1
|
Berger T, Tang S, Tu L, Soto DA, Conley AJ, Nitta-Oda B. Changes in testicular gene expression following reduced estradiol synthesis: A complex pathway to increased porcine Sertoli cell proliferation. Mol Cell Endocrinol 2021; 523:111099. [PMID: 33271218 DOI: 10.1016/j.mce.2020.111099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
Porcine Sertoli cell number including number present at puberty is increased if testicular estradiol synthesis is reduced during the neonatal interval. Evaluating the changes in gene expression during the crucial interval of suppressed estradiol that leads to the increased Sertoli cell population will increase our understanding of Sertoli cell biology but this evaluation first required a more precise determination of the critical interval for treatment and timing of a detectable response. Previously, reduced testicular estrogens from 1 week of age were accompanied by increased Sertoli cell number at 6.5 weeks of age but the age at which Sertoli cell numbers were initially increased was unknown, one of the current objectives. Additional experiments were designed to further delineate the essential timing of treatment for the Sertoli cell response. Finally, changes in gene expression induced by the reduced estradiol synthesis were evaluated to elucidate molecular mechanisms. Experimental design typically consisted of one member of littermate pairs of boars treated with the aromatase inhibitor, letrozole, beginning at 1 week of age and the remaining member treated with canola oil vehicle. Weekly treatments continued through 5 weeks of age or tissue collection, whichever came first. Increases in Sertoli cell numbers were not detectable prior to 6.5 weeks of age and persistent treatment through 5 weeks of age was required to induce the increase in Sertoli cell numbers. This increase resulted from prolonging the first interval of Sertoli cell proliferation in the treated animals. Few genes exhibited dramatically altered transcription and similarities in pathway analysis or principal modified genes were quite limited in 2, 3, and 5-week-old boars. The critical timing and prolonged treatment required and the sequential changes in gene expression suggest a complex mechanism is involved in this model of increased proliferation of Sertoli cells.
Collapse
Affiliation(s)
- Trish Berger
- Department of Animal Science, University of California, Davis, Davis, CA, USA.
| | - Simin Tang
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Lien Tu
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Delia Alba Soto
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| | - Alan J Conley
- And Department of Population Health and Reproduction, University of California, Davis, Davis, CA, USA
| | - Barbara Nitta-Oda
- Department of Animal Science, University of California, Davis, Davis, CA, USA
| |
Collapse
|
2
|
Liu Y, Song Y, Ye M, Hu X, Wang ZP, Zhu X. The emerging role of WISP proteins in tumorigenesis and cancer therapy. J Transl Med 2019; 17:28. [PMID: 30651114 PMCID: PMC6335850 DOI: 10.1186/s12967-019-1769-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence has demonstrated that WNT1 inducible signaling pathway protein (WISP) genes, which belong to members of the CCN growth factor family, play a pivotal role in tumorigenesis and progression of a broad spectrum of human cancers. Mounting studies have identified that WISP proteins (WISP1-3) exert different biological functions in various human malignancies. Emerging evidence indicates that WISP proteins are critically involved in cell proliferation, apoptosis, invasion and metastasis in cancers. Because the understanding of a direct function of WISP proteins in cancer development and progression has begun to emerge, in this review article, we describe the physiological function of WISP proteins in a variety of human cancers. Moreover, we highlight the current understanding of how the WISP protein is involved in tumorigenesis and cancer progression. Furthermore, we discuss that targeting WISP proteins could be a promising strategy for the treatment of human cancers. Hence, the regulation of WISP proteins could improve treatments for cancer patients.
