1
|
Schneider S, Kühlbrandt W, Yildiz Ö. Complementary structures of the yeast phosphate transporter Pho90 provide insights into its transport mechanism. Structure 2024; 32:979-988.e4. [PMID: 38688287 DOI: 10.1016/j.str.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Phosphate homeostasis is essential for all living organisms. Low-affinity phosphate transporters are involved in phosphate import and regulation in a range of eukaryotic organisms. We have determined the structures of the Saccharomyces cerevisiae phosphate importer Pho90 by electron cryomicroscopy in two complementary states at 2.3 and 3.1 Å resolution. The symmetrical, outward-open structure in the presence of phosphate indicates bound substrate ions in the binding pocket. In the absence of phosphate, Pho90 assumes an asymmetric structure with one monomer facing inward and one monomer facing outward, providing insights into the transport mechanism. The Pho90 transport domain binds phosphate ions on one side of the membrane, then flips to the other side where the substrate is released. Together with functional experiments, these complementary structures illustrate the transport mechanism of eukaryotic low-affinity phosphate transporters.
Collapse
Affiliation(s)
- Simon Schneider
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Özkan Yildiz
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Structural Biology Unit, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Khan A, Mallick M, Ladke JS, Bhandari R. The ring rules the chain - inositol pyrophosphates and the regulation of inorganic polyphosphate. Biochem Soc Trans 2024; 52:567-580. [PMID: 38629621 DOI: 10.1042/bst20230256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The maintenance of phosphate homeostasis serves as a foundation for energy metabolism and signal transduction processes in all living organisms. Inositol pyrophosphates (PP-InsPs), composed of an inositol ring decorated with monophosphate and diphosphate moieties, and inorganic polyphosphate (polyP), chains of orthophosphate residues linked by phosphoanhydride bonds, are energy-rich biomolecules that play critical roles in phosphate homeostasis. There is a complex interplay between these two phosphate-rich molecules, and they share an interdependent relationship with cellular adenosine triphosphate (ATP) and inorganic phosphate (Pi). In eukaryotes, the enzymes involved in PP-InsP synthesis show some degree of conservation across species, whereas distinct enzymology exists for polyP synthesis among different organisms. In fact, the mechanism of polyP synthesis in metazoans, including mammals, is still unclear. Early studies on PP-InsP and polyP synthesis were conducted in the slime mould Dictyostelium discoideum, but it is in the budding yeast Saccharomyces cerevisiae that a clear understanding of the interplay between polyP, PP-InsPs, and Pi homeostasis has now been established. Recent research has shed more light on the influence of PP-InsPs on polyP in mammals, and the regulation of both these molecules by cellular ATP and Pi levels. In this review we will discuss the cross-talk between PP-InsPs, polyP, ATP, and Pi in the context of budding yeast, slime mould, and mammals. We will also highlight the similarities and differences in the relationship between these phosphate-rich biomolecules among this group of organisms.
Collapse
Affiliation(s)
- Azmi Khan
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Manisha Mallick
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Jayashree S Ladke
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
3
|
Huang Z, Zhang S, Chen R, Zhu Q, Shi P, Shen Y. The transporter PHO84/NtPT1 is a target of aluminum to affect phosphorus absorption in Saccharomyces cerevisiae and Nicotiana tabacum L. Metallomics 2023; 15:mfad069. [PMID: 37994650 DOI: 10.1093/mtomcs/mfad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
The molecular mechanism of aluminum toxicity in biological systems is not completely understood. Saccharomyces cerevisiae is one of the most used model organisms in the study of environmental metal toxicity. Using an unbiased metallomic approach in yeast, we found that aluminum treatment caused phosphorus deprivation, and the lack of phosphorus increased as the pH of the environment decreased compared to the control strain. By screening the phosphate signaling and response pathway (PHO pathway) in yeast with the synthetic lethality of a new phosphorus-restricted aluminum-sensitive gene, we observed that pho84Δ mutation conferred severe growth defect to aluminum under low-phosphorus conditions, and the addition of phosphate alleviated this sensitivity. Subsequently, the data showed that PHO84 determined the intracellular aluminum-induced phosphorus deficiency, and the expression of PHO84 was positively correlated with aluminum stress, which was mediated by phosphorus through the coordinated regulation of PHO4/PHO2. Moreover, aluminum reduced phosphorus absorption and inhibited tobacco plant growth in acidic media. In addition, the high-affinity phosphate transporter NtPT1 in tobacco exhibited similar effects to PHO84, and overexpression of NtPT1 conferred aluminum resistance in yeast cells. Taken together, positive feedback regulation of the PHO pathway centered on the high-affinity phosphate transporters is a highly conservative mechanism in response to aluminum toxicity. The results may provide a basis for aluminum-resistant microorganisms or plant engineering and acidic soil treatment.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Shixuan Zhang
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Ranran Chen
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Qian Zhu
- College of Biological Science and Medical Engineering, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuhu Shen
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
4
|
Lacerda-Abreu MA, Dick CF, Meyer-Fernandes JR. The Role of Inorganic Phosphate Transporters in Highly Proliferative Cells: From Protozoan Parasites to Cancer Cells. MEMBRANES 2022; 13:42. [PMID: 36676849 PMCID: PMC9860751 DOI: 10.3390/membranes13010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In addition to their standard inorganic phosphate (Pi) nutritional function, Pi transporters have additional roles in several cells, including Pi sensing (the so-called transceptor) and a crucial role in Pi metabolism, where they control several phenotypes, such as virulence in pathogens and tumour aggressiveness in cancer cells. Thus, intracellular Pi concentration should be tightly regulated by the fine control of intake and storage in organelles. Pi transporters are classified into two groups: the Pi transporter (PiT) family, also known as the Pi:Na+ symporter family; and the Pi:H+ symporter (PHS) family. Highly proliferative cells, such as protozoan parasites and cancer cells, rely on aerobic glycolysis to support the rapid generation of biomass, which is equated with the well-known Warburg effect in cancer cells. In protozoan parasite cells, Pi transporters are strongly associated with cell proliferation, possibly through their action as intracellular Pi suppliers for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity. Similarly, the growth rate hypothesis (GRH) proposes that the high Pi demands of tumours when achieving accelerated proliferation are mainly due to increased allocation to P-rich nucleic acids. The purpose of this review was to highlight recent advances in understanding the role of Pi transporters in unicellular eukaryotes and tumorigenic cells, correlating these roles with metabolism in these cells.
