1
|
Sundaresan S, Kang AJ, Hayes MM, Choi EYK, Merchant JL. Deletion of Men1 and somatostatin induces hypergastrinemia and gastric carcinoids. Gut 2017; 66:1012-1021. [PMID: 26860771 PMCID: PMC4980289 DOI: 10.1136/gutjnl-2015-310928] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND Gastric carcinoids are slow growing neuroendocrine tumours arising from enterochromaffin-like (ECL) cells in the corpus of stomach. Although most of these tumours arise in the setting of gastric atrophy and hypergastrinemia, it is not understood what genetic background predisposes development of these ECL derived tumours. Moreover, diffuse microcarcinoids in the mucosa can lead to a field effect and limit successful endoscopic removal. OBJECTIVE To define the genetic background that creates a permissive environment for gastric carcinoids using transgenic mouse lines. DESIGN The multiple endocrine neoplasia 1 gene locus (Men1) was deleted using Cre recombinase expressed from the Villin promoter (Villin-Cre) and was placed on a somatostatin null genetic background. These transgenic mice received omeprazole-laced chow for 6 months. The direct effect of gastrin and the gastrin receptor antagonist YM022 on expression and phosphorylation of the cyclin inhibitor p27Kip1 was tested on the human human gastric adenocarcinoma cell line stably expressing CCKBR (AGSE) and mouse small intestinal neuroendocrine carcinoma (STC)-1 cell lines. RESULTS The combination of conditional Men1 deletion in the absence of somatostatin led to the development of gastric carcinoids within 2 years. Suppression of acid secretion by omeprazole accelerated the timeline of carcinoid development to 6 months in the absence of significant parietal cell atrophy. Carcinoids were associated with hypergastrinemia, and correlated with increased Cckbr expression and nuclear export of p27Kip1 both in vivo and in gastrin-treated cell lines. Loss of p27Kip1 was also observed in human gastric carcinoids arising in the setting of atrophic gastritis. CONCLUSIONS Gastric carcinoids require threshold levels of hypergastrinemia, which modulates p27Kip1 cellular location and stability.
Collapse
Affiliation(s)
- Sinju Sundaresan
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Anthony J. Kang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Michael M. Hayes
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Eun-Young K. Choi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Juanita L. Merchant
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
2
|
The role of proteasome beta subunits in gastrin-mediated transcription of plasminogen activator inhibitor-2 and regenerating protein1. PLoS One 2013; 8:e59913. [PMID: 23544109 PMCID: PMC3609805 DOI: 10.1371/journal.pone.0059913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/21/2013] [Indexed: 12/12/2022] Open
Abstract
The hormone gastrin physiologically regulates gastric acid secretion and also contributes to maintaining gastric epithelial architecture by regulating expression of genes such as plasminogen activator inhibitor 2 (PAI-2) and regenerating protein 1(Reg1). Here we examine the role of proteasome subunit PSMB1 in the transcriptional regulation of PAI-2 and Reg1 by gastrin, and its subcellular distribution during gastrin stimulation. We used the gastric cancer cell line AGS, permanently transfected with the CCK2 receptor (AGS-GR) to study gastrin stimulated expression of PAI-2 and Reg1 reporter constructs when PSMB1 was knocked down by siRNA. Binding of PSMB1 to the PAI-2 and Reg1 promoters was assessed by chromatin immunoprecipitation (ChIP) assay. Subcellular distribution of PSMB1 was determined by immunocytochemistry and Western Blot. Gastrin robustly increased expression of PAI-2 and Reg1 in AGS-GR cells, but when PSMB1 was knocked down the responses were dramatically reduced. In ChIP assays, following immunoprecipitation of chromatin with a PSMB1 antibody there was a substantial enrichment of DNA from the gastrin responsive regions of the PAI-2 and Reg1 promoters compared with chromatin precipitated with control IgG. In AGS-GR cells stimulated with gastrin there was a significant increase in the ratio of nuclear:cytoplasmic PSMB1 over the same timescale as recruitment of PSMB1 to the PAI-2 and Reg1 promoters seen in ChIP assays. We conclude that PSMB1 is part of the transcriptional machinery required for gastrin stimulated expression of PAI-2 and Reg1, and that its change in subcellular distribution in response to gastrin is consistent with this role.
