1
|
Knodel F, Eirich J, Pinter S, Eisler SA, Finkemeier I, Rathert P. The kinase NEK6 positively regulates LSD1 activity and accumulation in local chromatin sub-compartments. Commun Biol 2024; 7:1483. [PMID: 39523439 PMCID: PMC11551153 DOI: 10.1038/s42003-024-07199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
LSD1 plays a crucial role in mammalian biology, regulated through interactions with coregulators and post-translational modifications. Here we show that the kinase NEK6 stimulates LSD1 activity in cells and observe a strong colocalization of NEK6 and LSD1 at distinct chromatin sub-compartments (CSCs). We demonstrate that LSD1 is a substrate for NEK6 phosphorylation at the N-terminal intrinsically disordered region (IDR) of LSD1, which shows phase separation behavior in vitro and in cells. The LSD1-IDR is important for LSD1 activity and functions to co-compartmentalize NEK6, histone peptides and DNA. The subsequent phosphorylation of LSD1 by NEK6 supports the concentration of LSD1 at these distinct CSCs, which is imperative for dynamic control of transcription. This suggest that phase separation is crucial for the regulatory function of LSD1 and our findings highlight the role of NEK6 in modulating LSD1 activity and phase separation, expanding our understanding of LSD1 regulation and its implications in cellular processes.
Collapse
Affiliation(s)
- Franziska Knodel
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Sabine Pinter
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Stephan A Eisler
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
2
|
Wu X, Deng K, Cai H, Zeng Z, Cao J, Zhang L, Lu Z, Cheng W. Nek6 knockdown polarized macrophages into a pro-inflammatory phenotype via inhibiting STAT3 expression. Int J Exp Pathol 2023; 104:237-246. [PMID: 37431082 PMCID: PMC10500168 DOI: 10.1111/iep.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/08/2023] [Accepted: 06/18/2023] [Indexed: 07/12/2023] Open
Abstract
Recently macrophage polarization has emerged as playing an essential role in the oathogenesis of atherosclerosis, which is the most important underlying process in many types of cardiovascular diseases. Although Nek6 has been reported to be involved in various cellular processes, the effect of Nek6 on macrophage polarization remains unknown. Macrophages exposed to lipopolysaccharide (LPS) or IL-4 were used to establish an in vitro model for the study of regulation of classically (M1) or alternatively (M2) activated macrophage. Bone marrow-derived macrophages (BMDMs) transfected with short hairpin RNA-targeting Nek6 were then in functional studies. We observed that Nek6 expression was decreased in both peritoneal macrophages (PMs) and BMDMs stimulated by LPS. This effect was seen at both mRNA and protein level. The opposite results were obtained after administration of IL-4. Macrophage-specific Nek6 knockdown significantly exacerbated pro-inflammatory M1 polarized macrophage gene expression in response to LPS challenge, but the anti-inflammatory response gene expression that is related to M2 macrophages was attenuated by Nek6 silencing followed by treatment with IL-4. Mechanistic studies exhibited that Nek6 knockdown inhibited the phosphorylated STAT3 expression that mediated the effect on macrophage polarization regulated by AdshNek6. Moreover, decreased Nek6 expression was also observed in atherosclerotic plaques. Collectively, these evidences suggested that Nek6 acts as a crucial site in macrophage polarization, and that this operates in a STAT3-dependent manner.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Ke‐Qiong Deng
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Huan‐Huan Cai
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Ziyue Zeng
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Jian‐Lei Cao
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Lin Zhang
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Zhibing Lu
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| | - Wen‐Lin Cheng
- Department of Cardiology, Zhongnan HospitalWuhan UniversityWuhanChina
- Institute of Myocardial Injury and RepairWuhan UniversityWuhanChina
| |
Collapse
|
3
|
Panchal NK, Mohanty S, Prince SE. NIMA-related kinase-6 (NEK6) as an executable target in cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:66-77. [PMID: 36074296 DOI: 10.1007/s12094-022-02926-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 01/07/2023]
Abstract
Cancer is a disease that develops when cells begin to divide uncontrollably and spreads to other parts of the body. Proliferation and invasion of cancerous cells are generally known to be influenced by cell cycle-related proteins in human malignancies. Therefore, in this review, we have emphasized on the serine/threonine kinase named NEK6. NEK6 is been deliberated to play a critical role in mitosis progression that includes mitotic spindle formation, metaphase to anaphase transition, and centrosome separation. Moreover, it has a mechanistic role in DNA repair and can cause apoptosis when inhibited. Past studies have connected NEK6 protein expression to cancer cell senescence. Besides, there are reports relating NEK6 to a range of malignancies including breast, lung, ovarian, prostate, kidney, liver, and others. Given its significance, this review attempts to describe the structural and functional aspects of NEK6 in various cellular processes, as well as how it is linked to different forms of cancer. Lastly, we have accentuated, on some of the plausible inhibitors that have been explored against NEK6 overexpression.