Collapse
Affiliation(s)
- Marco Antonio Lacerda-Abreu
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Claudia Fernanda Dick
- National Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Roberto Meyer-Fernandes
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
5
|
Lee J, Levin DE. Differential metabolism of arsenicals regulates Fps1-mediated arsenite transport. J Cell Biol 2022; 221:212996. [PMID: 35139143 PMCID: PMC8932518 DOI: 10.1083/jcb.202109034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023] Open
Abstract
Arsenic is an environmental toxin that exists mainly as pentavalent arsenate and trivalent arsenite. Both forms activate the yeast SAPK Hog1 but with different consequences. We describe a mechanism by which cells distinguish between these arsenicals through one-step metabolism to differentially regulate the bidirectional glycerol channel Fps1, an adventitious port for arsenite. Cells exposed to arsenate reduce it to thiol-reactive arsenite, which modifies a set of cysteine residues in target proteins, whereas cells exposed to arsenite metabolize it to methylarsenite, which modifies an additional set of cysteine residues. Hog1 becomes arsenylated, which prevents it from closing Fps1. However, this block is overcome in cells exposed to arsenite through methylarsenylation of Acr3, an arsenite efflux pump that we found also regulates Fps1 directly. This adaptation allows cells to restrict arsenite entry through Fps1 and also allows its exit when produced from arsenate exposure. These results have broad implications for understanding how SAPKs activated by diverse stressors can drive stress-specific outputs.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA
| | - David E Levin
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA.,Department of Microbiology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
6
|
Carvalho-Kelly LF, Gomes-Vieira AL, Paes-Vieira L, da Silva ADZ, Meyer-Fernandes JR. Leishmania amazonensis inorganic phosphate transporter system is increased in the proliferative forms. Mol Biochem Parasitol 2019; 233:111212. [PMID: 31445076 DOI: 10.1016/j.molbiopara.2019.111212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 11/27/2022]
Abstract
Here we characterize a high-affinity Pi transport system energized by a H+ gradient in Leishmania amazonensis. Pi uptake and transcription of LamPho84 gene are differentially regulated during parasite life cycle. Our data suggest that Pi acquisition could be a pivotal task for the success of the parasite throughout its life cycle.
Collapse
Affiliation(s)
| | - André Luiz Gomes-Vieira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Brazil
| | - Lisvane Paes-Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Institute of National Science and Technology of Structural Biology and Bioimage (INCTBEB), Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Mackie TD, Brodsky JL. Investigating Potassium Channels in Budding Yeast: A Genetic Sandbox. Genetics 2018; 209:637-650. [PMID: 29967058 PMCID: PMC6028241 DOI: 10.1534/genetics.118.301026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 12/26/2022] Open
Abstract
Like all species, the model eukaryote Saccharomyces cerevisiae, or Bakers' yeast, concentrates potassium in the cytosol as an electrogenic osmolyte and enzyme cofactor. Yeast are capable of robust growth on a wide variety of potassium concentrations, ranging from 10 µM to 2.5 M, due to the presence of a high-affinity potassium uptake system and a battery of cation exchange transporters. Genetic perturbation of either of these systems retards yeast growth on low or high potassium, respectively. However, these potassium-sensitized yeast are a powerful genetic tool, which has been leveraged for diverse studies. Notably, the potassium-sensitive cells can be transformed with plasmids encoding potassium channels from bacteria, plants, or mammals, and subsequent changes in growth rate have been found to correlate with the activity of the introduced potassium channel. Discoveries arising from the use of this assay over the past three decades have increased our understanding of the structure-function relationships of various potassium channels, the mechanisms underlying the regulation of potassium channel function and trafficking, and the chemical basis of potassium channel modulation. In this article, we provide an overview of the major genetic tools used to study potassium channels in S. cerevisiae, a survey of seminal studies utilizing these tools, and a prospective for the future use of this elegant genetic approach.
Collapse
Affiliation(s)
- Timothy D Mackie
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260
| |
Collapse
|
8
|
Sindhu KJ, Kureel AK, Saini S, Kumari S, Verma P, Rai AK. Characterization of phosphate transporter(s) and understanding their role in Leishmania donovani parasite. Acta Parasitol 2018; 63:75-88. [PMID: 29351081 DOI: 10.1515/ap-2018-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/12/2017] [Indexed: 11/15/2022]
Abstract
Inorganic phosphate (Pi) is shown to be involved in excretion of methylglyoxal (MG) in the promastigote form of Leishmania donovani parasite. Absence of Pi leads to its accumulation inside the parasite. Accumulation of MG is toxic to the parasite and utilizes glyoxylase as well as excretory pathways for its detoxification. In addition, Pi is also reported to regulate activities of ectoenzymes and energy metabolism (glucose to pyruvate) etc. Thus, it is known to cumulatively affect the growth of Leishmania parasite. Hence the transporters, which allow the movement of Pi across the membrane, can prove to be a crucial drug target. Therefore, we characterized two phosphate transporters in Leishmania (i) H+ dependent myo-inositol transporter (LdPHO84), and (ii) Na+ dependent transporter (LdPHO89), based on similar studies done previously on other lower organisms and trypanosomatids. We tried to understand the secondary structure of these two proteins and confirm modulation in their expression with the change in Pi concentration outside. Moreover, their modes of action were also measured in the presence of specific inhibitors (LiF, CCCP). Further analysis on the physiological role of these transporters in various stages of the parasite life cycle needs to be entrenched.
Collapse
Affiliation(s)
- K J Sindhu
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Amit Kumar Kureel
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Smita Kumari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Pankaj Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, 211004, U.P., India
| |
Collapse
|
9
|
Gurvich Y, Leshkowitz D, Barkai N. Dual role of starvation signaling in promoting growth and recovery. PLoS Biol 2017; 15:e2002039. [PMID: 29236696 PMCID: PMC5728490 DOI: 10.1371/journal.pbio.2002039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 11/01/2017] [Indexed: 11/19/2022] Open
Abstract
Growing cells are subject to cycles of nutrient depletion and repletion. A shortage of nutrients activates a starvation program that promotes growth in limiting conditions. To examine whether nutrient-deprived cells prepare also for their subsequent recovery, we followed the transcription program activated in budding yeast transferred to low-phosphate media and defined its contribution to cell growth during phosphate limitation and upon recovery. An initial transcription wave was induced by moderate phosphate depletion that did not affect cell growth. A second transcription wave followed when phosphate became growth limiting. The starvation program contributed to growth only in the second, growth-limiting phase. Notably, the early response, activated at moderate depletion, promoted recovery from starvation by increasing phosphate influx upon transfer to rich medium. Our results suggest that cells subject to nutrient depletion prepare not only for growth in the limiting conditions but also for their predicted recovery once nutrients are replenished.
