Planck-Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
2
|
Taguchi AT, O'Malley PJ, Wraight CA, Dikanov SA. Hydrogen bond network around the semiquinone of the secondary quinone acceptor Q(B) in bacterial photosynthetic reaction centers. J Phys Chem B 2015; 119:5805-14. [PMID: 25885036 DOI: 10.1021/acs.jpcb.5b03434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By utilizing a combined pulsed EPR and DFT approach, the high-resolution structure of the QB site semiquinone (SQB) was determined. The development of such a technique is crucial toward an understanding of protein-bound semiquinones on the structural level, as (i) membrane protein crystallography typically results in low resolution structures, and (ii) obtaining protein crystals in the semiquinone form is rarely feasible. The SQB hydrogen bond network was investigated with Q- (∼34 GHz) and X-band (∼9.7 GHz) pulsed EPR spectroscopy on fully deuterated reactions centers from Rhodobacter sphaeroides. Simulations in the SQB g-tensor reference frame provided the principal values and directions of the H-bond proton hyperfine tensors. Three protons were detected, one with an anisotropic tensor component, T = 4.6 MHz, assigned to the histidine NδH of His-L190, and two others with similar anisotropic constants T = 3.2 and 3.0 MHz assigned to the peptide NpH of Gly-L225 and Ile-L224, respectively. Despite the strong similarity in the peptide couplings, all hyperfine tensors were resolved in the Q-band ENDOR spectra. The Euler angles describing the series of rotations that bring the hyperfine tensors into the SQB g-tensor reference frame were obtained by least-squares fitting of the spectral simulations to the ENDOR data. These Euler angles show the locations of the hydrogen bonded protons with respect to the semiquinone. Our geometry optimized model of SQB used in previous DFT work is in strong agreement with the angular constraints from the spectral simulations, providing the foundation for future joint pulsed EPR and DFT semiquinone structural determinations in other proteins.
Collapse
Affiliation(s)
- Alexander T Taguchi
- #Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,‡Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Patrick J O'Malley
- ⊥School of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Colin A Wraight
- #Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,§Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sergei A Dikanov
- ‡Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Möbius K, Lubitz W, Savitsky A. High-field EPR on membrane proteins - crossing the gap to NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 75:1-49. [PMID: 24160760 DOI: 10.1016/j.pnmrs.2013.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 06/02/2023]
Abstract
In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar quantities of sample molecules have become sufficient to characterize stable and transient reaction intermediates of complex molecular systems - offering highly interesting applications for chemists, biochemists and molecular biologists. In three case studies, representative examples of advanced EPR spectroscopy are reviewed: (I) High-field PELDOR and ENDOR structure determination of cation-anion radical pairs in reaction centers from photosynthetic purple bacteria and cyanobacteria (Photosystem I); (II) High-field ENDOR and ELDOR-detected NMR spectroscopy on the oxygen-evolving complex of Photosystem II; and (III) High-field electron dipolar spectroscopy on nitroxide spin-labelled bacteriorhodopsin for structure-function studies. An extended conclusion with an outlook to further developments and applications is also presented.
Collapse
Affiliation(s)
- Klaus Möbius
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany; Department of Physics, Free University Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
4
|
Leonova MM, Fufina TY, Vasilieva LG, Shuvalov VA. Structure-function investigations of bacterial photosynthetic reaction centers. BIOCHEMISTRY (MOSCOW) 2012; 76:1465-83. [DOI: 10.1134/s0006297911130074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Flores M, Savitsky A, Paddock ML, Abresch EC, Dubinskii AA, Okamura MY, Lubitz W, Möbius K. Electron−Nuclear and Electron−Electron Double Resonance Spectroscopies Show that the Primary Quinone Acceptor QA in Reaction Centers from Photosynthetic Bacteria Rhodobacter sphaeroides Remains in the Same Orientation Upon Light-Induced Reduction. J Phys Chem B 2010; 114:16894-901. [DOI: 10.1021/jp107051r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marco Flores
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Anton Savitsky
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Mark L. Paddock
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Edward C. Abresch
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Alexander A. Dubinskii
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Melvin Y. Okamura
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| | - Klaus Möbius
- Max-Planck-Institut für Bioanorganische Chemie, 45470 Mülheim an der Ruhr, Germany, Department of Physics, University of California at San Diego, La Jolla, California 92093, United States, Semenov Institute of Chemical Physics, 117977 Moscow, Russia, and Department of Physics, Free University Berlin, 14195 Berlin, Germany
| |
Collapse
|
6
|
Jones MR. Structural Plasticity of Reaction Centers from Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Johnson ET, Müh F, Nabedryk E, Williams JC, Allen JP, Lubitz W, Breton J, Parson WW. Electronic and Vibronic Coupling of the Special Pair of Bacteriochlorophylls in Photosynthetic Reaction Centers from Wild-Type and Mutant Strains of Rhodobacter Sphaeroides. J Phys Chem B 2002. [DOI: 10.1021/jp021024q] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E. T. Johnson
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - F. Müh
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - E. Nabedryk
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. C. Williams
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. P. Allen
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - W. Lubitz
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - J. Breton
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| | - W. W. Parson
- Department of Biochemistry, Box 357350, University of Washington, Seattle, Washington 98195-7350, Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany, Service de Bioénergétique, CEA Saclay, Bât 532, F-91191 Gif Sur Yvette Cedex France, Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, and Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim/Ruhr, Germany
| |
Collapse
|
8
|
|
9
|
Abstract
Pulsed electron paramagnetic resonance (EPR) methods such as ESEEM, PELDOR, relaxation time measurements, transient EPR, high-field/high-frequency EPR, and pulsed ENDOR, have been used successfully to investigate the local structure and dynamics of paramagnetic centers in biological samples. These methods allow different contributions to the EPR spectra to be distinguished and can help unravel complicated EPR spectra consisting of overlapping resonance lines, as are often found in disordered protein samples. The basic principles, specific potentials, technical requirements, and limitations of these advanced EPR techniques will be reviewed together with recent applications to metal centers, organic radicals, and spin labels in proteins.
Collapse
Affiliation(s)
- T Prisner
- Institute for Physical and Theoretical Chemistry, J. W. Goethe-University Frankfurt, Marie-Curie-Strasse 11, Frankfurt am Main, D-60439 Germany.
| | | | | |
Collapse
|
10
|
Fursman C, Hore P. Distance determination in spin-correlated radical pairs in photosynthetic reaction centres by electron spin echo envelope modulation. Chem Phys Lett 1999. [DOI: 10.1016/s0009-2614(99)00185-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|