Collapse
|
3
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
4
|
Kovac S, Xiao L, Shulkes A, Patel O, Baldwin GS. Gastrin increases its own synthesis in gastrointestinal cancer cells via the CCK2 receptor. FEBS Lett 2010; 584:4413-8. [PMID: 20932834 DOI: 10.1016/j.febslet.2010.09.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/27/2010] [Accepted: 09/29/2010] [Indexed: 01/10/2023]
Abstract
The involvement of the gastrointestinal hormone gastrin in the development of gastrointestinal cancer is highly controversial. Here we demonstrate a positive-feedback loop whereby gastrin, acting via the CCK2 receptor, increases its own expression. Such an autocrine loop has not previously been reported for any other gastrointestinal hormone. Gastrin promoter activation was dependent on the MAP kinase pathway and did not involve Sp1 binding sites or epidermal growth factor receptor transactivation. As the treatment of gastrointestinal cancer cells with amidated gastrin led to increased expression of non-amidated gastrins, the positive-feedback loop may contribute to the sustained increase in circulating gastrins observed in colorectal cancer patients.
Collapse
Affiliation(s)
- Suzana Kovac
- The University of Melbourne, Department of Surgery, Austin Health, Heidelberg, Victoria, Australia.
| | | | | | | | | |
Collapse
|
5
|
Glycogen Synthase Kinase-3beta regulates Snail and beta-catenin during gastrin-induced migration of gastric cancer cells. J Mol Signal 2010; 5:9. [PMID: 20637111 PMCID: PMC2912299 DOI: 10.1186/1750-2187-5-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/16/2010] [Indexed: 01/08/2023] Open
Abstract
Background The gastrointestinal peptide hormone gastrin is known to regulate various cellular processes including proliferation, migration and metastasis in gastrointestinal (GI) cells. The studies described here were undertaken to elucidate in detail the signaling pathways mediating the migratory responses of amidated gastrin (G17) and to understand the involvement of the serine/threonine kinase Glycogen Synthase Kinase-3 beta (GSK3β) in this. Results Our results indicate that incubation of gastric cancer cells overexpressing CCK2 receptor (AGSE cells) with G17 results in a dose and time dependent increase of GSK3βSer9 phosphorylation, indicative of an inhibition of the kinase. Pretreatment with a pharmacological inhibitor of PI3Kinase pathway (Wortmannin) was unable to antagonize G17-induced GSK3βSer9 phosphorylation, suggesting that this might involve PI3Kinase-independent pathways. Treatment with G17 was also associated with increased Snail expression, and β-catenin nuclear translocation, both of which are GSK3β downstream targets. Pretreatment with a pharmacological inhibitor of GSK3β (AR-A014418) augmented Snail expression and β-catenin nuclear translocation in the absence of G17, whereas overexpression of a phosphorylation deficient mutant of GSK3β (S9A) abrogated Snail promoter induction. These suggested that G17 modulates Snail and β-catenin pathways via inhibiting GSK3β. In addition, overexpression of GSK3β wild type (WT) or S9A mutant inhibited G17-induced migration and MMP7 promoter induction. G17 studies designed following small interference RNA (siRNA)-mediated knockdown of Snail and β-catenin expression indicated a significant reduction of G-17-induced migration and MMP7 promoter induction following combined knockdown of both proteins. Conclusion Our studies indicate that inhibition of GSK3β is necessary to activate G17-induced migratory pathways in gastric cancer cells. Inhibition of GSK3β leads to an induction of Snail expression and β-catenin nuclear translocation, both of which participate to promote G17-induced migration.