Collapse
Affiliation(s)
- Yonat Gurvich
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dena Leshkowitz
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
10
|
Almario J, Jeena G, Wunder J, Langen G, Zuccaro A, Coupland G, Bucher M. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proc Natl Acad Sci U S A 2017; 114:E9403-E9412. [PMID: 28973917 PMCID: PMC5676915 DOI: 10.1073/pnas.1710455114] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Most land plants live in association with arbuscular mycorrhizal (AM) fungi and rely on this symbiosis to scavenge phosphorus (P) from soil. The ability to establish this partnership has been lost in some plant lineages like the Brassicaceae, which raises the question of what alternative nutrition strategies such plants have to grow in P-impoverished soils. To understand the contribution of plant-microbiota interactions, we studied the root-associated fungal microbiome of Arabis alpina (Brassicaceae) with the hypothesis that some of its components can promote plant P acquisition. Using amplicon sequencing of the fungal internal transcribed spacer 2, we studied the root and rhizosphere fungal communities of A. alpina growing under natural and controlled conditions including low-P soils and identified a set of 15 fungal taxa consistently detected in its roots. This cohort included a Helotiales taxon exhibiting high abundance in roots of wild A. alpina growing in an extremely P-limited soil. Consequently, we isolated and subsequently reintroduced a specimen from this taxon into its native P-poor soil in which it improved plant growth and P uptake. The fungus exhibited mycorrhiza-like traits including colonization of the root endosphere and P transfer to the plant. Genome analysis revealed a link between its endophytic lifestyle and the expansion of its repertoire of carbohydrate-active enzymes. We report the discovery of a plant-fungus interaction facilitating the growth of a nonmycorrhizal plant under native P-limited conditions, thus uncovering a previously underestimated role of root fungal microbiota in P cycling.
Collapse
Affiliation(s)
- Juliana Almario
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Ganga Jeena
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Jörg Wunder
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Gregor Langen
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - Alga Zuccaro
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| | - George Coupland
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany;
- Cluster of Excellence on Plant Sciences, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
11
|
Russo-Abrahão T, Koeller CM, Steinmann ME, Silva-Rito S, Marins-Lucena T, Alves-Bezerra M, Lima-Giarola NL, de-Paula IF, Gonzalez-Salgado A, Sigel E, Bütikofer P, Gondim KC, Heise N, Meyer-Fernandes JR. H +-dependent inorganic phosphate uptake in Trypanosoma brucei is influenced by myo-inositol transporter. J Bioenerg Biomembr 2017; 49:183-194. [PMID: 28185085 DOI: 10.1007/s10863-017-9695-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
Abstract
Trypanosoma brucei is an extracellular protozoan parasite that causes human African trypanosomiasis or "sleeping sickness". During the different phases of its life cycle, T. brucei depends on exogenous inorganic phosphate (Pi), but little is known about the transport of Pi in this organism. In the present study, we showed that the transport of 32Pi across the plasma membrane follows Michaelis-Menten kinetics and is modulated by pH variation, with higher activity at acidic pH. Bloodstream forms presented lower Pi transport in comparison to procyclic forms, that displayed an apparent K0.5 = 0.093 ± 0.008 mM. Additionally, FCCP (H+-ionophore), valinomycin (K+-ionophore) and SCH28080 (H+, K+-ATPase inhibitor) inhibited the Pi transport. Gene Tb11.02.3020, previously described to encode the parasite H+:myo-inositol transporter (TbHMIT), was hypothesized to be potentially involved in the H+:Pi cotransport because of its similarity with the Pho84 transporter described in S. cerevisiae and other trypanosomatids. Indeed, the RNAi mediated knockdown remarkably reduced TbHMIT gene expression, compromised cell growth and decreased Pi transport by half. In addition, Pi transport was inhibited when parasites were incubated in the presence of concentrations of myo-inositol that are above 300 μM. However, when expressed in Xenopus laevis oocytes, two-electrode voltage clamp experiments provided direct electrophysiological evidence that the protein encoded by TbHMIT is definitely a myo-inositol transporter that may be only marginally affected by the presence of Pi. These results confirmed the presence of a Pi carrier in T. brucei, similar to the H+-dependent inorganic phosphate system described in S. cerevisiae and other trypanosomatids. This transport system contributes to the acquisition of Pi and may be involved in the growth and survival of procyclic forms. In summary, this work presents the first description of a Pi transport system in T. brucei.
Collapse
Affiliation(s)
- Thais Russo-Abrahão
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Carolina Macedo Koeller
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil
| | - Michael E Steinmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Stephanie Silva-Rito
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Thaissa Marins-Lucena
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Michele Alves-Bezerra
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Naira Ligia Lima-Giarola
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Iron Francisco de-Paula
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Amaia Gonzalez-Salgado
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Erwin Sigel
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Bern, Switzerland
| | - Katia Calp Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Norton Heise
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil.
| | - José Roberto Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Vieira-Bernardo R, Gomes-Vieira AL, Carvalho-Kelly LF, Russo-Abrahão T, Meyer-Fernandes JR. The biochemical characterization of two phosphate transport systems in Phytomonas serpens. Exp Parasitol 2016; 173:1-8. [PMID: 27956087 DOI: 10.1016/j.exppara.2016.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/01/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
Inorganic phosphate (Pi) is an essential nutrient for all organisms because it is required for a variety of biochemical processes, such as signal transduction and the synthesis of phosphate-containing biomolecules. Assays of 32Pi uptake performed in the absence or in the presence of Na+ indicated the existence of a Na+-dependent and a Na+-independent Pi transporter in Phytomonas serpens. Phylogenetic analysis of two hypothetical protein sequences of Phytomonas (EM1) showed similarities to the high-affinity Pi transporters of Saccharomyces cerevisiae: Pho84, a Na+-independent Pi transporter, and Pho89, a Na+-dependent Pi transporter. Plasma membrane depolarization by FCCP, an H+ ionophore, strongly decreased Pi uptake via both Na+-independent and Na+-dependent carriers, indicating that a membrane potential is essential for Pi influx. In addition, the furosemide-sensitive Na+-pump activity in the cells grown in low Pi conditions was found to be higher than the activity detected in the plasma membrane of cells cultivated at high Pi concentration, suggesting that the up-regulation of the Na+-ATPase pump could be related to the increase of Pi uptake by the Pho89p Na+:Pi symporter. Here we characterize for the first time two inorganic phosphate transporters powered by Na+ and H+ gradients and activated by low Pi availability in the phytopathogen P. serpens.