Collapse
Affiliation(s)
- Nagesh Kishan Panchal
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Mohanty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
4
|
Lewis L, Borowa-Mazgaj B, de Conti A, Chappell GA, Luo YS, Bodnar W, Konganti K, Wright FA, Threadgill DW, Chiu WA, Pogribny IP, Rusyn I. Population-Based Analysis of DNA Damage and Epigenetic Effects of 1,3-Butadiene in the Mouse. Chem Res Toxicol 2019; 32:887-898. [PMID: 30990016 DOI: 10.1021/acs.chemrestox.9b00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metabolism of 1,3-butadiene, a known human and rodent carcinogen, results in formation of reactive epoxides, a key event in its carcinogenicity. Although mice exposed to 1,3-butadiene present DNA adducts in all tested tissues, carcinogenicity is limited to liver, lung, and lymphoid tissues. Previous studies demonstrated that strain- and tissue-specific epigenetic effects in response to 1,3-butadiene exposure may influence susceptibly to DNA damage and serve as a potential mechanism of tissue-specific carcinogenicity. This study aimed to investigate interindividual variability in the effects of 1,3-butadiene using a population-based mouse model. Male mice from 20 Collaborative Cross strains were exposed to 0 or 635 ppm 1,3-butadiene by inhalation (6 h/day, 5 days/week) for 2 weeks. We evaluated DNA damage and epigenetic effects in target (lung and liver) and nontarget (kidney) tissues of 1,3-butadiene-induced carcinogenesis. DNA damage was assessed by measuring N-7-(2,3,4-trihydroxybut-1-yl)-guanine (THB-Gua) adducts. To investigate global histone modification alterations, we evaluated the trimethylation and acetylation of histones H3 and H4 across tissues. Changes in global cytosine DNA methylation were evaluated from the levels of methylation of LINE-1 and SINE B1 retrotransposons. We quantified the degree of variation across strains, deriving a chemical-specific human variability factor to address population variability in carcinogenic risk, which is largely ignored in current cancer risk assessment practice. Quantitative trait locus mapping identified four candidate genes related to chromatin remodeling whose variation was associated with interstrain susceptibility. Overall, this study uses 1,3-butadiene to demonstrate how the Collaborative Cross mouse population can be used to identify the mechanisms for and quantify the degree of interindividual variability in tissue-specific effects that are relevant to chemically induced carcinogenesis.
