1
|
Wang LY, Ravi VM, Leblanc G, Padrós E, Cladera J, Perálvarez-Marín A. Helical unwinding and side-chain unlocking unravel the outward open conformation of the melibiose transporter. Sci Rep 2016; 6:33776. [PMID: 27658476 PMCID: PMC5034317 DOI: 10.1038/srep33776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 08/30/2016] [Indexed: 11/09/2022] Open
Abstract
Molecular dynamics simulations have been used to study the alternate access mechanism of the melibiose transporter from Escherichia coli. Starting from the outward-facing partially occluded form, 2 out of 12 simulations produced an outward full open form and one partially open, whereas the rest yielded fully or partially occluded forms. The shape of the outward-open form resembles other outward-open conformations of secondary transporters. During the transporter opening, conformational changes in some loops are followed by changes in the periplasm region of transmembrane helix 7. Helical curvature relaxation and unlocking of hydrophobic and ionic locks promote the outward opening of the transporter making accessible the substrate binding site. In particular, FRET studies on mutants of conserved aromatic residues of extracellular loop 4 showed lack of substrate binding, emphasizing the importance of this loop for making crucial interactions that control the opening of the periplasmic side. This study indicates that the alternate access mechanism for the melibiose transporter fits better into a flexible gating mechanism rather than the archetypical helical rigid-body rocker-switch mechanism.
Collapse
Affiliation(s)
- Li-Ying Wang
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Vidhya M Ravi
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Gérard Leblanc
- Direction des Sciences du Vivant, Direction des programmes et valorization, CEA Fontenay-aux-Roses, 92265 Fontenay-aux-Roses CEDEX France
| | - Esteve Padrós
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Josep Cladera
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alex Perálvarez-Marín
- Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
2
|
Fuerst O, Lin Y, Granell M, Leblanc G, Padrós E, Lórenz-Fonfría VA, Cladera J. The Melibiose Transporter of Escherichia coli: CRITICAL CONTRIBUTION OF LYS-377 TO THE STRUCTURAL ORGANIZATION OF THE INTERACTING SUBSTRATE BINDING SITES. J Biol Chem 2015; 290:16261-71. [PMID: 25971963 PMCID: PMC4481225 DOI: 10.1074/jbc.m115.642678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/12/2015] [Indexed: 01/27/2023] Open
Abstract
We examine the role of Lys-377, the only charged residue in helix XI, on the functional mechanism of the Na(+)-sugar melibiose symporter from Escherichia coli. Intrinsic fluorescence, FRET, and Fourier transform infrared difference spectroscopy reveal that replacement of Lys-377 with either Cys, Val, Arg, or Asp disables both Na(+) and melibiose binding. On the other hand, molecular dynamics simulations extending up to 200-330 ns reveal that Lys-377 (helix XI) interacts with the anionic side chains of two of the three putative ligands for cation binding (Asp-55 and Asp-59 in helix II). When Asp-59 is protonated during the simulations, Lys-377 preferentially interacts with Asp-55. Interestingly, when a Na(+) ion is positioned in the Asp-55-Asp-59 environment, Asp-124 in helix IV (a residue essential for melibiose binding) reorients and approximates the Asp-55-Asp-59 pair, and all three acidic side chains act as Na(+) ligands. Under these conditions, the side chain of Lys-377 interacts with the carboxylic moiety of these three Asp residues. These data highlight the crucial role of the Lys-377 residue in the spatial organization of the Na(+) binding site. Finally, the analysis of the second-site revertants of K377C reveals that mutation of Ile-22 (in helix I) preserves Na(+) binding, whereas that of melibiose is largely abolished according to spectroscopic measurements. This amino acid is located in the border of the sugar-binding site and might participate in sugar binding through apolar interactions.