Collapse
Affiliation(s)
- Rodrigo Vieira-Bernardo
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Luiz Fernando Carvalho-Kelly
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thais Russo-Abrahão
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
13
|
Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 2013; 14:617. [PMID: 24034603 PMCID: PMC3849046 DOI: 10.1186/1471-2164-14-617] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/04/2013] [Indexed: 01/03/2023] Open
Abstract
Background The basidomycete Wallemia ichthyophaga from the phylogenetically distinct class Wallemiomycetes is the most halophilic fungus known to date. It requires at least 10% NaCl and thrives in saturated salt solution. To investigate the genomic basis of this exceptional phenotype, we obtained a de-novo genome sequence of the species type-strain and analysed its transcriptomic response to conditions close to the limits of its lower and upper salinity range. Results The unusually compact genome is 9.6 Mb large and contains 1.67% repetitive sequences. Only 4884 predicted protein coding genes cover almost three quarters of the sequence. Of 639 differentially expressed genes, two thirds are more expressed at lower salinity. Phylogenomic analysis based on the largest dataset used to date (whole proteomes) positions Wallemiomycetes as a 250-million-year-old sister group of Agaricomycotina. Contrary to the closely related species Wallemia sebi, W. ichthyophaga appears to have lost the ability for sexual reproduction. Several protein families are significantly expanded or contracted in the genome. Among these, there are the P-type ATPase cation transporters, but not the sodium/ hydrogen exchanger family. Transcription of all but three cation transporters is not salt dependent. The analysis also reveals a significant enrichment in hydrophobins, which are cell-wall proteins with multiple cellular functions. Half of these are differentially expressed, and most contain an unusually large number of acidic amino acids. This discovery is of particular interest due to the numerous applications of hydrophobines from other fungi in industry, pharmaceutics and medicine. Conclusions W. ichthyophaga is an extremophilic specialist that shows only low levels of adaptability and genetic recombination. This is reflected in the characteristics of its genome and its transcriptomic response to salt. No unusual traits were observed in common salt-tolerance mechanisms, such as transport of inorganic ions or synthesis of compatible solutes. Instead, various data indicate a role of the cell wall of W. ichthyophaga in its response to salt. Availability of the genomic sequence is expected to facilitate further research into this unique species, and shed more light on adaptations that allow it to thrive in conditions lethal to most other eukaryotes.
Collapse
|
14
|
Lenassi M, Gostinčar C, Jackman S, Turk M, Sadowski I, Nislow C, Jones S, Birol I, Cimerman NG, Plemenitaš A. Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One 2013; 8:e71328. [PMID: 23977017 PMCID: PMC3744574 DOI: 10.1371/journal.pone.0071328] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/27/2013] [Indexed: 01/14/2023] Open
Abstract
Hortaea werneckii, ascomycetous yeast from the order Capnodiales, shows an exceptional adaptability to osmotically stressful conditions. To investigate this unusual phenotype we obtained a draft genomic sequence of a H. werneckii strain isolated from hypersaline water of solar saltern. Two of its most striking characteristics that may be associated with a halotolerant lifestyle are the large genetic redundancy and the expansion of genes encoding metal cation transporters. Although no sexual state of H. werneckii has yet been described, a mating locus with characteristics of heterothallic fungi was found. The total assembly size of the genome is 51.6 Mb, larger than most phylogenetically related fungi, coding for almost twice the usual number of predicted genes (23333). The genome appears to have experienced a relatively recent whole genome duplication, and contains two highly identical gene copies of almost every protein. This is consistent with some previous studies that reported increases in genomic DNA content triggered by exposure to salt stress. In hypersaline conditions transmembrane ion transport is of utmost importance. The analysis of predicted metal cation transporters showed that most types of transporters experienced several gene duplications at various points during their evolution. Consequently they are present in much higher numbers than expected. The resulting diversity of transporters presents interesting biotechnological opportunities for improvement of halotolerance of salt-sensitive species. The involvement of plasma P-type H⁺ ATPases in adaptation to different concentrations of salt was indicated by their salt dependent transcription. This was not the case with vacuolar H⁺ ATPases, which were transcribed constitutively. The availability of this genomic sequence is expected to promote the research of H. werneckii. Studying its extreme halotolerance will not only contribute to our understanding of life in hypersaline environments, but should also identify targets for improving the salt- and osmotolerance of economically important plants and microorganisms.
Collapse
Affiliation(s)
- Metka Lenassi
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
- * E-mail:
| | - Cene Gostinčar
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Shaun Jackman
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Martina Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ivan Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Corey Nislow
- Department of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven Jones
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Inanc Birol
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Nina Gunde Cimerman
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
15
|
Russo-Abrahão T, Alves-Bezerra M, Majerowicz D, Freitas-Mesquita AL, Dick CF, Gondim KC, Meyer-Fernandes JR. Transport of inorganic phosphate in Leishmania infantum and compensatory regulation at low inorganic phosphate concentration. Biochim Biophys Acta Gen Subj 2012. [PMID: 23201200 DOI: 10.1016/j.bbagen.2012.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Proliferation of Leishmania infantum depends on exogenous inorganic phosphate (Pi) but little is known about energy metabolism and transport of Pi across the plasma membrane in Leishmania sp. METHODS We investigated the kinetics of 32Pi transport, the influence of H+ and K+ ionophores and inhibitors, and expression of the genes for the Na+:Pi and H+:Pi cotransporters. RESULTS The proton ionophore FCCP, bafilomycin A1 (vacuolar ATPase inhibitor), nigericin (K+ ionophore) and SCH28080 (an inhibitor of H+, K+-ATPase) all inhibited the transport of Pi. This transport showed Michaelis-Menten kinetics with K0.5 and Vmax values of 0.016±0.002mM and 564.9±18.06pmol×h-1×10-7cells, respectively. These values classify the Pi transporter of L. infantum among the high-affinity transporters, a group that includes Pho84 of Saccharomyces cerevisiae. Two sequences were identified in the L. infantum genome that code for phosphate transporters. However, transcription of the PHO84 transporter was 10-fold higher than the PHO89 transporter in this parasite. Accordingly, Pi transport and LiPho84 gene expression were modulated by environmental Pi variations. CONCLUSIONS These findings confirm the presence of a Pi transporter in L. infantum, similar to PHO84 in S. cerevisiae, that contributes to the acquisition of inorganic phosphate and could be involved in growth and survival of the promastigote forms of L. infantum. GENERAL SIGNIFICANCE This work provides the first description of a PHO84-like Pi transporter in a Trypanosomatide parasite of the genus Leishmania, responsible for many infections worldwide.
Collapse
Affiliation(s)
- T Russo-Abrahão
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - M Alves-Bezerra
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - D Majerowicz
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - A L Freitas-Mesquita
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - C F Dick
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - K C Gondim
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - J R Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
16
|
Ipcho SVS, Hane JK, Antoni EA, Ahren D, Henrissat B, Friesen TL, Solomon PS, Oliver RP. Transcriptome analysis of Stagonospora nodorum: gene models, effectors, metabolism and pantothenate dispensability. MOLECULAR PLANT PATHOLOGY 2012; 13:531-45. [PMID: 22145589 PMCID: PMC6638697 DOI: 10.1111/j.1364-3703.2011.00770.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The wheat pathogen Stagonospora nodorum, causal organism of the wheat disease Stagonospora nodorum blotch, has emerged as a model for the Dothideomycetes, a large fungal taxon that includes many important plant pathogens. The initial annotation of the genome assembly included 16,586 nuclear gene models. These gene models were used to design a microarray that has been interrogated with labelled transcripts from six cDNA samples: four from infected wheat plants at time points spanning early infection to sporulation, and two time points taken from growth in artificial media. Positive signals of expression were obtained for 12,281 genes. This represents strong corroborative evidence of the validity of these gene models. Significantly differential expression between the various time points was observed. When infected samples were compared with axenic cultures, 2882 genes were expressed at a higher level in planta and 3630 were expressed more highly in vitro. Similar numbers were differentially expressed between different developmental stages. The earliest time points in planta were particularly enriched in differentially expressed genes. A disproportionate number of the early expressed gene products were predicted to be secreted, but otherwise had no obvious sequence homology to functionally characterized genes. These genes are candidate necrotrophic effectors. We have focused attention on genes for carbohydrate metabolism and the specific biosynthetic pathways active during growth in planta. The analysis points to a very dynamic adjustment of metabolism during infection. Functional analysis of a gene in the coenzyme A biosynthetic pathway showed that the enzyme was dispensable for growth, indicating that a precursor is supplied by the plant.
