1
|
Bolik S, Schlaich A, Mukhina T, Amato A, Bastien O, Schneck E, Demé B, Jouhet J. Lipid bilayer properties potentially contributed to the evolutionary disappearance of betaine lipids in seed plants. BMC Biol 2023; 21:275. [PMID: 38017456 PMCID: PMC10685587 DOI: 10.1186/s12915-023-01775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Many organisms rely on mineral nutrients taken directly from the soil or aquatic environment, and therefore, developed mechanisms to cope with the limitation of a given essential nutrient. For example, photosynthetic cells have well-defined responses to phosphate limitation, including the replacement of cellular membrane phospholipids with non-phosphorous lipids. Under phosphate starvation, phospholipids in extraplastidial membranes are replaced by betaine lipids in microalgae. In higher plants, the synthesis of betaine lipid is lost, driving plants to other strategies to cope with phosphate starvation where they replace their phospholipids by glycolipids. RESULTS The aim of this work was to evaluate to what extent betaine lipids and PC lipids share physicochemical properties and could substitute for each other. By neutron diffraction experiments and dynamic molecular simulation of two synthetic lipids, the dipalmitoylphosphatidylcholine (DPPC) and the dipalmitoyl-diacylglyceryl-N,N,N-trimethylhomoserine (DP-DGTS), we found that DP-DGTS bilayers are thicker than DPPC bilayers and therefore are more rigid. Furthermore, DP-DGTS bilayers are more repulsive, especially at long range, maybe due to unexpected unscreened electrostatic contribution. Finally, DP-DGTS bilayers could coexist in the gel and fluid phases. CONCLUSION The different properties and hydration responses of PC and DGTS provide an explanation for the diversity of betaine lipids observed in marine organisms and for their disappearance in seed plants.
Collapse
Affiliation(s)
- Stéphanie Bolik
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
- Large Scale Structures Group, Institut Laue-Langevin, 38000, Grenoble, France
| | - Alexander Schlaich
- Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Science (SimTech), Universität Stuttgart, Stuttgart, Germany
| | - Tetiana Mukhina
- Institute for Condensed Matter Physics, Darmstadt, Darmstadt, TU, Germany
| | - Alberto Amato
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Olivier Bastien
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, Darmstadt, Darmstadt, TU, Germany
| | - Bruno Demé
- Large Scale Structures Group, Institut Laue-Langevin, 38000, Grenoble, France.
| | - Juliette Jouhet
- Laboratoire Physiologie Cellulaire Et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, Grenoble, France.
| |
Collapse
|
2
|
Bolik S, Albrieux C, Schneck E, Demé B, Jouhet J. Sulfoquinovosyldiacylglycerol and phosphatidylglycerol bilayers share biophysical properties and are good mutual substitutes in photosynthetic membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184037. [PMID: 36041508 DOI: 10.1016/j.bbamem.2022.184037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Stéphanie Bolik
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France; Institut Laue-Langevin, 38000 Grenoble, France
| | - Catherine Albrieux
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, 64289 Darmstadt, Germany
| | - Bruno Demé
- Institut Laue-Langevin, 38000 Grenoble, France.
| | - Juliette Jouhet
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
3
|
Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J Neurosci 2014; 34:1903-15. [PMID: 24478369 DOI: 10.1523/jneurosci.4043-13.2014] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ischemic stroke is a debilitating clinical disorder that affects millions of people, yet lacks effective neuroprotective treatments. Fish oil is known to exert beneficial effects against cerebral ischemia. However, the underlying protective mechanisms are not fully understood. The present study tests the hypothesis that omega-3 polyunsaturated fatty acids (n-3 PUFAs) attenuate ischemic neuronal injury by activating nuclear factor E2-related factor 2 (Nrf2) and upregulating heme oxygenase-1 (HO-1) in both in vitro and in vivo models. We observed that pretreatment of rat primary neurons with docosahexaenoic acid (DHA) significantly reduced neuronal death following oxygen-glucose deprivation. This protection was associated with increased Nrf2 activation and HO-1 upregulation. Inhibition of HO-1 activity with tin protoporphyrin IX attenuated the protective effects of DHA. Further studies showed that 4-hydroxy-2E-hexenal (4-HHE), an end-product of peroxidation of n-3 PUFAs, was a more potent Nrf2 inducer than 4-hydroxy-2E-nonenal derived from n-6 PUFAs. In an in vivo setting, transgenic mice overexpressing fatty acid metabolism-1, an enzyme that converts n-6 PUFAs to n-3 PUFAs, were remarkably resistant to focal cerebral ischemia compared with their wild-type littermates. Regular mice fed with a fish oil-enhanced diet also demonstrated significant resistance to ischemia compared with mice fed with a regular diet. As expected, the protection was associated with HO-1 upregulation, Nrf2 activation, and 4-HHE generation. Together, our data demonstrate that n-3 PUFAs are highly effective in protecting the brain, and that the protective mechanisms involve Nrf2 activation and HO-1 upregulation by 4-HHE. Further investigation of n-3 PUFA neuroprotective mechanisms may accelerate the development of stroke therapies.