Collapse
Affiliation(s)
- Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China
| | - Z Peter Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China. .,Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
3
|
Liu JL, Kaddour N, Chowdhury S, Li Q, Gao ZH. Role of CCN5 (WNT1 inducible signaling pathway protein 2) in pancreatic islets. J Diabetes 2017; 9:462-474. [PMID: 27863006 DOI: 10.1111/1753-0407.12507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
In search of direct targets of insulin-like growth factor (IGF)-1 action, we discovered CCN5 (WNT1 inducible signaling pathway protein 2 [WISP2]) as a novel protein expressed in pancreatic β-cells. As a member of the "CCN" ( C ysteine-rich angiogenic inducer 61 [Cyr61], C onnective tissue growth factor [CTGF in humans], and N ephroblastoma overexpressed [Nov; in chickens]) family, the expression of CCN5/WISP2 is stimulated by IGF-1 together with Wnt signaling. When overexpressed in insulinoma cells, CCN5 promotes cell proliferation and cell survival against streptozotocin-induced cell death. The cell proliferation effect seems to be caused by AKT phosphorylation and increased cyclin D1 levels. These properties resemble those of CCN2/CTGF, another isoform of the CCN family, although CCN5 is the only one within the family of six proteins that lacks the C-terminal repeat. Treatment of primary mouse islets with recombinant CCN5 protein produced similar effects to those of gene transfection, indicating that either as a matricellular protein or a secreted growth factor, CCN5 stimulates β-cell proliferation and regeneration in a paracrine fashion. This review also discusses the regulation of CCN5/WISP2 by estrogen and its involvement in angiogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Jun-Li Liu
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Nancy Kaddour
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Subrata Chowdhury
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Qing Li
- Fraser Laboratories, Department of Medicine, The Research Institute of McGill University Health Centre, Montreal, Canada
| | - Zu-Hua Gao
- Department of Pathology, The Research Institute of McGill University Health Centre, Montreal, Canada
| |
Collapse
|
4
|
Ji J, Jia S, Ji K, Jiang WG. Wnt1 inducible signalling pathway protein-2 (WISP‑2/CCN5): roles and regulation in human cancers (review). Oncol Rep 2013; 31:533-9. [PMID: 24337439 DOI: 10.3892/or.2013.2909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/27/2013] [Indexed: 11/05/2022] Open
Abstract
Wnt1 inducible signalling pathway protein-2 (WISP‑2), also known as CCN5, CT58, CTGF-L, CTGF-3, HICP and Cop1, is one of the 3 WNT1 inducible proteins that belongs to the CCN family. This family of members has been shown to play multiple roles in a number of pathophysiological processes, including cell proliferation, adhesion, wound healing, extracellular matrix regulation, epithelial-mesenchymal transition, angiogenesis, fibrosis, skeletal development and embryo implantation. Recent results suggest that WISP-2 is relevant to tumorigenesis and malignant transformation, particularly in breast cancer, colorectal cancer and hepatocarcinoma. Notably, its roles in cancer appear to vary depending on cell/tumour type and the microenvironment. The striking difference in the structure of WISP-2 in comparison with the other 2 family members may contribute to its difference in functions, which leads to the hypothesis that WISP-2 may act as a dominant-negative regulator of other CCN family members. In the present review, we summarise the roles, regulation and underlying mechanism of WISP-2 in human cancers.
Collapse
Affiliation(s)
- Jiafu Ji
- Department of Gastro-enterological Cancers, Peking University Cancer Hospital, Beijing, P.R. China
| | - Shuqin Jia
- Cardiff University-Peking University Joint Cancer Institute, Beijing, P.R. China
| | - Ke Ji
- Cardiff University-Peking University Joint Cancer Institute, Beijing, P.R. China
| | - Wen G Jiang
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
5
|
Banerjee SK, Banerjee S. CCN5/WISP-2: A micromanager of breast cancer progression. J Cell Commun Signal 2012; 6:63-71. [PMID: 22487979 DOI: 10.1007/s12079-012-0158-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 01/09/2012] [Indexed: 12/19/2022] Open
Abstract
The gain of plasticity by a subset of cancer cells is a unique but common sequence of cancer progression from epithelial phenotype to mesenchymal phenotype (EMT) that is followed by migration, invasion and metastasis to a distant organ, and drug resistance. Despite multiple studies, it is still unclear how cancer cells regulate plasticity. Recent studies from our laboratory and others' proposed that CCN5/WISP-2, which is found intracellularly (in the nucleus and cytoplasm) and extracellularly, plays a negative regulator of plasticity. It prevents the EMT process in breast cancer cells as well as pancreatic cancer cells. Multiple genetic insults, including the gain of p53 mutations that accumulate over the time, may perturb CCN5 expression in non-invasive breast cancer cells, which ultimately helps cells to gain invasive phenotypes. Moreover, emerging evidence indicates that several oncogenic lesions such as miR-10b upregulation and activation of TGF-β-signaling can accumulate during CCN5 crisis in breast cancer cells. Collectively, these studies indicate that loss of CCN5 activity may promote breast cancer progression; application of CCN5 protein may represent a novel therapeutic intervention in breast cancer and possibly pancreatic cancer.