Collapse
Affiliation(s)
- Oliver Fuerst
- From the Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Yibin Lin
- From the Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Meritxell Granell
- From the Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Gérard Leblanc
- the Direction des Sciences du Vivant, Direction des progammes et valorization, CEA Fontenay-aux-Roses, 92265 Fontenay-aux-Roses Cedex, France, and
| | - Esteve Padrós
- From the Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Víctor A Lórenz-Fonfría
- From the Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain, Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Josep Cladera
- From the Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain,
| |
Collapse
|
3
|
The substitution of Arg149 with Cys fixes the melibiose transporter in an inward-open conformation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1690-9. [PMID: 23500619 DOI: 10.1016/j.bbamem.2013.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 02/15/2013] [Accepted: 03/01/2013] [Indexed: 11/22/2022]
Abstract
The melibiose transporter from Escherichia coli (MelB) can use the electrochemical energy of either H(+), Na(+) or Li(+) to transport the disaccharide melibiose to the cell interior. By using spectroscopic and biochemical methods, we have analyzed the role of Arg149 by mutagenesis. According to Fourier transform infrared difference and fluorescence spectroscopy studies, R149C, R149Q and R149K all bind substrates in proteoliposomes, where the protein is disposed inside-out. Analysis of right-side-out (RSO) and inside-out (ISO) membrane vesicles showed that the functionally active R149Q and R149K mutants could bind externally added fluorescent sugar analog in both types of vesicles. In contrast, the non-transporting R149C mutant does bind the fluorescent sugar analog as well as melibiose and Na(+) in ISO, but not in RSO vesicles. Therefore, the mutation of Arg149 into cysteine restrains the orientation of transporter to an inward-open conformation, with the inherent consequences of a) reducing the frequency of access of outer substrates to the binding sites, and b) impairing active transport. It is concluded that Arg149, most likely located in the inner (cytoplasmic) half of transmembrane helix 5, is critically involved in the reorientation mechanism of the substrate-binding site accessibility in MelB.
Collapse
|
4
|
G117C MelB, a mutant melibiose permease with a changed conformational equilibrium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2508-16. [PMID: 21801712 DOI: 10.1016/j.bbamem.2011.07.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/17/2011] [Accepted: 07/05/2011] [Indexed: 11/22/2022]
Abstract
Replacement of the glycine at position 117 by a cysteine in the melibiose permease creates an interesting phenotype: while the mutant transporter shows still transport activity comparable to the wild type its pre steady-state kinetic properties are drastically altered. The transient charge displacements after substrate concentration jumps are strongly reduced and the fluorescence changes disappear. Together with its maintained transport activity this indicates that substrate translocation in G117C melibiose permease is not impaired but that the initial conformation of the mutant transporter differs from that of the wild type permease. A kinetic model for the G117C melibiose permease based on a rapid dynamic equilibrium of the substrate free transporter is proposed. Implications of the kinetic model for the transport mechanism of the wild type permease are discussed.
Collapse
|
5
|
Kaur J, Srikanth CV, Bachhawat AK. Differential roles played by the native cysteine residues of the yeast glutathione transporter, Hgt1p. FEMS Yeast Res 2009; 9:849-66. [DOI: 10.1111/j.1567-1364.2009.00529.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
6
|
Alteration of sugar-induced conformational changes of the melibiose permease by mutating Arg141 in loop 4-5. Biophys J 2009; 96:4877-86. [PMID: 19527646 DOI: 10.1016/j.bpj.2009.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/16/2009] [Accepted: 03/20/2009] [Indexed: 11/22/2022] Open
Abstract
The melibiose permease (MelB) from Escherichia coli couples the uptake of melibiose to that of Na+, Li+, or H+. In this work, we applied attenuated total reflection Fourier transform infrared (ATR-FTIR) difference spectroscopy to obtain information about the structural changes involved in substrate interaction with the R141C mutant and with the wild-type MelB reacted with N-ethylmaleimide (NEM). These modified permeases have the ability to bind the substrates but fail to transport them. It is shown that the sugar-induced ATR-FTIR difference spectra of the R141C mutant are different from those corresponding to the Cys-less permease from which it is derived. There are alterations of peaks assigned to turns and beta-structures located most likely in loop 4-5. In addition, and quite notably, a peak at 1659 cm(-1), assigned to changes at the level of one alpha-helix subpopulation, disappears in the melibiose-induced difference spectrum in the presence of Na+, suggesting a reduction of the conformational change capacity of the mutated MelB. These helices may involve structural components that couple the cation- and sugar-binding sites. On the other hand, MelB-NEM difference spectra are proportionally less disrupted than the R141C ones. Hence, the transport cycle of these two permeases, modified at two different loops, is most likely impaired at a different stage. It is proposed that the R141C mutant leads to the generation of a partially defective ternary complex that is unable to catalyze the subsequent conformational change necessary for substrate translocation.