Collapse
Affiliation(s)
- Lauren Lewis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Barbara Borowa-Mazgaj
- Division of Biochemical Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Grace A Chappell
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Wanda Bodnar
- Department of Environmental Sciences and Engineering , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27516 , United States
| | - Kranti Konganti
- Department of Molecular and Cellular Medicine, College of Medicine , Texas A&M University , College Station , Texas 77843-1114 , United States
| | - Fred A Wright
- Bioinformatics Research Center , North Carolina State University , Raleigh , North Carolina 27695-7566 , United States
| | - David W Threadgill
- Department of Molecular and Cellular Medicine, College of Medicine , Texas A&M University , College Station , Texas 77843-1114 , United States
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , Arkansas 72079 , United States
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
5
|
Biray Avci C, Goker Bagca B, Tetik Vardarli A, Saydam G, Gunduz C. Epigenetic modifications in chronic myeloid leukemia cells through ruxolitinib treatment. J Cell Biochem 2018; 120:4555-4563. [PMID: 30260022 DOI: 10.1002/jcb.27744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/31/2018] [Indexed: 12/28/2022]
Abstract
Chronic myeloid leukemia is a clonal malignancy of hematopoietic stem cell that is characterized by the occurrence of t(9;22)(q34;q11.2) translocation, named Philadelphia chromosome. Ruxolitinib is a powerful Janus tyrosine kinase 1 and 2 inhibitor that is used for myelofibrosis treatment. DNA-histone connection mediates a wide range of genes that code methylation, demethylation, acetylation, deacetylation, ubiquitination, and phosphorylation enzymes. Epigenetic modifications regulate chromatin compactness, which plays pivotal roles in critical biological processes including the transcriptional activity and cell proliferation as well as various pathological mechanisms, including CML. This study is aimed to determine the alterations of the expression levels of epigenetic modification-related genes after ruxolitinib treatment. Total RNA was isolated from K-562 cells treated with the IC50 value of ruxolitinib and untreated K-562 control cells. A reverse transcription procedure was performed for complementary DNA synthesis, and gene expressions were detected by real-time polymerase chain reaction compared with the untreated cells. Ruxolitinib treatment caused a significant alteration in the expression levels of epigenetic regulation-related genes in K-562 cells. Our novel results suggested that ruxolitinib has inhibitor effects on epigenetic modification-regulator genes.
Collapse
Affiliation(s)
- Cigir Biray Avci
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| | - Asli Tetik Vardarli
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| | - Guray Saydam
- Department of Internal Medicine, Division of Haematology, Medical Faculty, Ege University, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
| |
Collapse
|
6
|
Harrington KM, Clevenger CV. Identification of NEK3 Kinase Threonine 165 as a Novel Regulatory Phosphorylation Site That Modulates Focal Adhesion Remodeling Necessary for Breast Cancer Cell Migration. J Biol Chem 2016; 291:21388-21406. [PMID: 27489110 PMCID: PMC5076809 DOI: 10.1074/jbc.m116.726190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/27/2016] [Indexed: 01/09/2023] Open
Abstract
Accumulating evidence supports a role for prolactin (PRL) in the development and progression of human breast cancer. Although PRL is an established chemoattractant for breast cancer cells, the precise molecular mechanisms of how PRL regulates breast cancer cell motility and invasion are not fully understood. PRL activates the serine/threonine kinase NEK3, which was reported to enhance breast cancer cell migration, invasion, and the actin cytoskeletal reorganization necessary for these processes. However, the specific mechanisms of NEK3 activation in response to PRL signaling have not been defined. In this report, a novel PRL-inducible regulatory phosphorylation site within the activation segment of NEK3, threonine 165 (Thr-165), was identified. Phosphorylation at NEK3 Thr-165 was found to be dependent on activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway using both pharmacological inhibition and siRNA-mediated knockdown approaches. Strikingly, inhibition of phosphorylation at NEK3 Thr-165 by expression of a phospho-deficient mutant (NEK3-T165V) resulted in increased focal adhesion size, formation of zyxin-positive focal adhesions, and reorganization of the actin cytoskeleton into stress fibers. Concordantly, NEK3-T165V cells exhibited migratory defects. Together, these data support a modulatory role for phosphorylation at NEK3 Thr-165 in focal adhesion maturation and/or turnover to promote breast cancer cell migration.