Collapse
Affiliation(s)
- Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, 4801 Linwood Blvd, Kansas City, MO, 64128, USA,
| | | |
Collapse
|
6
|
Russo JW, Castellot JJ. CCN5: biology and pathophysiology. J Cell Commun Signal 2010; 4:119-130. [PMID: 21063502 DOI: 10.1007/s12079-010-0098-73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 08/19/2010] [Indexed: 05/26/2023] Open
Abstract
CCN5 is one of six proteins in the CCN family. This family of proteins has been shown to play important roles in many processes, including proliferation, migration, adhesion, extracellular matrix regulation, angiogenesis, tumorigenesis, fibrosis, and implantation. In this review, we focus on the biological and putative pathophysiological roles of CCN5. This intriguing protein is structurally unique among the CCN family members, and has a unique biological activity profile as well.
Collapse
|
7
|
Abstract
CCN5 is one of six proteins in the CCN family. This family of proteins has been shown to play important roles in many processes, including proliferation, migration, adhesion, extracellular matrix regulation, angiogenesis, tumorigenesis, fibrosis, and implantation. In this review, we focus on the biological and putative pathophysiological roles of CCN5. This intriguing protein is structurally unique among the CCN family members, and has a unique biological activity profile as well.
Collapse
|
8
|
Spink BC, Bennett JA, Pentecost BT, Lostritto N, Englert NA, Benn GK, Goodenough AK, Turesky RJ, Spink DC. Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells. Toxicol Appl Pharmacol 2009; 240:355-66. [PMID: 19619570 DOI: 10.1016/j.taap.2009.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/14/2009] [Accepted: 07/15/2009] [Indexed: 12/21/2022]
Abstract
The cumulative exposure to estrogens is an important determinant in the risk of breast cancer, yet the full range of mechanisms involving estrogens in the genesis and progression of breast cancer remains a subject of debate. Interactions of estrogens and environmental toxicants have received attention as putative factors contributing to carcinogenesis. Mechanistic studies have demonstrated interactions between estrogen receptor alpha (ERalpha) and the aryl hydrocarbon receptor (AhR), with consequences on the genes that they regulate. Many studies of ERalpha and AhR-mediated effects and crosstalk between them have focused on the initial molecular events. In this study, we investigated ERalpha- and AhR-mediated effects in long-term estrogen exposed (LTEE) MCF-7 human breast cancer cells, which were obtained by continuous culturing for at least 12 weeks in medium supplemented with 1 nM of 17beta-estradiol (E(2)). With these LTEE cells and with parallel control cells cultured without E(2) supplementation, we performed an extensive study of cytochrome P450 (CYP) induction, carcinogen bioactivation, global gene expression, and tumorigenicity in immunocompromised mice. We found that LTEE cells, in comparison with control cells, had higher levels of AhR mRNA and protein, greater responsiveness for AhR-regulated CYP1A1 and CYP1B1 induction, a 6-fold higher initial level of benzo(a)pyrene-DNA adducts as determined by liquid chromatography tandem mass spectrometry, marked differences in the expression of numerous genes, and a higher rate of E(2)-dependent tumor growth as xenografts. These studies indicate that LTEE causes adaptive responses in MCF-7 cells, which may reflect processes that contribute to the overall carcinogenic effect of E(2).
Collapse
Affiliation(s)
- Barbara C Spink
- Laboratory of Molecular Toxicology, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation. Biochem Biophys Res Commun 2009; 379:969-74. [PMID: 19135425 DOI: 10.1016/j.bbrc.2008.12.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Accepted: 12/31/2008] [Indexed: 11/21/2022]
Abstract
Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein delta expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor gamma expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-alpha did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.