Collapse
|
7
|
Ganea C, Fendler K. Bacterial transporters: Charge translocation and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:706-13. [DOI: 10.1016/j.bbabio.2009.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/02/2009] [Accepted: 02/02/2009] [Indexed: 12/01/2022]
|
8
|
Meyer-Lipp K, Séry N, Ganea C, Basquin C, Fendler K, Leblanc G. The Inner Interhelix Loop 4–5 of the Melibiose Permease from Escherichia coli Takes Part in Conformational Changes after Sugar Binding. J Biol Chem 2006; 281:25882-92. [PMID: 16822867 DOI: 10.1074/jbc.m601259200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic loop 4-5 of the melibiose permease from Escherichia coli is essential for the process of Na+-sugar translocation (Abdel-Dayem, M., Basquin, C., Pourcher, T., Cordat, E., and Leblanc, G. (2003) J. Biol. Chem. 278, 1518-1524). In the present report, we analyze functional consequences of mutating each of the three acidic amino acids in this loop into cysteines. Among the mutants, only the E142C substitution impairs selectively Na+-sugar translocation. Because R141C has a similar defect, we investigated these two mutants in more detail. Liposomes containing purified mutated melibiose permease were adsorbed onto a solid supported lipid membrane, and transient electrical currents resulting from different substrate concentration jumps were recorded. The currents evoked by a melibiose concentration jump in the presence of Na+, previously assigned to an electrogenic conformational transition (Meyer-Lipp, K., Ganea, C., Pourcher, T., Leblanc, G., and Fendler, K. (2004) Biochemistry 43, 12606-12613), were much smaller for the two mutants than the corresponding signals in cysteineless MelB. Furthermore, in R141C the stimulating effect of melibiose on Na+ affinity was lost. Finally, whereas tryptophan fluorescence spectroscopy revealed impaired conformational changes upon melibiose binding in the mutants, fluorescence resonance energy transfer measurements indicated that the mutants still show cooperative modification of their sugar binding sites by Na+. These data suggest that: 1) loop 4-5 contributes to the coordinated interactions between the ion and sugar binding sites; 2) it participates in an electrogenic conformational transition after melibiose binding that is essential for the subsequent obligatory coupled translocation of substrates. A two-step mechanism for substrate translocation in the melibiose permease is suggested.
Collapse
Affiliation(s)
- Kerstin Meyer-Lipp
- Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt/M, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Ding PZ. Loop X/XI, the largest cytoplasmic loop in the membrane-bound melibiose carrier of Escherichia coli, is a functional re-entrant loop. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1660:106-17. [PMID: 14757226 DOI: 10.1016/j.bbamem.2003.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The melibiose carrier of Escherichia coli is a membrane-bound sugar-cation cotransporter consisting of 12 transmembrane helices connected by cytoplasmic and periplasmic loops, with both N- and C-terminus on the cytoplasmic side. Using a functional cysteine-less carrier, cysteine was substituted individually for residues 347-378 that comprise the largest cytoplasmic loop X/XI. The majority of the cysteine mutants have good protein expression levels. The cysteine mutants were studied for their transport activities, and the inhibitory effects of two sulfhydryl reagents, PCMBS (7-A long) and BM (29-A long). Cysteine substitution resulted in substantial loss of transport in 12 mutants. While PCMBS caused significant inhibition in only two mutants, T373C and V376C, from the periplasmic side (in a substrate-protective manner), more extensive inhibition pattern was observed from the cytoplasmic side, in seven mutants: V353C, Y358C, V371C, Q372C, T373C, V376C and G378C, suggesting that these residues are along the sugar pathway in the aqueous channel, close to the cytoplasmic side. Furthermore, the inhibitory effect of BM on the inside-out vesicles of the above mutants was clearly less than that of PCMBS, suggesting channel space limitation to large molecules, consistent with those residues being inside the channel. Three second-site revertants (A350C/F268L, A350C/I22S, and A350C/I22N) were selected. They may suggest proximities between loop X/XI and helices I and VIII, in agreement with a re-entrant loop structure. Self thiol cross-linkings of the cysteine mutants on loop X/XI failed to form dimers, suggesting that most of the loop is not surface-exposed from cytoplasmic side. Together, these results strongly indicated a functional re-entrant loop mechanistically important in Na+-coupled transporters.