Collapse
Affiliation(s)
- Simon V S Ipcho
- Murdoch University, Heath Science, Murdoch, WA 6150, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Na+-dependent and Na+-independent mechanisms for inorganic phosphate uptake in Trypanosoma rangeli. Biochim Biophys Acta Gen Subj 2012; 1820:1001-8. [DOI: 10.1016/j.bbagen.2012.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/30/2012] [Accepted: 02/18/2012] [Indexed: 01/26/2023]
|
18
|
Shen MWY, Shah D, Chen W, Da Silva N. Enhanced arsenate uptake in Saccharomyces cerevisiae overexpressing the Pho84 phosphate transporter. Biotechnol Prog 2012; 28:654-61. [PMID: 22628173 DOI: 10.1002/btpr.1531] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 02/12/2012] [Indexed: 11/06/2022]
Abstract
Arsenate is a major toxic constituent in arsenic-contaminated water supplies. Saccharomyces cerevisiae was engineered as a potential biosorbent for enhanced arsenate accumulation. The phosphate transporter, Pho84p, known to import arsenate, was overexpressed using a 2μ-based vector carrying PHO84 under the control of the late-phase ADH2 promoter. Arsenate uptake was then evaluated using a resting cell system. In buffer solutions containing high arsenate concentrations (12,000 and 30,000 ppb), the engineered strains internalized up to 750 μg of arsenate per gram of cells, a 50% improvement over control strains. Increasing the cell mass 2.5-fold yielded a proportional increase in the volumetric arsenate uptake, while maintaining the same level of specific uptake. At high levels of arsenate, loss from the intact cells to the medium was observed with time; knockouts of two known arsenic extrusion genes, ACR3 and FPS1, did not prevent this loss. At trace level concentrations (120 ppb), rapid and total arsenate removal was observed. The presence of 50 μM phosphate reduced uptake by approximately 15% in buffer containing 80 μM (6,000 ppb) arsenate. At trace levels of arsenate (70 ppb), the phosphate reduced the initial rate of uptake, but not the total amount removed. PHO84 mRNA levels were nearly 30 times higher in the engineered strains relative to the control strains. Uptake may no longer be a limiting factor in the engineered system and further increases should be possible by upregulating the downstream reduction and sequestration pathways.
Collapse
Affiliation(s)
- Michael W Y Shen
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | | | | | | |
Collapse
|
19
|
Alberghina L, Mavelli G, Drovandi G, Palumbo P, Pessina S, Tripodi F, Coccetti P, Vanoni M. Cell growth and cell cycle in Saccharomyces cerevisiae: basic regulatory design and protein-protein interaction network. Biotechnol Adv 2011; 30:52-72. [PMID: 21821114 DOI: 10.1016/j.biotechadv.2011.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/23/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
In this review we summarize the major connections between cell growth and cell cycle in the model eukaryote Saccharomyces cerevisiae. In S. cerevisiae regulation of cell cycle progression is achieved predominantly during a narrow interval in the late G1 phase known as START (Pringle and Hartwell, 1981). At START a yeast cell integrates environmental and internal signals (such as nutrient availability, presence of pheromone, attainment of a critical size, status of the metabolic machinery) and decides whether to enter a new cell cycle or to undertake an alternative developmental program. Several signaling pathways, that act to connect the nutritional status to cellular actions, are briefly outlined. A Growth & Cycle interaction network has been manually curated. More than one fifth of the edges within the Growth & Cycle network connect Growth and Cycle proteins, indicating a strong interconnection between the processes of cell growth and cell cycle. The backbone of the Growth & Cycle network is composed of middle-degree nodes suggesting that it shares some properties with HOT networks. The development of multi-scale modeling and simulation analysis will help to elucidate relevant central features of growth and cycle as well as to identify their system-level properties. Confident collaborative efforts involving different expertises will allow to construct consensus, integrated models effectively linking the processes of cell growth and cell cycle, ultimately contributing to shed more light also on diseases in which an altered proliferation ability is observed, such as cancer.
Collapse
Affiliation(s)
- Lilia Alberghina
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The maintenance of appropriate intracellular concentrations of alkali metal cations, principally K(+) and Na(+), is of utmost importance for living cells, since they determine cell volume, intracellular pH, and potential across the plasma membrane, among other important cellular parameters. Yeasts have developed a number of strategies to adapt to large variations in the concentrations of these cations in the environment, basically by controlling transport processes. Plasma membrane high-affinity K(+) transporters allow intracellular accumulation of this cation even when it is scarce in the environment. Exposure to high concentrations of Na(+) can be tolerated due to the existence of an Na(+), K(+)-ATPase and an Na(+), K(+)/H(+)-antiporter, which contribute to the potassium balance as well. Cations can also be sequestered through various antiporters into intracellular organelles, such as the vacuole. Although some uncertainties still persist, the nature of the major structural components responsible for alkali metal cation fluxes across yeast membranes has been defined within the last 20 years. In contrast, the regulatory components and their interactions are, in many cases, still unclear. Conserved signaling pathways (e.g., calcineurin and HOG) are known to participate in the regulation of influx and efflux processes at the plasma membrane level, even though the molecular details are obscure. Similarly, very little is known about the regulation of organellar transport and homeostasis of alkali metal cations. The aim of this review is to provide a comprehensive and up-to-date vision of the mechanisms responsible for alkali metal cation transport and their regulation in the model yeast Saccharomyces cerevisiae and to establish, when possible, comparisons with other yeasts and higher plants.
Collapse
|
21
|
Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein JM. Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res 2010; 10:134-49. [DOI: 10.1111/j.1567-1364.2009.00587.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Camblong J, Beyrouthy N, Guffanti E, Schlaepfer G, Steinmetz LM, Stutz F. Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev 2009; 23:1534-45. [PMID: 19571181 DOI: 10.1101/gad.522509] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Homology-dependent gene silencing, a phenomenon described as cosuppression in plants, depends on siRNAs. We provide evidence that in Saccharomyces cerevisiae, which is missing the RNAi machinery, protein coding gene cosuppression exists. Indeed, introduction of an additional copy of PHO84 on a plasmid or within the genome results in the cosilencing of both the transgene and the endogenous gene. This repression is transcriptional and position-independent and requires trans-acting antisense RNAs. Antisense RNAs induce transcriptional gene silencing both in cis and in trans, and the two pathways differ by the implication of the Hda1/2/3 complex. We also show that trans-silencing is influenced by the Set1 histone methyltransferase, which promotes antisense RNA production. Finally we show that although antisense-mediated cis-silencing occurs in other genes, trans-silencing so far depends on features specific to PHO84. All together our data highlight the importance of noncoding RNAs in mediating RNAi-independent transcriptional gene silencing.