Collapse
|
10
|
Banerjee S, Dhar G, Haque I, Kambhampati S, Mehta S, Sengupta K, Tawfik O, Phillips TA, Banerjee SK. CCN5/WISP-2 expression in breast adenocarcinoma is associated with less frequent progression of the disease and suppresses the invasive phenotypes of tumor cells. Cancer Res 2008; 68:7606-12. [PMID: 18794149 DOI: 10.1158/0008-5472.can-08-1461] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although previous in vitro studies predicted that CCN5/WISP-2 may act as an anti-invasive gene in breast cancer, the distribution pattern of CCN5 in breast cancer samples is conflicting. Thus, we systematically investigated the CCN5 expression profile in noninvasive and invasive breast tumor samples and its functional relevance in breast cancer progression. The studies showed that CCN5 expression is biphasic, such that in normal samples CCN5 expression is undetectable, whereas its expression is markedly increased in noninvasive breast lesions, including atypical ductal hyperplasia and ductal carcinoma in situ. Further, CCN5 mRNA and protein levels are significantly reduced as the cancer progresses from a noninvasive to invasive type. Additionally, we showed that CCN5 mRNA and protein level was almost undetectable in poorly differentiated cancers compared with the moderately or well-differentiated samples and its expression inversely correlated with lymph node positivity. The result was further supported by evaluating the RNA expression profile in microdissected sections using real-time PCR analysis. Therefore, our data suggest a protective function of CCN5 in noninvasive breast tumor cells. This hypothesis was further supported by our in vitro studies illuminating that CCN5 is a negative regulator of migration and invasion of breast cancer cells, and these events could be regulated by CCN5 through the modulation of the expression of genes essential for an invasive front. These include Snail-E-cadherin signaling and matrix metalloproteinase (MMP)-9 and MMP-2. Collectively, these studies suggest that the protective effect of CCN5 in breast cancer progression may have important therapeutic implications.
Collapse
Affiliation(s)
- Snigdha Banerjee
- Cancer Research Unit, Veterans Affairs Medical Center, Kansas City, Missouri 64128, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Estrogen receptor (ER) functions as a transcription factor to induce gene expression events sufficient for cell division and breast cancer progression. A significant body of work exists on the identification of ER gene targets and the cofactors that contribute to these transcription events, yet surprisingly little is known of the cis-regulatory elements involved. In this review, we investigate the advances in technology that contribute to a comprehensive understanding of ER target genes and explore recent work identifying cis-regulatory domains that augment transcription of these targets. Specifically, we find that ER association with gene targets results from an association with the pioneer factor FoxA1, responsible for recruitment of ER to the genome. Recruitment of ER to the genome does not occur at promoter proximal regions, but instead involves distal enhancer elements that function to tether the ER complex to the target gene promoters. These advances in technology permit a more detailed investigation of ER activity and may aid in the development of superior drug interventions.
Collapse
Affiliation(s)
- Jason S Carroll
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
12
|
Mulholland DJ, Dedhar S, Coetzee GA, Nelson CC. Interaction of nuclear receptors with the Wnt/beta-catenin/Tcf signaling axis: Wnt you like to know? Endocr Rev 2005; 26:898-915. [PMID: 16126938 DOI: 10.1210/er.2003-0034] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cross-regulation of Wnt/beta-catenin/Tcf ligands, kinases, and transcription factors with members of the nuclear receptor (NR) family has emerged as a clinically and developmentally important area of endocrine cell biology. Interactions between these signaling pathways result in a diverse array of cellular effects including altered cellular adhesion, tissue morphogenesis, and oncogenesis. Analyses of NR interactions with canonical Wnt signaling reveal two broad themes: Wnt/beta-catenin modulation of NRs (theme I), and ligand-dependent NR inhibition of the Wnt/beta-catenin/Tcf cascade (theme II). Beta-catenin, a promiscuous Wnt signaling member, has been studied intensively in relation to the androgen receptor (AR). Beta-catenin acts as a coactivator of AR transcription and is also involved in co-trafficking, increasing cell proliferation, and prostate pathogenesis. T cell factor, a transcriptional mediator of beta-catenin and AR, engages in a dynamic reciprocity of nuclear