Collapse
Affiliation(s)
- Ping Z Ding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Ding PZ. An investigation of cysteine mutants on the cytoplasmic loop X/XI in the melibiose transporter of Escherichia coli by using thiol reagents: implication of structural conservation of charged residues. Biochem Biophys Res Commun 2003; 307:864-9. [PMID: 12878191 DOI: 10.1016/s0006-291x(03)01290-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The melibiose transporter (Mel B) of Escherichia coli is a cation-coupled (H(+), Li(+), and Na(+)) membrane protein (MW 50 kDa) consisting of 12 transmembrane helices that are connected by periplasmic and cytoplasmic loops, with both the C- and N-ends located on the cytoplasmic side of the membrane. Previous investigations on the largest cytoplasmic loop X/XI indicated that it is a functional re-entrant loop. In this communication, the cysteine mutants on loop X/XI were studied with charged thiol reagents MTSES, MTSET, and IAA for both the inhibition patterns and charge replacement/function rescue of inactive mutants in which the original charged residues were replaced by neutral cysteines. Strong inhibitions were observed in T373C and V376C by both MTSES and MTSET, consistent with previous results of PCMBS inhibition. The thiol reagents failed to recover the activities of inactive mutants D351C, D354C, and R363C and to inhibit active mutants E357C, K359C, and E365C to any significant extent, suggesting a structural conservation at D351, D354, and R363 and tolerance of structural variations at E357, K359, and E365. The results are consistent with previous observation of structural conservation of functionally charged residues in the transmembrane domains and extend to a loop the contention that in the melibiose transporter functionally important charged residues are structurally conserved.
Collapse
Affiliation(s)
- Ping Z Ding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Abdel-Dayem M, Basquin C, Pourcher T, Cordat E, Leblanc G. Cytoplasmic loop connecting helices IV and V of the melibiose permease from Escherichia coli is involved in the process of Na+-coupled sugar translocation. J Biol Chem 2003; 278:1518-24. [PMID: 12421811 DOI: 10.1074/jbc.m210053200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous photolabeling and limited proteolysis studies suggested that one of the four basic residues (Arg-141) of the N-terminal cytoplasmic loop connecting helices IV and V (loop 4-5) of the melibiose permease (MelB) from Escherichia coli has a potential role in its symport function (Ambroise, Y., Leblanc, G., and Rousseau, B. (2000) Biochemistry 39, 1338-1345). A mutagenesis study of Arg-141 and of the other three basic residues of loop 4-5 was undertaken to further examine this hypothesis. Cys replacement analysis indicated that Arg-141 and Arg-149, but not Lys-138 and Arg-139, are essential for MelB transport activity. Replacement of Arg-141 by neutral residues (Cys or Gln) inactivated transport and energy-independent carrier-mediated flows of substrates (counterflow, efflux), whereas it had a limited effect on co-substrate binding. R141C sugar transport was partially rescued on reintroducing a positive charge with a charged and permeant thiol reagent. Whereas R149C was completely inactive, R149K and R149Q remained functional. Strikingly, introduction of an additional mutation in the C-terminal helix X (Gly for Val-343) of R149C restored sugar transport. Impermeant thiol reagents inhibited R149C/V343G transport activity in right-side-out membrane vesicles and prevented sugar binding in a sugar-protected manner. All these data suggest that MelB loop 4-5 is close to the sugar binding site and that the charged residue Arg-141 is involved in the reaction of co-substrate translocation or substrate release in the inner compartment.