Collapse
|
6
|
Mishra P, Senthivinayagam S, Rangasamy V, Sondarva G, Rana B. Mixed lineage kinase-3/JNK1 axis promotes migration of human gastric cancer cells following gastrin stimulation. Mol Endocrinol 2010; 24:598-607. [PMID: 20150185 PMCID: PMC5419095 DOI: 10.1210/me.2009-0387] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 12/30/2009] [Indexed: 12/13/2022] Open
Abstract
Gastrin is a gastrointestinal peptide hormone, secreted by the gastric G cells and can exist as a fully processed amidated form (G17) or as unprocessed forms. All forms of gastrin possess trophic properties towards the gastrointestinal mucosa. An understanding of the signaling pathways involved is important to design therapeutic approaches to target gastrin-mediated cellular events. The studies described here were designed to identify the signaling pathways by which amidated gastrin (G17) mediates cancer cell migration. These studies indicated a time- and dose-dependent increase in gastric cancer cell migration after G17 stimulation, involving cholecystokinin 2 receptor. G17-induced migration was preceded by activation of MAPK pathways and was antagonized after pretreatment with SP600125, a pharmacological inhibitor of c-Jun-NH(2)-terminal kinase (JNK) pathway. Knockdown of endogenous JNK1 expression via small interference RNA (JNK1-siRNA) inhibited G17-induced phosphorylation of c-Jun and migration, and overexpression of wild-type JNK1 or constitutive active JNK1 promoted G17-induced migration. Studies designed to identify the MAPK kinase kinase member mediating JNK activation indicated the involvement of mixed lineage kinase-3 (MLK3), which was transiently activated upon G17 treatment. Inhibition of MLK3 pathway via a pan-MLK inhibitor or knockdown of MLK3 expression by MLK3-siRNA antagonized G17-induced migration. Incubation with G17 also resulted in an induction of matrix metalloproteinase 7 promoter activity, which is known to mediate migration and invasion pathways in cancer cells. Modulation of MLK3, JNK1, and c-Jun pathways modulated G17-induced matrix metalloproteinase 7 promoter activation. These studies indicate that the MLK3/JNK1 axis mediates G17-induced gastric cancer cell migration, which can be targeted for designing novel therapeutic strategies for treating gastric malignancies.
Collapse
Affiliation(s)
- Prajna Mishra
- Division of Gastroenterology, Hepatology and Nutrition, Loyola University Chicago, 2160 South First Avenue, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
7
|
García-Martín E, Ayuso P, Martínez C, Blanca M, Agúndez JAG. Histamine pharmacogenomics. Pharmacogenomics 2009; 10:867-83. [DOI: 10.2217/pgs.09.26] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic polymorphisms for histamine-metabolizing enzymes are responsible for interindividual variation in histamine metabolism and are associated with diverse diseases. Initial reports on polymorphisms of histamine-related genes including those coding for the enzymes histidine decarboxylase (HDC), diamine oxidase (ABP1) and histamine N-methyltransferase (HNMT), as well as histamine receptor genes, often have pointed to polymorphisms that occur with extremely low frequencies or that could not be verified by later studies. In contrast, common and functionally significant polymorphisms recently described have been omitted in many association studies. In this review we analyze allele frequencies, functional and clinical impact and interethnic variability on histamine-related polymorphisms. The most relevant nonsynonymous polymorphisms for the HDC gene are rs17740607 Met31Thr, rs16963486 Leu553Phe and rs2073440 Asp644Glu. For ABP1 the most relevant polymorphisms are rs10156191 Thr16Met, rs1049742 Ser332Phe, and particularly because of its functional effect, rs1049793 His645Asp. In addition the ABP1 polymorphisms rs45558339 Ile479Met and rs35070995 His659Asn are relevant to Asian and African subjects, respectively. For HNMT the only nonsynonymous polymorphism present with a relevant frequency is rs1801105 Thr105Ile. For HRH1 the polymorphism rs7651620 Glu270Gly is relevant to African subjects only. The HRH2 rs2067474 polymorphism, located in an enhancer element of the gene promoter, is common in all populations. No common nonsynonymous SNPs were observed in the HRH3 gene and two SNPs were observed with a significant frequency in the HRH4 gene: rs11665084 Ala138Val and rs11662595 His206Arg. This review summarizes relevant polymorphisms, discusses controversial findings on association of histamine-related polymorphisms and allergies and other diseases, and identifies topics requiring further investigation.