beta-catenin, p300/CREB binding protein, and transcriptional initiation factor 2/GC receptor-interaction protein, thereby facilitating hormone-dependent coactivation and transrepression. Beta-catenin responds in an equally dynamic manner with other NRs, including the retinoic acid (RA) receptor (RAR), vitamin D receptor (VDR), glucocorticoid receptor (GR), progesterone receptor, thyroid receptor (TR), estrogen receptor (ER), and peroxisome proliferator-activated receptor (PPAR). The NR ligands, vitamin D(3), trans/cis RA, glucocorticoids, and thiazolidines, induce dramatic changes in the physiology of cells harboring high Wnt/beta-catenin/Tcf activity. Wnt signaling regulates, directly or indirectly, developmental processes such as ductal branching and adipogenesis, two processes dependent on NR function. Beta-catenin has been intensively studied in colorectal cancer; however, it is now evident that beta-catenin may be important in cancers of the breast, prostate, and thyroid. This review will focus on the cross-regulation of AR and Wnt/beta-catenin/Tcf but will also consider the dynamic manner in which RAR/RXR, GR, TR, VDR, ER, and PPAR modulate canonical Wnt signaling. Although many commonalities exist by which NRs interact with the Wnt/beta-catenin signaling pathway, striking cell line and tissue-specific differences require deciphering and application to endocrine pathology.
Collapse
Affiliation(s)
- David J Mulholland
- Department of Molecular and Medical Pharmacology, 650 Charles E. Young Drive, Center for Health Sciences 23-234, University of California Los Angeles School of Medicine, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
13
|
Banerjee S, Sengupta K, Saxena NK, Dhar K, Banerjee SK. Epidermal Growth Factor Induces WISP-2/CCN5 Expression in Estrogen Receptor-α-Positive Breast Tumor Cells through Multiple Molecular Cross-talks. Mol Cancer Res 2005; 3:151-62. [PMID: 15798095 DOI: 10.1158/1541-7786.mcr-04-0130] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Epidermal growth factor (EGF) is a mitogen for estrogen receptor (ER)–positive breast tumor cells, and it has been proven that EGF occasionally mimicked estrogen action and cross-talks with ER-α to exert its activity. Therefore, the present study was undertaken to explore whether EGF is able to modulate the expression of Wnt-1-induced signaling protein-2/connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed 5 (WISP-2/CCN5), an estrogen-responsive gene, in normal and transformed cell lines of the human breast and, if so, whether this induction is critical for EGF mitogenesis and what downstream signaling pathways are associated with this event. Here, we show that EGF-induced WISP-2 expression in ER- and EGF receptor–positive noninvasive MCF-7 breast tumor cells was dose and time dependent and that expression was modulated at transcription level. A synergism was seen in combination with estrogen. Moreover, small interfering RNA–mediated inhibition of WISP-2/CCN5 activity in MCF-7 cells resulted in abrogation of proliferation by EGF. The multiple molecular cross-talks, including the interactions between phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways and two diverse receptors (i.e., ER-α and EGFR), were essential in the event of EGF-induced WISP-2/CCN5 up-regulation in MCF-7 cells. Moreover, EGF action on WISP-2/CCN5 is restricted to ER- and EGFR-positive noninvasive breast tumor cells, and this effect of EGF cannot be instigated in ER-α-negative and EGFR-positive normal or invasive breast tumor cells by introducing ER-α. Finally, regulation of phosphorylation of ER-α and EGFR may play critical roles in EGF-induced transcriptional activation of WISP-2 gene in breast tumor cells.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Breast Neoplasms/metabolism
- Butadienes/pharmacology
- CCN Intercellular Signaling Proteins
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Proliferation
- Cloning, Molecular
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Epidermal Growth Factor/physiology
- Estrogen Receptor alpha/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Intercellular Signaling Peptides and Proteins/biosynthesis
- MAP Kinase Signaling System
- Microscopy, Confocal
- Microscopy, Fluorescence
- Neoplasm Invasiveness
- Neoplasm Proteins/biosynthesis
- Nitriles/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- RNA/chemistry
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Repressor Proteins
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Subcellular Fractions
- Time Factors
- Transcription Factors/biosynthesis
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Snigdha Banerjee
- Cancer Research Unit, Research Division 151, VA Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128, USA.