Collapse
Affiliation(s)
- Jurgi Camblong
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Wykoff DD, Rizvi AH, Raser JM, Margolin B, O’Shea EK. Positive feedback regulates switching of phosphate transporters in S. cerevisiae. Mol Cell 2007; 27:1005-13. [PMID: 17889672 PMCID: PMC2034509 DOI: 10.1016/j.molcel.2007.07.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/10/2007] [Accepted: 07/18/2007] [Indexed: 11/30/2022]
Abstract
The regulation of transporters by nutrient-responsive signaling pathways allows cells to tailor nutrient uptake to environmental conditions. We investigated the role of feedback generated by transporter regulation in the budding yeast phosphate-responsive signal transduction (PHO) pathway. Cells starved for phosphate activate feedback loops that regulate high- and low-affinity phosphate transport. We determined that positive feedback is generated by PHO pathway-dependent upregulation of Spl2, a negative regulator of low-affinity phosphate uptake. The interplay of positive and negative feedback loops leads to bistability in phosphate transporter usage--individual cells express predominantly either low- or high-affinity transporters, both of which can yield similar phosphate uptake capacity. Cells lacking the high-affinity transporter, and associated negative feedback, exhibit phenotypes that arise from hysteresis due to unopposed positive feedback. In wild-type cells, population heterogeneity generated by feedback loops may provide a strategy for anticipating changes in environmental phosphate levels.
Collapse
|
24
|
Tai SL, Boer VM, Daran-Lapujade P, Walsh MC, de Winde JH, Daran JM, Pronk JT. Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae. J Biol Chem 2004; 280:437-47. [PMID: 15496405 DOI: 10.1074/jbc.m410573200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genome-wide analysis of transcriptional regulation is generally studied by determining sets of "signature transcripts" that are up- or down-regulated relative to a reference situation when a single culture parameter or genetic modification is changed. This approach is especially relevant for defining small subsets of transcripts for use in high throughput, cost-effective diagnostic analyses. However, this approach may overlook the simultaneous control of transcription by more than one environmental parameter. This study represents the first quantitative assessment of the impact of transcriptional cross-regulation by different environmental parameters. As a model, we compared the response of aerobic as well as anaerobic chemostat cultures of the yeast Saccharomyces cerevisiae to growth limitation by four different macronutrients (carbon, nitrogen, phosphorus, and sulfur). The identity of the growth-limiting nutrient was shown to have a strong impact on the sets of transcripts that responded to oxygen availability and vice versa. We concluded that identification of reliable signature transcripts for specific environmental parameters can be obtained only by combining transcriptome data sets obtained under several sets of reference conditions. Furthermore, the two-dimensional approach to transcriptome analysis is a valuable new tool to study the interaction of different transcriptional regulation systems.
Collapse
Affiliation(s)
- Siew Leng Tai
- Kluyver Laboratory of Biotechnology, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Pinson B, Merle M, Franconi JM, Daignan-Fornier B. Low affinity orthophosphate carriers regulate PHO gene expression independently of internal orthophosphate concentration in Saccharomyces cerevisiae. J Biol Chem 2004; 279:35273-80. [PMID: 15194704 DOI: 10.1074/jbc.m405398200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphate is an essential nutrient that must be taken up from the growth medium through specific transporters. In Saccharomyces cerevisiae, both high and low affinity orthophosphate carriers allow this micro-organism to cope with environmental variations. Intriguingly, in this study we found a tight correlation between selenite resistance and expression of the high affinity orthophosphate carrier Pho84p. Our work further revealed that mutations in the low affinity orthophosphate carrier genes (PHO87, PHO90, and PHO91) cause deregulation of phosphate-repressed genes. Strikingly, the deregulation due to pho87Delta, pho90Delta, or pho91Delta mutations was neither correlated to impaired orthophosphate uptake capacity nor to a decrease of the intracellular orthophosphate or polyphosphate pools, as shown by (31)P NMR spectroscopy. Thus, our data clearly establish that the low affinity orthophosphate carriers affect phosphate regulation independently of intracellular orthophosphate concentration through a new signaling pathway that was found to strictly require the cyclin-dependent kinase inhibitor Pho81p. We propose that phosphate-regulated gene expression is under the control of two different regulatory signals as follows: the sensing of internal orthophosphate by a yet unidentified protein and the sensing of external orthophosphate by low affinity orthophosphate transporters; the former would be required to maintain phosphate homeostasis, and the latter would keep the cell informed on the medium phosphate richness.
Collapse
Affiliation(s)
- Benoît Pinson
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS-Université Victor Segalen Bordeaux 2, 33077 Bordeaux Cedex, France.
| | | | | | | |
Collapse
|
26
|
Palková Z, Vachova L. Ammonia signaling in yeast colony formation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:229-72. [PMID: 12696594 DOI: 10.1016/s0074-7696(05)25006-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Multicellular structures formed by microorganisms possess various properties, which make them interesting in terms of processes that occur in tissues of higher eukaryotes. These include processes important for morphogenesis and development of multicellular structures as well as those evoked by stress, starvation, and aging. Investigation of colonies created by simple nonmotile yeast cells revealed the existence of various regulators involved in their development. One of the identified signaling compounds, unprotonated volatile ammonia, is produced by colonies in pulses and seems to represent a long-distance signal notifying the colony population of incoming nutrient starvation. This alarm evokes changes in colonies that are important for their long-term survival. Models of the action of ammonia on yeast cells as well as the routes of its production are proposed. Interestingly, ammonia/ammonium also act as a signaling molecule in other organisms. Ammonia regulates several steps of the multicellular development of Dictyostelium discoideum and evidence indicates that ammonia/ammonium plays a role in neural tissues of higher eukaryotes.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Charles University, 12844 Prague 2, Czech Republic.
| | | |
Collapse
|
27
|
Cecchetto G, Amillis S, Diallinas G, Scazzocchio C, Drevet C. The AzgA purine transporter of Aspergillus nidulans. Characterization of a protein belonging to a new phylogenetic cluster. J Biol Chem 2003; 279:3132-41. [PMID: 14597637 DOI: 10.1074/jbc.m308826200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The azgA gene of Aspergillus nidulans encodes a hypoxanthine-adenine-guanine transporter. It has been cloned by a novel transposon methodology. The null phenotype of azgA was defined by a number of mutations, including a large deletion. In mycelia, the azgA gene is, like other genes of purine catabolism, induced by uric acid and repressed by ammonium. Its transcription depends on the pathway-specific UaY zinc binuclear cluster protein and the broad domain AreA GATA factor. AzgA is not closely related to any other characterized membrane protein, but many close homologues of unknown function are present in fungi, plants, and prokaryotes but not metazoa. Two of three data bases and the phylogeny presented in this article places proteins of this family in a cluster clearly separated (but perhaps phylogenetically related) from the NAT family that includes other eukaryotic and prokaryotic nucleobase transporters. Thus AzgA is the first characterized member of this family or subfamily of membrane proteins.