Collapse
Affiliation(s)
- Katherine M Harrington
- From the Department of Pathology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611 and
| | - Charles V Clevenger
- the Department of Pathology, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
7
|
Li X, Lian L, Zhang D, Qu L, Yang N. gga-miR-26a targets NEK6 and suppresses Marek's disease lymphoma cell proliferation. Poult Sci 2014; 93:1097-105. [PMID: 24795301 DOI: 10.3382/ps.2013-03656] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNA (miRNA) are a class of highly conserved, small noncoding RNA that emerge as key posttranscriptional regulators in various neoplastic transformations. Our previous study profiling the miRNA transcriptome in Marek's disease virus (MDV)-induced lymphoma revealed many novel and differentially expressed miRNA, including gga-miR-26a, which was downregulated in MDV-infected spleens of chickens. In this study, differential expression of gga-miR-26a between MDV-infected and noninfected spleens at 4, 7, 14, 21, and 28 d postinfection was analyzed by real-time PCR. The results showed gga-miR-26a were downregulated in MDV-infected spleens at cytolytic infection, latency, and tumor transformation phases. Subsequent cell proliferation assay revealed cell viability was lower in gga-miR-26a mimic transfection group than that in negative controls. Target genes of gga-miR-26a were identified by luciferase reporter gene assay. The results showed significant interaction between gga-miR-26a and Never In Mitosis Gene A (NIMA)-related kinase 6 (NEK6) gene. Subsequent gain of function experiment and Western blot assay showed that mRNA and protein levels of NEK6 were downregulated after gga-miR-26 mimic was transfected into MDV-transformed lymphoid cell line (MSB-1), indicating that NEK6 was modulated by gga-miR-26a. The expression of NEK6 showed a higher trend in MDV-infected samples including tumorous spleen and MD lymphoma from liver than that in noninfected controls. The results suggested that gga-miR-26a inhibited MSB-1 cell proliferation. Gga-miR-26a and its direct target, NEK6, might play important roles in MDV infection.
Collapse
Affiliation(s)
- Xin Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
8
|
Meirelles GV, Perez AM, de Souza EE, Basei FL, Papa PF, Melo Hanchuk TD, Cardoso VB, Kobarg J. “Stop Ne(c)king around”: How interactomics contributes to functionally characterize Nek family kinases. World J Biol Chem 2014; 5:141-160. [PMID: 24921005 PMCID: PMC4050109 DOI: 10.4331/wjbc.v5.i2.141] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/07/2014] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A (NIMA)-related kinases (Neks). The founding member of this family is the sole member NIMA of Aspergillus nidulans, which is crucial for the initiation of mitosis in that organism. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals: (1) centrioles/mitosis; (2) primary ciliary function/ciliopathies; and (3) DNA damage response (DDR). Recent findings, especially on Nek 1 and 8, showed however, that several Neks participate in parallel in at least two of these contexts: primary ciliary function and DDR. In the core section of this in-depth review, we report the current detailed functional knowledge on each of the 11 Neks. In the discussion, we return to the cross-connections among Neks and point out how our and other groups’ functional and interactomics studies revealed that most Neks interact with protein partners associated with two if not all three of the functional contexts. We then raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize the cellular events associated with these three core functions. The new and exciting findings on the Nek family open new perspectives and should allow the Neks to finally claim the attention they deserve in the field of kinases and cell cycle biology.
Collapse
|
9
|
Bian Z, Liao H, Zhang Y, Wu Q, Zhou H, Yang Z, Fu J, Wang T, Yan L, Shen D, Li H, Tang Q. Never in mitosis gene A related kinase-6 attenuates pressure overload-induced activation of the protein kinase B pathway and cardiac hypertrophy. PLoS One 2014; 9:e96095. [PMID: 24763737 PMCID: PMC3999101 DOI: 10.1371/journal.pone.0096095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/02/2014] [Indexed: 12/31/2022] Open
Abstract
Cardiac hypertrophy appears to be a specialized form of cellular growth that involves the proliferation control and cell cycle regulation. NIMA (never in mitosis, gene A)-related kinase-6 (Nek6) is a cell cycle regulatory gene that could induce centriole duplication, and control cell proliferation and survival. However, the exact effect of Nek6 on cardiac hypertrophy has not yet been reported. In the present study, the loss- and gain-of-function experiments were performed in Nek6 gene-deficient (Nek6−/−) mice and Nek6 overexpressing H9c2 cells to clarify whether Nek6 which promotes the cell cycle also mediates cardiac hypertrophy. Cardiac hypertrophy was induced by transthoracic aorta constriction (TAC) and then evaluated by echocardiography, pathological and molecular analyses in vivo. We got novel findings that the absence of Nek6 promoted cardiac hypertrophy, fibrosis and cardiac dysfunction, which were accompanied by a significant activation of the protein kinase B (Akt) signaling in an experimental model of TAC. Consistent with this, the overexpression of Nek6 prevented hypertrophy in H9c2 cells induced by angiotonin II and inhibited Akt signaling in vitro. In conclusion, our results demonstrate that the cell cycle regulatory gene Nek6 is also a critical signaling molecule that helps prevent cardiac hypertrophy and inhibits the Akt signaling pathway.