| | | | | | | | | |
Collapse
|
14
|
Stossi F, Barnett DH, Frasor J, Komm B, Lyttle CR, Katzenellenbogen BS. Transcriptional profiling of estrogen-regulated gene expression via estrogen receptor (ER) alpha or ERbeta in human osteosarcoma cells: distinct and common target genes for these receptors. Endocrinology 2004; 145:3473-86. [PMID: 15033914 DOI: 10.1210/en.2003-1682] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens exert many important effects in bone, a tissue that contains both estrogen receptors alpha and beta (ERalpha and ERbeta). To compare the actions of these receptors, we generated U2OS human osteosarcoma cells stably expressing ERalpha or ERbeta, at levels comparable with those in osteoblasts, and we characterized their response to 17beta-estradiol (E2) over time using Affymetrix GeneChip microarrays to determine the expression of approximately 12,000 genes, followed by quantitative PCR verification of the regulation of selected genes. Of the approximately 100 regulated genes we identified, some were stimulated by E2 equally through ERalpha and ERbeta, whereas others were selectively stimulated via ERalpha or ERbeta. The E2-regulated genes showed three distinct temporal patterns of expression over the 48-h time course studied. Of the functional categories of the E2-regulated genes, most numerous were those encoding cytokines and factors associated with immune response, signal transduction, and cell migration and cytoskeleton regulation, indicating that E2 can exert effects on multiple pathways in these osteoblast-like cell lines. Of note, E2 up-regulated several genes associated with cell motility selectively via ERbeta, in keeping with the selective E2 enhancement of the motility of ERbeta-containing cells. On genes regulated equally by E2 via ERalpha or ERbeta, the phytoestrogen genistein preferentially stimulated gene expression via ERbeta. These studies indicate both common as well as distinct target genes for these two ERs, and identify many novel genes not previously known to be under estrogen regulation.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Integrative Physiology, University of Illinois, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801-3704, USA
| | | | | | | | | | | |
Collapse
|
15
|
Polyak K. Gene expression profiling in breast cancer: from molecular portraits to personalized medicine. Clin Transl Oncol 2004. [DOI: 10.1007/bf02711722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Inadera H. Estrogen-induced genes, WISP-2 and pS2, respond divergently to protein kinase pathway. Biochem Biophys Res Commun 2003; 309:272-8. [PMID: 12951045 DOI: 10.1016/j.bbrc.2003.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recently, we identified WISP-2 (Wnt-1 inducible signaling pathway protein 2) as a novel estrogen-inducible gene in the MCF-7 human breast cancer cell line. In this study, we examined whether WISP-2 expression is modulated by PK activators. Treatment with protein kinase A (PKA) activators [cholera toxin plus 3-isobutyl-1-methylxanthine (CT/IBMX)] induced WISP-2 expression. CT/IBMX induced expression of the other estrogen-responsive gene, pS2, more dramatically than maximum stimulation by 17beta-estradiol (E2). Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), which directly stimulates protein kinase C (PKC) activity, completely prevented WISP-2 mRNA induction by E2, whereas it increased pS2 mRNA expression more dramatically than maximum stimulation by E2. Results of treatments with the protein synthesis inhibitor cycloheximide and the pure antiestrogen ICI182,780 suggest that these PK pathways modulate WISP-2 gene expression via different molecular mechanisms than those for pS2. Because TPA inhibits cell proliferation, we investigated whether WISP-2 induction was dependent on cell growth. Cells were treated with insulin-like growth factor-1 (IGF-1) or interleukin-1alpha (IL-1alpha) to stimulate or inhibit cell growth, respectively. These treatments had no effect on WISP-2 mRNA expression either alone or in combination with E2, suggesting that WISP-2 induction is independent of cell growth.