Collapse
Affiliation(s)
- Manal Abdel-Dayem
- Laboratoire de Physiologie des Membranes Cellulaires, Université de Nice Sophia-Antipolis and CNRS UMR 6078, Commissariat à l'Energie Atomique (LRC-CEA 16V), Villefranche sur mer, 06230 France
| | | | | | | | | |
Collapse
|
12
|
Ding PZ, Wilson TH. The proximity between helix I and helix XI in the melibiose carrier of Escherichia coli as determined by cross-linking. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1514:230-8. [PMID: 11557023 DOI: 10.1016/s0005-2736(01)00385-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The melibiose carrier of Escherichia coli is a transmembrane protein that comprises 12 transmembrane helices connected by periplasmic and cytoplasmic loops, with both the N- and C-termini located on the cytoplasmic side. Our previous studies of second-site revertants suggested proximity between several helices, including helices XI and I. In this study, we constructed six double cysteine mutants, each having one cysteine in helix I and the other in helix XI: three mutants, K18C/S380C, D19C/S380C, and F20C/S380C, have their cysteine pairs near the cytoplasmic side of the carrier, and the other three, T34C/G395C, D35C/G395C, and V36C/G395C, have their cysteine pairs near the periplasmic side. In the absence of substrate, disulfide formations catalyzed by iodine and copper-(1,10-phenanthroline)(3) indicate that helix I and helix XI are in immediate proximity to each other on the periplasmic side but not on the cytoplasmic side, as shown by protease cleavage analyses. We infer that the two helices are tilted with respect to each other, with the periplasmic sides in close proximity.
Collapse
Affiliation(s)
- P Z Ding
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
13
|
Ding PZ, Wilson TH. The effect of modifications of the charged residues in the transmembrane helices on the transport activity of the melibiose carrier of Escherichia coli. Biochem Biophys Res Commun 2001; 285:348-54. [PMID: 11444849 DOI: 10.1006/bbrc.2001.5200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The melibiose transport carrier of Escherichia coli (coded by melB gene) is a cotransport system which couples the transport of a-galactosides to protons, sodium, or lithium ions. The charged amino acid residues in membrane-spanning helices are of considerable interest because many of them have important function in substrate recognition. In most cases changing these charged residue to an uncharged residue (cysteine) results in total loss of activity. In this communication we describe experiments in which the cysteine substitution for a charged residue was chemically changed by sulfhydryl reagents (MTSEA and MTSET to restore a positive charge and MTSES a negative charge) or by iodoacetic acid or through oxidation by hydrogen peroxide so as to regain the original negative charge. In two cases (D55C and D124C) the reconstructed negative charges via the oxidation of the thiol to the sulfinic and/or sulfonic acid resulted in partial recovery of transport: D55C up to 27% of the normal and D124C up to 4% of the normal in melibiose accumulation; D55C up to 36% of the normal and D124 up to 4.5% of the normal in downhill transport. Sulfhydryl reagents and iodoacetic acid failed to recover transport in all cases. We infer that the configurations of the charges as well as the structure of the side chains that carry them are critical in the maintenance of the transport.
Collapse
Affiliation(s)
- P Z Ding
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Jung H. Towards the molecular mechanism of Na(+)/solute symport in prokaryotes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1505:131-43. [PMID: 11248195 DOI: 10.1016/s0005-2728(00)00283-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Na(+)/solute symporter family (SSF, TC No. 2.A.21) contains more than 40 members of pro- and eukaryotic origin. Besides their sequence similarity, the transporters share the capability to utilize the free energy stored in electrochemical Na(+) gradients for the accumulation of solutes. As part of catabolic pathways most of the transporters are most probably involved in the acquisition of nutrients. Some transporters play a role in osmoadaptation. With a high resolution structure still missing, a combination of genetic, protein chemical and spectroscopic methods has been used to gain new insights into the structure and molecular mechanism of action of the transport proteins. The studies suggest a common 13-helix motif for all members of the SSF according to which the N-terminus is located in the periplasm and the C-terminus is directed into the cytoplasm (except for proteins containing a N- or C-terminal extension). Furthermore, an amino acid substitution analysis of the Na(+)/proline transporter (PutP) of Escherichia coli, a member of the SSF, has identified regions of particular functional importance. For example, amino acids of TM II of PutP proved to be critical for high affinity binding of Na(+) and proline. In addition, it was shown that ligand binding induces widespread conformational alterations in the transport protein. Taken together, the studies substantiate the common idea that Na(+)/solute symport is the result of a series of ligand-induced structural changes.