Collapse
Affiliation(s)
- Zhouyan Bian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Haihan Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Jinrong Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Difei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei Province, P. R. China
- * E-mail:
| |
Collapse
|
10
|
The inhibition of Nek6 function sensitizes human cancer cells to premature senescence upon serum reduction or anticancer drug treatment. Cancer Lett 2013; 335:175-82. [PMID: 23416273 DOI: 10.1016/j.canlet.2013.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 02/01/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022]
Abstract
The induction of premature senescence in cancer cells was proposed as an effective cancer treatment strategy. In this paper, we show that the inhibition of Nek6 expression by Nek6 siRNA-mediated knockdown or the overexpression of a dominant negative form of Nek6 (Nek6KM) induced premature senescence as well as cell death under reduced serum conditions in multiple cancer cell lines, including both p53 wild-type and p53 mutant/null backgrounds. Moreover, cancer cells expressing Nek6KM exhibited significantly increased premature senescence upon treatment with the anticancer drugs doxorubicin (DOX) and camptothecin (CPT). Significantly, the overexpression of Nek6KM also inhibited tumor growth and promoted premature senescence in vivo in a xenograft mouse model. Taken together, our results further confirm that Nek6 plays an important role in the premature senescence of cancer cells, suggesting that Nek6 may be a potential therapeutic target for human cancers.
Collapse
|
11
|
Orlandi C, Barbon A, Barlati S. Activity Regulation of Adenosine Deaminases Acting on RNA (ADARs). Mol Neurobiol 2011; 45:61-75. [DOI: 10.1007/s12035-011-8220-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/09/2011] [Indexed: 01/01/2023]
|
12
|
Raistrick CA, Alharbi KK, Day INM, Gaunt TR. Analysis of Potential Genomic Confounding in Genetic Association Studies and an Online Genomic Confounding Browser (GCB). Ann Hum Genet 2011; 75:723-31. [DOI: 10.1111/j.1469-1809.2011.00677.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Lee MY, Kim HJ, Kim MA, Jee HJ, Kim AJ, Bae YS, Park JI, Chung JH, Yun J. Nek6 is involved in G2/M phase cell cycle arrest through DNA damage-induced phosphorylation. Cell Cycle 2008; 7:2705-9. [PMID: 18728393 DOI: 10.4161/cc.7.17.6551] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nek6 is a recently identified NIMA-related kinase that is required for mitotic cell cycle progression. In the present study, we examined the role of Nek6 in the DNA damage response. We found that Nek6 is phosphorylated upon IR and UV irradiation through the DNA damage checkpoint in vivo. Nek6 is also directly phosphorylated by the checkpoint kinases Chk1 and Chk2 in vitro. Notably, Nek6 activation during mitosis is completely abolished by IR and UV irradiation. Moreover, the ectopic expression of Nek6 overrides DNA damage-induced G(2)/M arrest. These results suggest that Nek6 is a novel target of the DNA damage checkpoint and that the inhibition of Nek6 activity is required for proper cell cycle arrest in the G(2)/M phase upon DNA damage.