Collapse
Affiliation(s)
- Gianna Cecchetto
- Unidad Asociada de Microbiología, Facultad de Ciencias, Universidad de la República, Casilla de Correos 1157, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
28
|
Almaguer C, Mantella D, Perez E, Patton-Vogt J. Inositol and phosphate regulate GIT1 transcription and glycerophosphoinositol incorporation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2003; 2:729-36. [PMID: 12912892 PMCID: PMC178388 DOI: 10.1128/ec.2.4.729-736.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycerophosphoinositol is produced through deacylation of the essential phospholipid phosphatidylinositol. In Saccharomyces cerevisiae, the glycerophosphoinositol produced is excreted from the cell but is recycled for phosphatidylinositol synthesis when inositol is limiting. To be recycled, glycerophosphoinositol enters the cell through the permease encoded by GIT1. The transport of exogenous glycerophosphoinositol through Git1p is sufficiently robust to support the growth of an inositol auxotroph (ino1Delta). We now report that S. cerevisiae also uses exogenous phosphatidylinositol as an inositol source. Evidence suggests that phosphatidylinositol is deacylated to glycerophosphoinositol extracellularly before being transported across the plasma membrane by Git1p. A genetic screen identified Pho86p, which is required for targeting of the major phosphate transporter (Pho84p) to the plasma membrane, as affecting the utilization of phosphatidylinositol and glycerophosphoinositol. Deletion of PHO86 in an ino1Delta strain resulted in faster growth when either phosphatidylinositol or glycerophosphoinositol was supplied as the sole inositol source. The incorporation of radiolabeled glycerophosphoinositol into an ino1Delta pho86Delta mutant was higher than that into wild-type, ino1Delta, and pho86Delta strains. All strains accumulated the most GIT1 transcript when incubated in media limited for inositol and phosphate in combination. However, the ino1Delta pho86Delta mutant accumulated approximately threefold more GIT1 transcript than did the other strains when incubated in inositol-free media containing either high or low concentrations of P(i). Deletion of PHO4 abolished GIT1 transcription in a wild-type strain. These results indicate that the transport of glycerophosphoinositol by Git1p is regulated by factors affecting both inositol and phosphate availabilities and suggest a regulatory connection between phosphate metabolism and phospholipid metabolism.
Collapse
Affiliation(s)
- C Almaguer
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | |
Collapse
|
29
|
Abstract
We have conducted bioinformatic analyses of integral membrane transport proteins belonging to dozens of families. These families rarely include proteins that function in a capacity other than transport. Many transporters have arisen by intragenic duplication, triplication and quadruplication events, in which the numbers of transmembrane alpha-helical hydrophobic segments (TMSs) have increased. The elements multiplied may encode two, three, four, five, six, 10 or 12 TMSs and gave rise to proteins with four, six, seven, eight, nine, 10, 12, 20, 24 and 30 TMSs. Gene fusion, splicing, deletion and insertion events have also contributed to protein topological diversity. Amino acid substitutions have allowed membrane-embedded domains to become hydrophilic domains and vice versa. Some evidence suggests that amino acid substitutions occurring over evolutionary time may in some cases have drastically altered protein topology. The results summarized in this microreview establish the independent origins of many transporter families and allow postulation of the specific pathways taken for their appearance.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, University of California at San Diego, La Jolla 92093-0116, USA.
| |
Collapse
|
30
|
Kobayashi I, Fujiwara S, Shimogawara K, Kaise T, Usuda H, Tsuzuki M. Insertional mutagenesis in a homologue of a Pi transporter gene confers arsenate resistance on chlamydomonas. PLANT & CELL PHYSIOLOGY 2003; 44:597-606. [PMID: 12826625 DOI: 10.1093/pcp/pcg081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An arsenate-resistant mutant AR3 of Chlamydomonas reinhardtii is a recessive mutant generated by random insertional mutagenesis using the ARG7 gene. AR3 shows about 10-fold resistance against arsenate toxicity compared with the wild type. By using a flanking region of an inserted tag as a probe, we cloned the corresponding wild-type allele (PTB1) of a mutated gene, which could completely complement the arsenate-resistance phenotype of AR3. The size of PTB1 cDNA is about 6.0 kb and it encodes a putative protein comprising 1666 amino acid residues. This protein exhibits significant sequence similarity with the yeast Pho89 protein, which is known to be a Na(+)/Pi co-transporter, although the PTB1 protein carries an additional Gln- and Gly-rich large hydrophilic region in the middle of its primary structure. Analyses of arsenic accumulation and release revealed that PTB1-disrupted cells show arsenate resistance due to low arsenate uptake. These results suggest that the PTB1 protein is a factor involved in arsenate (or Pi) uptake. Kinetics of Pi uptake revealed that the activity of high-affinity Pi transport component in AR3 is more activated than that in the wild type.
Collapse
Affiliation(s)
- Isao Kobayashi
- School of Life Science, Tokyo University of Pharmacy and Life Science, Horinouchi, Hachioji, Tokyo, 192-0392 Japan
| | | | | | | | | | | |
Collapse
|
31
|
Palková Z, Devaux F, Icicová M, Mináriková L, Le Crom S, Jacq C. Ammonia pulses and metabolic oscillations guide yeast colony development. Mol Biol Cell 2002; 13:3901-14. [PMID: 12429834 PMCID: PMC133602 DOI: 10.1091/mbc.e01-12-0149] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
On solid substrate, growing yeast colonies alternately acidify and alkalinize the medium. Using morphological, cytochemical, genetic, and DNA microarray approaches, we characterized six temporal steps in the "acid-to-alkali" colony transition. This transition is connected with the production of volatile ammonia acting as starvation signal between colonies. We present evidence that the three membrane proteins Ato1p, Ato2p, and Ato3p, members of the YaaH family, are involved in ammonia production in Saccharomyces cerevisiae colonies. The acid-to-alkali transition is connected with decrease of mitochondrial oxidative catabolism and by peroxisome activation, which in parallel with activation of biosynthetic pathways contribute to decrease the general stress level in colonies. These metabolic features characterize a novel survival strategy used by yeast under starvation conditions prevalent in nature.
Collapse
Affiliation(s)
- Zdena Palková
- Department of Genetics and Microbiology, Charles University, Vinicná 5, 12844 Prague 2, Czech Republic.