Collapse
Affiliation(s)
- H Jung
- Universität Osnabrück, Fachbereich Biologie/Chemie, Abteilung Mikrobiologie, D-49069, Osnabrück, Germany.
| |
Collapse
|
15
|
Ding PZ, Wilson TH. Physiological evidence for an interaction between helix XI and helices I, II, and V in the melibiose carrier of Escherichia coli. Biochem Biophys Res Commun 2000; 268:409-13. [PMID: 10679218 DOI: 10.1006/bbrc.2000.2149] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a previous study 23 residues in helix XI of the cysteine-less melibiose carrier were changed individually to cysteine. Several of these cysteine mutants (K377C, A383C, F385C, L391C, G395C) had low transport activity and they were white on melibiose MacConkey fermentation plates. After several days of incubation of these white clones on melibiose MacConkey plates a rare red mutant appeared. The plasmid DNA was then isolated and sequenced. The two second site revertants from K377C were I22S and D59A. This change of aspartic acid to a neutral residue suggests that physiologically there is an interaction between K377 and D59 (possibly a salt bridge). The revertants from A383C were in positions 20 (F20L) and 22 (I22S and I22N). Revertants of F385C were intrahelical changes (I387M and A388G) and a change in C-terminal loop (R441C). Revertants of L391C were in helix I (I22N, I22T and D19E) and helix V (A152S). Revertants of G395C were in helix I (D19E and I22N). We suggest that there is an interaction between helix XI and helices I, II, and V and proximity between these helices.
Collapse
Affiliation(s)
- P Z Ding
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
16
|
Chan BS, Satriano JA, Schuster VL. Mapping the substrate binding site of the prostaglandin transporter PGT by cysteine scanning mutagenesis. J Biol Chem 1999; 274:25564-70. [PMID: 10464289 DOI: 10.1074/jbc.274.36.25564] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a cDNA, PGT, that encodes a widely expressed transporter for prostaglandin (PG) E(2), PGF(2alpha), PGD(2), 8-iso-PGF(2alpha), and thromboxane B(2). To begin to understand the molecular mechanisms of transporter function, we have initiated a structure-function analysis of PGT to identify its substrate-binding region. We have found that by introducing the small, water-soluble, thiol-reactive anion Na(2-sulfonatoethyl)methanethiosulfonate (MTSES) into the substrate pathway, we were able to cause inhibition of transport that could be reversed with dithiothreitol. Importantly, co-incubation with PGE(2) protected PGT from this inhibition, suggesting that MTSES gains access to the aqueous pore pathway of PGT to form a mixed disulfide near the substrate-binding site. To identify the susceptible cysteine, we mutated, one at a time, all six of the putative transmembrane cysteines to serine. Only the mutation of Cys-530 to serine within putative transmembrane 10 became resistant to inhibition by MTSES. Thus, Cys-530 is the substrate-protectable, MTSES-inhibitable residue. To identify other residues that may be lining the substrate-binding site, we initiated cysteine-scanning mutagenesis of transmembrane 10 using Cys-530 as an entry point. On a C530S, MTSES-resistant background, residues in the N- and C-terminal directions were individually mutated to cysteine (Ala-513 to His-536), one at a time, and then analyzed for MTSES inhibition. Of the 24 cysteine-substituted mutants generated, 6 were MTSES-sensitive and, among these, 4 were substrate-protectable. The pattern of sensitivity to MTSES places these residues on the same face of an alpha-helix. The results of cysteine-scanning mutagenesis and molecular modeling of putative transmembrane 10 indicate that the substrate binding of PGT is formed among its membrane-spanning segments, with 4 residues along the cytoplasmic end of helix 10 contributing to one surface of the binding site.