Collapse
Affiliation(s)
- Min-Young Lee
- Department of Biochemistry, College of Medicine, Dong-A University, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lee EJ, Hyun SH, Chun J, Kang SS. Human NIMA-related kinase 6 is one of the Fe65 WW domain binding proteins. Biochem Biophys Res Commun 2007; 358:783-8. [PMID: 17512906 DOI: 10.1016/j.bbrc.2007.04.203] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 04/27/2007] [Indexed: 01/30/2023]
Abstract
The Aspergillus nidulans protein NIMA (never in mitosis, gene A) is a protein kinase required for initiation of mitosis, whereas its inactivation is necessary for mitotic exit. Here, we present evidence that human Nek6 is associated with Fe65. Based on the presence of Fe65 WW domain binding motifs ((267)PPLP(270)) in the Nek6 catalytic domain, we observed that Nek6 interacts physically with Fe65 both in vivo and in vitro, using a pull-down approach. Additionally, we detected co-localization of Nek6 and Fe65 via confocal microscopy. Co-localization of Nek6 and Fe65 was disrupted by mutation of the WW domain binding motifs ((267)PPLP(270)). Finally, when transient transfection assays were performed, interaction of Nek6 (wt) with Fe65 induced substantial cell apoptosis, whereas interaction using the Nek6 pplp mutant ((267)PPLP(270) changes (267)APVA(270)) did not. Thus, our observations indicated that Nek6 binds to Fe65 through its (267)PPLP(270) motif and that the protein-protein interaction between Nek6 and Fe65 regulates their subcellular localization and cell apoptosis.
Collapse
Affiliation(s)
- Eun Jeoung Lee
- School of Science Education, Chungbuk National University, Gaeshin-dong, Heungdok-gu, Chongju, Chungbuk 361-763, Republic of Korea
| | | | | | | |
Collapse
|
15
|
Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D. Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol Syst Biol 2007; 3:89. [PMID: 17353931 PMCID: PMC1847948 DOI: 10.1038/msb4100134] [Citation(s) in RCA: 708] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 01/26/2007] [Indexed: 01/15/2023] Open
Abstract
Mapping protein–protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein–protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24 540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein–protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations.
Collapse
Affiliation(s)
- Rob M Ewing
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
- Infochromics, MaRS Discovery District, Toronto, Ontario, Canada
| | - Peter Chu
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Fred Elisma
- Faculty of Medicine, The Ottawa Institute of Systems Biology, University of Ottawa, BMI, Ottawa, Ontario, Canada
| | - Hongyan Li
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Paul Taylor
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Shane Climie
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | | | - Mark D Robinson
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Liam O'Connor
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Michael Li
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Rod Taylor
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Moyez Dharsee
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
- Infochromics, MaRS Discovery District, Toronto, Ontario, Canada
| | - Yuen Ho
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Adrian Heilbut
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Lynda Moore
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Shudong Zhang
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Olga Ornatsky
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Yury V Bukhman
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Martin Ethier
- Faculty of Medicine, The Ottawa Institute of Systems Biology, University of Ottawa, BMI, Ottawa, Ontario, Canada
| | - Yinglun Sheng
- Faculty of Medicine, The Ottawa Institute of Systems Biology, University of Ottawa, BMI, Ottawa, Ontario, Canada
| | - Julian Vasilescu
- Faculty of Medicine, The Ottawa Institute of Systems Biology, University of Ottawa, BMI, Ottawa, Ontario, Canada
| | - Mohamed Abu-Farha
- Faculty of Medicine, The Ottawa Institute of Systems Biology, University of Ottawa, BMI, Ottawa, Ontario, Canada
| | - Jean-Philippe Lambert
- Faculty of Medicine, The Ottawa Institute of Systems Biology, University of Ottawa, BMI, Ottawa, Ontario, Canada
| | - Henry S Duewel