Collapse
|
4
|
Gonçalves S, Teixeira A, Abade J, de Medeiros LN, Kurtenbach E, Santos NC. Evaluation of the membrane lipid selectivity of the pea defensin Psd1. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:1420-6. [PMID: 22373959 DOI: 10.1016/j.bbamem.2012.02.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/04/2012] [Accepted: 02/10/2012] [Indexed: 11/30/2022]
Abstract
Psd1, a 46 amino acid residues defensin isolated from the pea Pisum sativum seeds, exhibits anti-fungal activity by a poorly understood mechanism of action. In this work, the interaction of Psd1 with biomembrane model systems of different lipid compositions was assessed by fluorescence spectroscopy. Partition studies showed a marked lipid selectivity of this antimicrobial peptide (AMP) toward lipid membranes containing ergosterol (the main sterol in fungal membranes) or specific glycosphingolipid components, with partition coefficients (K(p)) reaching uncommonly high values of 10(6). By the opposite, Psd1 does not partition to cholesterol-enriched lipid bilayers, such as mammalian cell membranes. The Psd1 mutants His36Lys and Gly12Glu present a membrane affinity loss relative to the wild type. Fluorescence quenching data obtained using acrylamide and membrane probes further clarify the mechanism of action of this peptide at the molecular level, pointing out the potential therapeutic use of Psd1 as a natural antimycotic agent.
Collapse
Affiliation(s)
- Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
6
|
de la Torre JG, Hernández Cifre JG, Ortega Á, Schmidt RR, Fernandes MX, Pérez Sánchez HE, Pamies R. SIMUFLEX: Algorithms and Tools for Simulation of the Conformation and Dynamics of Flexible Molecules and Nanoparticles in Dilute Solution. J Chem Theory Comput 2009; 5:2606-18. [DOI: 10.1021/ct900269n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- José García de la Torre
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - José G. Hernández Cifre
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - Álvaro Ortega
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - Ricardo Rodríguez Schmidt
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - Miguel X. Fernandes
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - Horacio E. Pérez Sánchez
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| | - R. Pamies
- Departamento de Química Física, Facultad de Química Universidad de Murcia, 30071 Murcia, Spain, Centro de Química da Madeira, Universidade da Madeira, 9000-390 Funchal, Portugal, Forschungszentrum Karlsruhe GmbH, Institut für Nanotechnologie, D-76021 Karlsruhe, Germany, and Department of Physical Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Valentine RC, Valentine DL. Omega-3 fatty acids in cellular membranes: a unified concept. Prog Lipid Res 2005; 43:383-402. [PMID: 15458813 DOI: 10.1016/j.plipres.2004.05.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2004] [Indexed: 11/23/2022]
Abstract
The Omega-3 fatty acid DHA (docosahexaenoic acid, 22:6) and its sister molecule EPA (eicosapentaenoic acid, 20:5) are highlighted here. These highly unsaturated fatty acids are widespread in nature, especially in the marine environment, and are essential in membranes ranging from deep sea bacteria to human neurons. Studies of DHA/EPA in bacteria have led to a working model on the structural roles of these molecules and are described in this review. The main points are: (a) genomic analysis shows that genes encoding the DHA/EPA pathways are similar, supporting the idea that structural roles in bacteria might be similar, (b) biochemical analysis shows that DHA and EPA are produced in bacteria by a polyketide process distinct from the pathway of plants and animals; this allows DHA and EPA to be produced in anaerobic or oxygen-limited environments, (c) regulatory systems triggered by temperature and pressure have been identified and studied, and add to the understanding of the roles of these molecules, (d) DHA/EPA bacteria are located almost exclusively in the marine environment, raising the prospect of an important linkage between membrane processes and marine conditions, (e) physiological studies of an EPA recombinant of E. coli show that EPA phospholipids contribute essential fluidity to the bilayer and that an EPA-enriched membrane supports a respiratory lifestyle dependent on proton bioenergetics; the EPA recombinant displays other physiological properties likely attributed to high levels of EPA in the bilayer, and (f) chemical studies such as chemical dynamic modeling support the idea that DHA and presumably EPA contribute hyperfluidizing properties to the membrane. We hypothesize that DHA/EPA phospholipids contribute fluidity and other properties to the bilayer which distinguish these highly unsaturated chains from monounsaturates and polyunsaturates such as 18:2 and 18:3. We further hypothesize that the structural properties of DHA/EPA functioning in bacteria are also harnessed by higher organisms for enhancing crucial membrane processes including photosynthesis and energy transduction.
Collapse
|