Collapse
Affiliation(s)
| | - Pedro Ayuso
- University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Carmen Martínez
- University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| | - Miguel Blanca
- Allergy Service, Carlos Haya Hospital, Málaga, Spain
| | - José AG Agúndez
- University of Extremadura, Avda. de Elvas s/n, 06071, Badajoz, Spain
| |
Collapse
|
8
|
Almeida-Vega S, Catlow K, Kenny S, Dimaline R, Varro A. Gastrin activates paracrine networks leading to induction of PAI-2 via MAZ and ASC-1. Am J Physiol Gastrointest Liver Physiol 2009; 296:G414-23. [PMID: 19074642 PMCID: PMC2643906 DOI: 10.1152/ajpgi.90340.2008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastric hormone gastrin regulates the expression of a variety of genes involved in control of acid secretion and also in the growth and organization of the gastric mucosa. One putative target is plasminogen activator inhibitor-2 (PAI-2), which is a component of the urokinase activator system that acts extracellularly to inhibit urokinase plasminogen activator (uPA) and intracellularly to suppress apoptosis. Previous studies have demonstrated that gastrin induces PAI-2 both in gastric epithelial cells expressing the gastrin (CCK-2) receptor and, via activation of paracrine networks, in adjacent cells that do not express the receptor. We have now sought to identify the response element(s) in the PAI-2 promoter targeted by paracrine mediators initiated by gastrin. Mutational analysis identified two putative response elements in the PAI-2 promoter that were downstream of gastrin-activated paracrine signals. One was identified as a putative MAZ site, mutation of which dramatically reduced both basal and gastrin-stimulated responses of the PAI-2 promoter by a mechanism involving PGE(2) and the small GTPase RhoA. Yeast one-hybrid screening identified the other as binding the activating signal cointegrator-1 (ASC-1) complex, which was shown to be the target of IL-8 released by gastrin. RNA interference (RNAi) knockdown of two subunits of the ASC-1 complex (p50 and p65) inhibited induction of PAI-2 expression by gastrin. The data reveal previously unsuspected transcriptional mechanisms activated as a consequence of gastrin-triggered paracrine networks and emphasize the elaborate and complex cellular control mechanisms required for a key component of tissue responses to damage and infection.
Collapse
Affiliation(s)
- Simon Almeida-Vega
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Krista Catlow
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Susan Kenny
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Rod Dimaline
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andrea Varro
- Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
9
|
Ai W, Liu Y, Wang TC. Yin yang 1 (YY1) represses histidine decarboxylase gene expression with SREBP-1a in part through an upstream Sp1 site. Am J Physiol Gastrointest Liver Physiol 2006; 290:G1096-104. [PMID: 16357063 DOI: 10.1152/ajpgi.00199.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Histidine decarboxylase (HDC) is the enzyme that converts histidine to histamine, a bioamine that plays an important role in many physiological aspects including allergic responses, inflammation, neurotransmission, and gastric acid secretion. In previous studies, we demonstrated that Kruppel-like factor 4 represses HDC promoter activity in a gastric cell line through both an upstream Sp1-binding GC box (GGGCGG sequence) and downstream gastrin-responsive elements. In the current study, Yin Yang 1 (YY1), a pleiotropic transcriptional factor, was also shown in cotransfection assays to repress HDC promoter activity through the upstream GC box. DNA affinity purification assay demonstrated that YY1 was pulled down specifically by the upstream GC box. In addition, sterol-responsive element-binding protein 1a (SREBP-1a), a transcriptional factor that binds YY1, represses the HDC promoter. Interestingly, deletion analysis and cotransfection assays indicated that mutation of the upstream GC box or truncation of downstream gastrin-responsive elements in the HDC promoter disrupted the inhibitory effect of YY1 and SREBP-1a in an identical fashion. Furthermore, quantitative real-time PCR analysis indicated that gastrin treatment downregulated SREBP-1a gene expression and reduced the DNA binding activity of SREBP in EMSAs. Taken together, these results suggest that YY1 and SREBP-1a form a complex to inhibit HDC gene expression through both the upstream GC box and downstream gastrin-responsive elements and gastrin-induced activation of HDC gene expression is mediated at least partly through downregulation of transcriptional repressors such as SREBPs.
Collapse
Affiliation(s)
- Wandong Ai
- Division of Digestive and Liver Diseases, Columbia University Medical Center, Irving, New York, NY 10032, USA
| | | | | |
Collapse
|
10
|
Ai W, Takaishi S, Wang TC, Fleming JV. Regulation of l‐Histidine Decarboxylase and Its Role in Carcinogenesis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2006; 81:231-70. [PMID: 16891173 DOI: 10.1016/s0079-6603(06)81006-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Wandong Ai
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, Irving Cancer Research Center, New York, New York 10032, USA
| | | | | | | |
Collapse
|
11
|
Abstract
A number of recent studies have led to a reappraisal of the functional capacities of histamine in immunity and hematopoiesis. This change of perspective was provided by the following findings: (1) the evidence for multiple cellular sources of histamine, differing from mature basophils and mast cells by their ability to newly synthesize and liberate the mediator without prior storage, (2) the discovery of a novel histamine receptor (H4R), preferentially expressed on hematopoietic and immunocompetent cells, (3) the potential intracellular activity of histamine through cytochrome P450 and (4) the demonstration of a histamine-cytokine cross-talk. Indeed, cytokines not only modulate the degranulation process of histamine but also control its neosynthesis by the histamine-forming enzyme, histidine decarboxylase (HDC), at transcriptional and post-transcriptional levels. In turn, histamine intervenes in the intricate cytokine network, regulating cytokine production by immune cells through distinct receptors signaling distinct biological effects. This type of regulation is particularly relevant in the context of TH1/TH2 differentiation, autoimmunity and tumor immunotherapy.