Collapse
Affiliation(s)
- Hidekuni Inadera
- Department of Public Health, Faculty of Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
17
|
Rajendran RR, Nye AC, Frasor J, Balsara RD, Martini PGV, Katzenellenbogen BS. Regulation of nuclear receptor transcriptional activity by a novel DEAD box RNA helicase (DP97). J Biol Chem 2003; 278:4628-38. [PMID: 12466272 DOI: 10.1074/jbc.m210066200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel DEAD box RNA helicase (97 kDa, DP97) from a breast cancer cDNA library that interacts in a hormone-dependent manner with nuclear receptors and represses their transcriptional activity. DP97 has RNA-dependent ATPase activity, and mapping studies localize the interacting regions of DP97 and nuclear receptors to the C-terminal region of DP97 and the hormone binding/activation function-2 region of estrogen receptors (ER), as well as several other nuclear receptors. Repression by DP97 maps to a small region (amino acids 589-631) that has homology to a repression domain in the corepressor protein NCoR2/SMRTe. This region of DP97 is necessary and sufficient for its intrinsic repression activity. The N-terminal helicase region of DP97 is, however, dispensable for its transcriptional repressor activity. The knockdown of endogenous cellular DP97 by antisense DP97 or RNA interference (siRNA for DP97) results in significant enhancement of the expression of estradiol-ER-stimulated genes and attenuation of the repression of genes inhibited by the estradiol-ER. This implies that endogenous DP97 normally dampens stimulation and intensifies repression of estradiol-ER-regulated genes. Our findings add to the growing evidence that RNA helicases can associate with nuclear receptors and function as coregulators to modulate receptor transcriptional activity.
Collapse
Affiliation(s)
- Ramji R Rajendran
- Department of Cell and Structural Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
18
|
Banerjee S, Saxena N, Sengupta K, Tawfik O, Mayo MS, Banerjee SK. WISP-2 gene in human breast cancer: estrogen and progesterone inducible expression and regulation of tumor cell proliferation. Neoplasia 2003; 5:63-73. [PMID: 12659671 PMCID: PMC1502127 DOI: 10.1016/s1476-5586(03)80018-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
WISP-2 mRNA and protein was overexpressed in preneoplastic and cancerous cells of human breast. Statistical analyses show a significant association between WISP-2 expression and estrogen receptor (ER) positivity. In normal breast, the expression was virtually undetected. The studies showed that WISP-2 is an estrogen-induced early response gene in MCF-7 cells and the expression was continuously increased to reach a maximum level at 24 h. The estrogen effect was inhibited by a pure antiestrogen (ICI 182,780). Human mammary epithelial cells, in which WISP-2 expression was undetected or minimally detected, responded to 17beta-estradiol by upregulating the WISP-2 gene after transfection with ER-alpha, providing further evidences that WISP-2 expression is mediated through ER-alpha. Overexpression of WISP-2 mRNA by estrogen may be accomplished by both transcriptional activation and stabilization. MCF-7 cells exposed to progesterone had a rapid but transient increase in WISP-2 expression, and PR antagonist RU38486 blocked this mRNA induction. In combination with estradiol, progesterone acted as an antagonist inhibiting the expression of WISP-2 mRNA. Moreover, disruption of WISP-2 signaling in MCF-7 cells by use of antisense oligomers caused a significant reduction in tumor cell proliferation. The results are consistent with the conclusion that WISP-2 expression is a requirement for breast tumor cells proliferation.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Blotting, Northern
- Blotting, Western
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- CCN Intercellular Signaling Proteins
- Case-Control Studies
- Cell Division/drug effects
- Dactinomycin/pharmacology
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Antagonists/pharmacology
- Estrogens/pharmacology
- Female
- Fulvestrant
- Gene Expression Regulation, Neoplastic/drug effects
- Hormone Antagonists/pharmacology
- Humans
- Immunoenzyme Techniques
- In Situ Hybridization
- Intercellular Signaling Peptides and Proteins
- Male
- Middle Aged
- Mifepristone/pharmacology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Polymerase Chain Reaction
- Progesterone/pharmacology
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Repressor Proteins
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Snigdha Banerjee
- Cancer Research Unit, Research Division, V.A. Medical Center, Kansas City, MO 64128, USA.
| | | | | | | | | | | |
Collapse
|