1
|
Ben-Salem S, Robbins SM, Sobreira NLM, Lyon A, Al-Shamsi AM, Islam BK, Akawi NA, John A, Thachillath P, Hamed SA, Valle D, Ali BR, Al-Gazali L. Defect in phosphoinositide signalling through a homozygous variant in PLCB3 causes a new form of spondylometaphyseal dysplasia with corneal dystrophy. J Med Genet 2018; 55:122-130. [PMID: 29122926 PMCID: PMC8215682 DOI: 10.1136/jmedgenet-2017-104827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bone dysplasias are a large group of disorders affecting the growth and structure of the skeletal system. METHODS In the present study, we report the clinical and molecular delineation of a new form of syndromic autosomal recessive spondylometaphyseal dysplasia (SMD) in two Emirati first cousins. They displayed postnatal growth deficiency causing profound limb shortening with proximal and distal segments involvement, narrow chest, radiological abnormalities involving the spine, pelvis and metaphyses, corneal clouding and intellectual disability. Whole genome homozygosity mapping localised the genetic cause to 11q12.1-q13.1, a region spanning 19.32 Mb with ~490 genes. Using whole exome sequencing, we identified four novel homozygous variants within the shared block of homozygosity. Pathogenic variants in genes involved in phospholipid metabolism, such as PLCB4 and PCYT1A, are known to cause bone dysplasia with or without eye anomalies, which led us to select PLCB3 as a strong candidate. This gene encodes phospholipase C β 3, an enzyme that converts phosphatidylinositol 4,5 bisphosphate (PIP2) to inositol 1,4,5 triphosphate (IP3) and diacylglycerol. RESULTS The identified variant (c.2632G>T) substitutes a serine for a highly conserved alanine within the Ha2' element of the proximal C-terminal domain. This disrupts binding of the Ha2' element to the catalytic core and destabilises PLCB3. Here we show that this hypomorphic variant leads to elevated levels of PIP2 in patient fibroblasts, causing disorganisation of the F-actin cytoskeleton. CONCLUSIONS Our results connect a homozygous loss of function variant in PLCB3 with a new SMD associated with corneal dystrophy and developmental delay (SMDCD).
Collapse
Affiliation(s)
- Salma Ben-Salem
- Department of Pathology, College of Medicine and Heath Sciences, University Al-Ain, Al Ain, AbuDhabi, United Arab Emirates
| | - Sarah M Robbins
- Human genetics and Molecular Biology, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nara LM Sobreira
- Human genetics and Molecular Biology, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angeline Lyon
- Chemistry and Biological Sciences, West Lafayette, USA
| | - Aisha M Al-Shamsi
- Department of Paediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Barira K Islam
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nadia A Akawi
- Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, Oxfordshire, UK
| | - Anne John
- Department of Pathology, College of Medicine and Heath Sciences, University Al-Ain, Al Ain, AbuDhabi, United Arab Emirates
| | - Pramathan Thachillath
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sania Al Hamed
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - David Valle
- Human genetics and Molecular Biology, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Heath Sciences, University Al-Ain, Al Ain, AbuDhabi, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Wang S, Gebre-Medhin S, Betsholtz C, Stålberg P, Zhou Y, Larsson C, Weber G, Feinstein R, Oberg K, Gobl A, Skogseid B. Targeted disruption of the mouse phospholipase C beta3 gene results in early embryonic lethality. FEBS Lett 1998; 441:261-5. [PMID: 9883896 DOI: 10.1016/s0014-5793(98)01518-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In order to investigate the biological function of phosphatidylinositol-specific phospholipase C (PLC) we generated mutant mice by gene targeting. Homozygous inactivation of PLCbeta3 is lethal at embryonic day 2.5. These mutants show poor embryonic organization as well as reduced numbers of cells. Identical phenotypes were recorded in homozygous mutants generated from two independently targeted embryonic stem cell clones. Heterozygous mutant mice, however, are viable and fertile for at least two generations. We also showed that mouse PLCbeta3 is expressed in unfertilized eggs, 3-cell and egg cylinder stages of embryos. In conclusion, these results indicate that PLCbeta3 expression is essential for early mouse embryonic development.
Collapse
Affiliation(s)
- S Wang
- Department of Internal Medicine, University Hospital, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|