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Ian I Stewart
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
- Infochromics, MaRS Discovery District, Toronto, Ontario, Canada
| | - Bonnie Kuehl
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Kelly Hogue
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Karen Colwill
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | | | - Brenda Muskat
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Robert Kinach
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Sally-Lin Adams
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Michael F Moran
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Gregg B Morin
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
| | - Thodoros Topaloglou
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
- Information Engineering Center, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Figeys
- Protana (now Transition Therapeutics), Toronto, Ontario, Canada
- Faculty of Medicine, The Ottawa Institute of Systems Biology, University of Ottawa, BMI, Ottawa, Ontario, Canada
- The Ottawa Institute of Systems Biology, University of Ottawa, BMI, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5. Tel.: +1 613 562 5800 ext 8674; Fax: +1 613 562 5655; E-mail:
| |
Collapse
|
16
|
Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L. Phosphorylation of histone H3 in plants--a dynamic affair. ACTA ACUST UNITED AC 2007; 1769:308-15. [PMID: 17320987 DOI: 10.1016/j.bbaexp.2007.01.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 01/08/2007] [Accepted: 01/11/2007] [Indexed: 01/15/2023]
Abstract
Histones are the main protein components of chromatin: they undergo extensive post-translational modifications, particularly acetylation, methylation, phosphorylation, ubiquitination and ADP-ribosylation which modify the structural/functional properties of chromatin. Post-translational modifications of the N-terminal tails of the core histones within the nucleosome particle are thought to act as signals from the chromatin to the cell, for various processes. Thus, in many ways histone tails can be viewed as complex protein-protein interaction surfaces that are regulated by numerous post-translational modifications. Histone phosphorylation has been linked to chromosome condensation/segregation, activation of transcription, apoptosis and DNA damage repair. In plants, the cell cycle dependent phosphorylation of histone H3 has been described; it is hyperphosphorylated at serines 10/28 and at threonines 3/11 during both mitosis and meiosis in patterns that are specifically coordinated in both space and time. Although this post-translational modification is highly conserved, data show that the chromosomal distribution of individual modifications can differ between groups of eukaryotes. Initial results indicate that members of the plant Aurora kinase family have the capacity to control cell cycle regulated histone H3 phosphorylation, and in addition we describe other potential H3 kinases and discuss their functions.
Collapse
Affiliation(s)
- Andreas Houben
- Leibniz-Institute of Plant Genetics and Crop Plant Research, Chromosome Structure and Function Group, Corrensstrasse 3, D-06466 Gatersleben, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Cloutier M, Vigneault F, Lachance D, Séguin A. Characterization of a poplar NIMA-related kinase PNek1 and its potential role in meristematic activity. FEBS Lett 2005; 579:4659-65. [PMID: 16098516 DOI: 10.1016/j.febslet.2005.07.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/11/2005] [Accepted: 07/12/2005] [Indexed: 12/14/2022]
Abstract
Meristems are sites of undifferentiated cell division, which carry on developing into functional organs. Using the two-hybrid system with a poplar 14-3-3, we uncovered poplar NIMA-related kinase 1 (PNek1) as an interacting protein. PNek1 shows high homology to the mammalian NIMA-related kinases, which are thought to be involved in cell cycle progression. Using a synchronized poplar cell suspension, we observed an accumulation of PNek1 mRNA at the G1/S transition and throughout the G2-to-M progression. Moreover, PNek1-GFP fusion protein localized in the cytoplasm and in both the nuclear and nucleolar regions. Overexpression of PNek1-GFP in Arabidopsis caused morphological abnormalities in flower and siliques. Overall, these results suggest that PNek1 is involved in plant development.