Collapse
Affiliation(s)
- B S Chan
- Renal Division, Department of Medicine, Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | |
Collapse
|
17
|
Matsuzaki S, Weissborn AC, Tamai E, Tsuchiya T, Wilson TH. Melibiose carrier of Escherichia coli: use of cysteine mutagenesis to identify the amino acids on the hydrophilic face of transmembrane helix 2. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1420:63-72. [PMID: 10446291 DOI: 10.1016/s0005-2736(99)00087-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The melibiose carrier from Escherichia coli is a galactoside-cation symporter. Based on both experimental evidence and hydropathy analysis, 12 transmembrane helices have been assigned to this integral membrane protein. Transmembrane helix 2 contains several charged and polar amino acids that have been shown to be essential for the cation-coupled transport of melibiose. Starting with the cysteine-less melibiose carrier, we have individually substituted cysteine for amino acids 39-66, which includes the proposed transmembrane helix 2. In the resulting derivative carriers, we measured the transport of melibiose, determined the effect of the hydrophilic sulfhydryl reagent, p-chloromercuribenzenesulfonic acid (PCMBS), on transport in intact cells and inside out vesicles, and examined the ability of melibiose to protect the carrier from inactivation by the sulfhydryl reagent. We found a set of seven positions in which the reaction with the sulfhydryl reagent caused partial or complete loss of carrier function measured in intact cells or inside-out vesicles. The presence of melibiose protected five of these positions from reaction with PCMBS. The reaction of two additional positions with PCMBS resulted in the partial loss of transport function only in inside-out vesicles. Melibiose protected these two positions from reaction with the reagent. Together, the PCMBS-sensitive sites and charged residues assigned to helix 2 form a cluster of amino acids that map in three rows with each row comprised of every fourth residue. This is the pattern expected of residues that are part of an alpha-helical structure and thus the rows are tilted at an angle of 25 degrees to the helical axis. We suggest that these residues line the path of melibiose and its associated cation through the carrier.
Collapse
Affiliation(s)
- S Matsuzaki
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
18
|
Jung H, Rübenhagen R, Tebbe S, Leifker K, Tholema N, Quick M, Schmid R. Topology of the Na+/proline transporter of Escherichia coli. J Biol Chem 1998; 273:26400-7. [PMID: 9756872 DOI: 10.1074/jbc.273.41.26400] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hydropathy profile analysis of the amino acid sequence of the Na+/proline transporter of Escherichia coli (PutP) suggests that the protein consists of 12 transmembrane domains (TMs) which are connected by hydrophilic loops (Nakao, T., Yamato, I., and Anraku, Y. (1987) Mol. Gen. Genet. 208, 70-75). We have tested this prediction by applying a gene fusion approach in combination with a Cys accessibility analysis and site-specific proteolysis. Characterization of a series of PutP-alkaline phosphatase (PhoA) and PutP-beta-galactosidase (LacZ) hybrid proteins yields a reciprocal activity pattern of the reporter proteins that is in agreement with the topology of TMs III to XII of the 12-helix model. Placement of the PutP-PhoA and PutP-LacZ junction sites closer to the N terminus does not yield conclusive results. As a prerequisite for further topology studies, a functional PutP molecule devoid of all five native Cys residues (Cys-free PutP) is generated. Subsequently, amino acids in Cys-free PutP are replaced individually with Cys, and the accessibility of the sulfhydryl groups is analyzed. Surprisingly, Cys residues placed close to the N terminus of PutP (Ile-3 --> Cys, Thr-5 --> Cys) or into putative TM II (Ser-71 --> Cys, Glu-75 --> Cys) are highly accessible to membrane permeant and impermeant thiol reagents in intact cells. In contrast, Cys at the C terminus (Ser-502 --> Cys) reacts only with the membrane permeant but not with the impermeant reagent in intact cells. These results contradict the 12-helix motif and indicate a periplasmic location of the N terminus whereas the C terminus faces the cytoplasm. In addition, a transporter with Cys in place of Leu-37 (putative periplasmic loop (pL2) shows the same accessibility pattern as the Cys at the C terminus. Furthermore, PutP which has been purified and reconstituted into proteoliposomes in an inside-out orientation, is readily cleaved by the endoproteinase AspN before Asp-33 (pL2), Asp-112 (putative cytoplasmic loop (cL3), Asp-262 (cL7), and Asp-356 (cL9). These results suggest a cytosolic location of Asp-33 and Leu-37, thereby implying the formation of an additional TM formed by amino acids of pL2. Based on these observations, a new secondary structure model is proposed according to which the protein consists of 13 TMs with the N terminus on the outside and the C terminus facing the cytoplasm. The 13-helix structure is discussed as a common topological motif for all members of the Na+/solute cotransporter family.
Collapse
Affiliation(s)
- H Jung
- Universität Osnabrück, Fachbereich Biologie/Chemie, Arbeitsgruppe Mikrobiologie, Barbarastrabetae 11, D-49069 Osnabrück, Germany.
| | | | | | | | | | | | | |
Collapse
|