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
33
|
McDonald AE, Niere JO, Plaxton WC. Phosphite disrupts the acclimation of Saccharomyces cerevisiae to phosphate starvation. Can J Microbiol 2001; 47:969-78. [PMID: 11766057 DOI: 10.1139/w01-099] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The influence of phosphite (H2PO3-) on the response of Saccharomyces cerevisiae to orthophosphate (HPO4(2-); Pi) starvation was assessed. Phosphate-repressible acid phosphatase (rAPase) derepression and cell development were abolished when phosphate-sufficient (+Pi) yeast were subcultured into phosphate-deficient (-Pi) media containing 0.1 mM phosphite. By contrast, treatment with 0.1 mM phosphite exerted no influence on rAPase activity or growth of +Pi cells. 31P NMR spectroscopy revealed that phosphite is assimilated and concentrated by yeast cultured with 0.1 mM phosphite, and that the levels of sugar phosphates, pyrophosphate, and particularly polyphosphate were significantly reduced in the phosphite-treated -Pi cells. Examination of phosphite's effects on two PHO regulon mutants that constitutively express rAPase indicated that (i) a potential target for phosphite's action in -Pi yeast is Pho84 (plasmalemma high-affinity Pi transporter and component of a putative phosphate sensor-complex), and that (ii) an additional mechanism exists to control rAPase expression that is independent of Pho85 (cyclin-dependent protein kinase). Marked accumulation of polyphosphate in the delta pho85 mutant suggested that Pho85 contributes to the control of polyphosphate metabolism. Results are consistent with the hypothesis that phosphite obstructs the signaling pathway by which S. cerevisiae perceives and responds to phosphate deprivation at the molecular level.
Collapse
Affiliation(s)
- A E McDonald
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
34
|
Abstract
To cope with low nutrient availability in nature, organisms have evolved inducible systems that enable them to scavenge and efficiently utilize the limiting nutrient. Furthermore, organisms must have the capacity to adjust their rate of metabolism and make specific alterations in metabolic pathways that favor survival when the potential for cell growth and division is reduced. In this article I will focus on the acclimation of Chlamydomonas reinhardtii, a unicellular, eukaryotic green alga to conditions of nitrogen, sulfur and phosphorus deprivation. This organism has a distinguished history as a model for classical genetic analyses, but it has recently been developed for exploitation using an array of molecular and genomic tools. The application of these tools to the analyses of nutrient limitation responses (and other biological processes) is revealing mechanisms that enable Chlamydomonas to survive harsh environmental conditions and establishing relationships between the responses of this morphologically simple, photosynthetic eukaryote and those of both nonphotosynthetic organisms and vascular plants.
Collapse
|
35
|
Saier MH. A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 2000; 64:354-411. [PMID: 10839820 PMCID: PMC98997 DOI: 10.1128/mmbr.64.2.354-411.2000] [Citation(s) in RCA: 567] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A comprehensive classification system for transmembrane molecular transporters has been developed and recently approved by the transport panel of the nomenclature committee of the International Union of Biochemistry and Molecular Biology. This system is based on (i) transporter class and subclass (mode of transport and energy coupling mechanism), (ii) protein phylogenetic family and subfamily, and (iii) substrate specificity. Almost all of the more than 250 identified families of transporters include members that function exclusively in transport. Channels (115 families), secondary active transporters (uniporters, symporters, and antiporters) (78 families), primary active transporters (23 families), group translocators (6 families), and transport proteins of ill-defined function or of unknown mechanism (51 families) constitute distinct categories. Transport mode and energy coupling prove to be relatively immutable characteristics and therefore provide primary bases for classification. Phylogenetic grouping reflects structure, function, mechanism, and often substrate specificity and therefore provides a reliable secondary basis for classification. Substrate specificity and polarity of transport prove to be more readily altered during evolutionary history and therefore provide a tertiary basis for classification. With very few exceptions, a phylogenetic family of transporters includes members that function by a single transport mode and energy coupling mechanism, although a variety of substrates may be transported, sometimes with either inwardly or outwardly directed polarity. In this review, I provide cross-referencing of well-characterized constituent transporters according to (i) transport mode, (ii) energy coupling mechanism, (iii) phylogenetic grouping, and (iv) substrates transported. The structural features and distribution of recognized family members throughout the living world are also evaluated. The tabulations should facilitate familial and functional assignments of newly sequenced transport proteins that will result from future genome sequencing projects.
Collapse
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla, California 92093-0116, USA.
| |
Collapse
|
36
|
Petersson J, Pattison J, Kruckeberg AL, Berden JA, Persson BL. Intracellular localization of an active green fluorescent protein-tagged Pho84 phosphate permease in Saccharomyces cerevisiae. FEBS Lett 1999; 462:37-42. [PMID: 10580087 DOI: 10.1016/s0014-5793(99)01471-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Green fluorescent protein (GFP) from Aequorea victoria was used as an in vivo reporter protein when fused to the carboxy-terminus of the Pho84 phosphate permease of Saccharomyces cerevisiae. Both components of the fusion protein displayed their native functions and revealed a cellular localization and degradation of the Pho84-GFP chimera consistent with the behavior of the wild-type Pho84 protein. The GFP-tagged chimera allowed for a detection of conditions under which the Pho84 transporter is localized to its functional environment, i.e. the plasma membrane, and conditions linked to relocation of the protein to the vacuole for degradation. By use of the methodology described, GFP should be useful in studies of localization and degradation also of other membrane proteins in vivo.
Collapse
Affiliation(s)
- J Petersson
- Department of Engineering and Natural Sciences, Växjö University, 351 95, Växjö, Sweden
| | | | | | | | | |
Collapse
|
37
|
Persson BL, Petersson J, Fristedt U, Weinander R, Berhe A, Pattison J. Phosphate permeases of Saccharomyces cerevisiae: structure, function and regulation. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:255-72. [PMID: 10548719 DOI: 10.1016/s0304-4157(99)00010-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- B L Persson
- Department of Engineering, Växjö University, S-351 95, Växjö, Sweden.
| | | | | | | | | | | |
Collapse
|
38
|
Fristedt U, Weinander R, Martinsson HS, Persson BL. Characterization of purified and unidirectionally reconstituted Pho84 phosphate permease of Saccharomyces cerevisiae. FEBS Lett 1999; 458:1-5. [PMID: 10518922 DOI: 10.1016/s0014-5793(99)01108-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hydropathy analysis of the amino acid sequence of the Pho84 phosphate permease of Saccharomyces cerevisiae suggests that the protein consists of 12 transmembrane domains connected by hydrophilic loops. The Pho84 protein has been modified by a gene fusion approach, yielding two different N-terminal His-tagged chimeras which can be expressed in Escherichia coli, purified and functionally reconstituted into defined proteoliposomes. The continuous epitopes in the N- and C-terminal sequences of the Pho84 chimeras were shown to be accessible in proteoliposomes containing the purified active Pho84 proteins. Site-specific proteolysis of the immunoreactive N-terminal sequence in the reconstituted protein suggests a unidirectional insertion into liposomes.
Collapse
Affiliation(s)
- U Fristedt
- Department of Biochemistry, Wallenberg Laboratory, Stockholm University, Sweden
| | | | | | | |
Collapse
|