Collapse
Affiliation(s)
- Michel Dy
- CNRS UMR 8147, Paris V University, Hôpital Necker, 161 rue de Sèvres, 75743 Paris Cedex 15, France.
| | | |
Collapse
|
12
|
Dockray G, Dimaline R, Varro A. Gastrin: old hormone, new functions. Pflugers Arch 2004; 449:344-55. [PMID: 15480747 DOI: 10.1007/s00424-004-1347-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 09/08/2004] [Indexed: 10/26/2022]
Abstract
It is exactly a century since the gastric hormone gastrin was first described as a blood-borne regulator of gastric acid secretion. The identities of the main active forms of the hormone (the "classical gastrins") and their cellular and molecular sites of action in regulating acid secretion have all attracted sustained attention. However, recent work on peptides derived from the gastrin precursor that do not stimulate acid secretion ("non-classical gastrins"), together with studies on mice over-expressing the gene, or in which the gastrin gene has been deleted, suggest hitherto unsuspected roles in regulating cell proliferation, migration, and differentiation. Moreover, microarray and proteomic studies have identified previously unsuspected target genes of the classical gastrins. Some of the newer actions have implications for our understanding of the progression to cancer in oesophagus, stomach, pancreas and colon, all of which have recently been linked in one way or another to dysfunctional signalling involving products of the gastrin gene. The present review focuses on recent progress in understanding the biology of both classical and non-classical gastrins.
Collapse
Affiliation(s)
- Graham Dockray
- Physiological Laboratory, University of Liverpool, Liverpool, UK.
| | | | | |
Collapse
|
13
|
Sinclair NF, Ai W, Raychowdhury R, Bi M, Wang TC, Koh TJ, McLaughlin JT. Gastrin regulates the heparin-binding epidermal-like growth factor promoter via a PKC/EGFR-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2004; 286:G992-9. [PMID: 14764442 DOI: 10.1152/ajpgi.00206.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gastrin is a known growth/differentiation factor for the gastric mucosa. Its effects are likely mediated by the induction of heparin-binding epidermal-like growth factor (HB-EGF), a member of the EGF family of growth factors that is expressed by gastric parietal cells. In this study, we investigated the regulation of the HB-EGF promoter by gastrin in a human gastric cancer cell line. Serial human HB-EGF promoter-luciferase reporter deletion constructs and heterologous promoter constructs were transfected into AGS-E cells and stimulated with gastrin (10(-7) M) with or without various signal transduction inhibitors. EMSA were also performed. Gastrin stimulation resulted in a fivefold increase in HB-EGF-luciferase activity. The cis-acting element mediating gastrin responsiveness was mapped to the -69 to -58 region of the HB-EGF promoter. Gastrin stimulation was PKC dependent and at least partially mediated by activation of the EGF receptor.
Collapse
Affiliation(s)
- Natalie F Sinclair
- University of Massachusetts Memorial Medical Center, Division of Digestive Diseases and Nutrition, Worcester, 01655, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Pradeep A, Sharma C, Sathyanarayana P, Albanese C, Fleming JV, Wang TC, Wolfe MM, Baker KM, Pestell RG, Rana B. Gastrin-mediated activation of cyclin D1 transcription involves beta-catenin and CREB pathways in gastric cancer cells. Oncogene 2004; 23:3689-99. [PMID: 15116100 DOI: 10.1038/sj.onc.1207454] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gastrin and its precursors promote proliferation in different gastrointestinal cells. Since mature, amidated gastrin (G-17) can induce cyclin D1, we determined whether G-17-mediated induction of cyclin D1 transcription involved Wnt signaling and CRE-binding protein (CREB) pathways. Our studies indicate that G-17 induces protein, mRNA expression and transcription of the G(1)-specific marker cyclin D1, in the gastric adenocarcinoma cell line AGSE (expressing the gastrin/cholecystokinin B receptor). This was associated with an increase in steady-state levels of total and nonphospho beta-catenin and its nuclear translocation, indicating the activation of the Wnt-signaling pathway. In addition, G-17-mediated increase in cyclin D1 transcription was significantly attenuated by axin or dominant-negative (dn) T-cell factor 4(TCF4), suggesting crosstalk of G-17 with the Wnt-signaling pathway. Mutational analysis indicated that this effect was mediated through the cyclic AMP response element (CRE) (predominantly) and the TCF sites in the cyclin D1 promoter, which was also inhibited by dnCREB. Furthermore, G-17 stimulation resulted in increased CRE-responsive reporter activity and CREB phosphorylation, indicating an activation of CREB. Chromatin immunoprecipitation studies revealed a G-17-mediated increase in the interaction of beta-catenin with cyclin D1 CRE, which was attenuated by dnTCF4 and dnCREB. These results indicate that G-17 induces cyclin D1 transcription, via the activation of beta-catenin and CREB pathways.