Collapse
Affiliation(s)
- Monikca Cloutier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 3800, Sainte-Foy, Que., Canada
| | | | | | | |
Collapse
|
18
|
Abstract
Activation of members of the protein kinase AGC (cAMP dependent, cGMP dependent, and protein kinase C) family is regulated primarily by phosphorylation at two sites: a conserved threonine residue in the activation loop and a serine/threonine residue in a hydrophobic motif (HM) near the COOH terminus. Although phosphorylation of these kinases in the activation loop has been found to be mediated by phosphoinositide-dependent protein kinase-1 (PDK1), the kinase(s) that catalyzes AGC kinase phosphorylation in the HM remains uncharacterized. So far, at least 10 kinases have been suggested to function as an HM kinase or the so-called "PDK2," including mitogen-activated protein (MAP) kinase-activated protein kinase-2 (MK2), integrin-linked kinase (ILK), p38 MAP kinase, protein kinase Calpha (PKCalpha), PKCbeta, the NIMA-related kinase-6 (NEK6), the mammalian target of rapamycin (mTOR), the double-stranded DNA-dependent protein kinase (DNK-PK), and the ataxia telangiectasia mutated (ATM) gene product. However, whether any or all of these kinases act as a physiological HM kinase remains to be established. Nonetheless, available data suggest that multiple systems may be used in cells to regulate the activation of the AGC family kinases. It is possible that, unlike activation loop phosphorylation, phosphorylation of the HM site in the different AGC family kinases is mediated by distinct kinases. In addition, phosphorylation of the AGC family kinase at the HM site could be cell type, signaling pathway, and substrate specific. Identification and characterization of the bonafide HM kinase(s) will be essential to verify these hypotheses.
Collapse
Affiliation(s)
- Lily Q Dong
- Dept. of Cellular and Structural Biology, Univ. of Texas Health Science Center, San Antonio, TX 78229, USA
| | | |
Collapse
|
19
|
Bowers AJ, Boylan JF. Nek8, a NIMA family kinase member, is overexpressed in primary human breast tumors. Gene 2004; 328:135-42. [PMID: 15019993 DOI: 10.1016/j.gene.2003.12.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 10/16/2003] [Accepted: 12/02/2003] [Indexed: 10/26/2022]
Abstract
The family of human Nek (NIMA Related Kinase) kinases currently contains 11 members. We have identified Nek8 as a new member of the Nek kinase family. For many of the Nek family members, primary tumor expression data and function have been limited. However, all of the Nek family proteins share considerable homology with the Never In Mitosis, gene A (NIMA) kinase from the filamentous fungus Aspergillus nidulans. NIMA, as well as its most closely related human ortholog, Nek2, are required for G(2)/M progression and promote centrosome maturation during mitosis. We isolated Nek8 from a primary human colon cDNA library, and found it to be highly homologous to murine Nek8. Recently, a previously named Nek8 sequence was renamed Nek9/Nercc1 in Genbank due to its lack of homology to murine Nek8 and its high homology to murine Nek9. Interestingly, in our study, phylogenetic analysis suggests that human Nek8 and Nek9 form a subfamily within the Nek family. Nek8 has high homology to the Nek family kinase domain as well as to a regulator of chromosome condensation domain (RCC1), which is also present in Nek9. The open reading frame of human Nek8 encodes a 692 amino-acid protein with a calculated molecular weight of 75 kDa. Nek8 is differently expressed between normal human breast tissue and breast tumors. Overexpression of a mutated kinase domain Nek8 in U2-0S cells led to a decrease in actin protein, and a small increase in the level of cdk1/cyclinB1. Our data demonstrate for the first time that Nek8 is a novel tumor associated gene, and shares considerable sequence homology with the Nek family of protein kinases and may be involved in G(2)/M progression.
Collapse
Affiliation(s)
- Alex J Bowers
- Department of Cancer Biology, Amgen Inc, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | |
Collapse
|
20
|
Histone modifications. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s0167-7306(03)39009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Clayton AL, Mahadevan LC. MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett 2003; 546:51-8. [PMID: 12829236 DOI: 10.1016/s0014-5793(03)00451-4] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
That signalling pathways, particularly the mitogen-activated protein kinase cascades, elicit modification of chromatin proteins such as histone H3 by phosphorylation and/or acetylation concomitant with gene activation is now well established. The picture that is emerging is one of a complex and dynamic pattern of multiple modifications at the H3 tail. Here, we review the inducible gene systems where H3 modifications have been reported and re-evaluate the controversy as to the kinase(s) that phosphorylates it as well as the proposed coupling between H3 phosphorylation and acetylation.
Collapse
Affiliation(s)
- Alison L Clayton
- Nuclear Signalling Laboratory, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | |
Collapse
|