Collapse
Affiliation(s)
- Anamika Pradeep
- Division of Molecular Cardiology, The Texas A and M University System Health Science Center, College of Medicine, Temple, TX 76504, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
McLaughlin JT, Ai W, Sinclair NF, Colucci R, Raychowdhury R, Koh TJ, Wang TC. PACAP and gastrin regulate the histidine decarboxylase promoter via distinct mechanisms. Am J Physiol Gastrointest Liver Physiol 2004; 286:G51-9. [PMID: 12816760 DOI: 10.1152/ajpgi.00169.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The enterochromaffin-like (ECL) cell controls gastric acid secretion via histamine, generated by l-histidine decarboxylase (HDC). HDC expression is regulated by gastrin. However, gastrin is not alone in controlling ECL cell function. For example, the neural peptide pituitary adenylate cyclase-activating polypeptide (PACAP) also increases ECL cell proliferation. To investigate a potential role of PACAP in regulating HDC expression, we generated a series of HDC promoter-luciferase reporter constructs and transiently transfected them into PC12 cells (stably expressing the gastrin-CCK-2 receptor). We found that PACAP regulates HDC promoter activity. This is temporally biphasic, involving both adenyl cyclase and phospholipase C-dependent pathways. Deletional analysis, block mutation, and EMSA demonstrated a PACAP-response element at -177 to -170, wholly necessary for the effects of PACAP and discrete from known gastrin-responsive elements. Discrete neural and endocrine pathways regulate ECL cells through different patterns of postreceptor signaling and promoter activation, which may be appropriate to their functions in vivo.
Collapse
Affiliation(s)
- John T McLaughlin
- Gastrointestinal Sciences, University of Manchester, Hope Hospital, Salford M6 H8D United Kingdom
| | | | | | | | | | | | | |
Collapse
|
16
|
Ai W, Liu Y, Langlois M, Wang TC. Kruppel-like factor 4 (KLF4) represses histidine decarboxylase gene expression through an upstream Sp1 site and downstream gastrin responsive elements. J Biol Chem 2003; 279:8684-93. [PMID: 14670968 DOI: 10.1074/jbc.m308278200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histidine decarboxylase (HDC) is the enzyme that catalyzes the conversion of histidine to histamine, a bioamine that plays an important role in allergic responses, inflammation, neurotransmission, and gastric acid secretion. Previously, we demonstrated that gastrin activates HDC promoter activity in a gastric cancer (AGS-E) cell line through three overlapping downstream promoter elements. In the current study, we used the yeast one-hybrid strategy to identify nuclear factors that bind to these three elements. Among eight positives from the one-hybrid screen, we identified Kruppel-like factor 4 (KLF4) (previously known as gut-enriched Kruppel-like factor (GKLF)) as one factor that binds to the gastrin responsive elements in the HDC promoter. Electrophoretic mobility shift assays confirmed that KLF4 is able to bind all three gastrin responsive elements. In addition, transient cotransfection experiments showed that overexpression of KLF4 dose dependently and specifically inhibited HDC promoter activity. Regulation of HDC transcription by KLF4 was confirmed by changes in the endogenous HDC messenger RNA by KLF4 small interfering RNA and KLF4 overexpression. We further showed that KLF4 inhibits HDC promoter activity by competing with Sp1 at the upstream GC box and also independently by binding the three downstream gastrin responsive elements. Taken together, these results indicate that KLF4 can act to repress HDC gene expression by Sp1-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Wandong Ai
- Division of Gastroenterology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | |
Collapse
|