1
|
Maeda N, Tsuchida J, Nishimune Y, Tanaka H. Analysis of Ser/Thr Kinase HASPIN-Interacting Proteins in the Spermatids. Int J Mol Sci 2022; 23:ijms23169060. [PMID: 36012324 PMCID: PMC9409403 DOI: 10.3390/ijms23169060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
HASPIN is predominantly expressed in spermatids, and plays an important role in cell division in somatic and meiotic cells through histone H3 phosphorylation. The literature published to date has suggested that HASPIN may play multiple roles in cells. Here, 10 gene products from the mouse testis cDNA library that interact with HASPIN were isolated using the two-hybrid system. Among them, CENPJ/CPAP, KPNA6/importin alpha 6, and C1QBP/HABP1 were analyzed in detail for their interactions with HASPIN, with HASPIN phosphorylated C1QBP as the substrate. The results indicated that HASPIN is involved in spermatogenesis through the phosphorylation of C1QBP in spermatids, and also may be involved in the formation of centrosomes.
Collapse
Affiliation(s)
- Naoko Maeda
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Junji Tsuchida
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yoshitake Nishimune
- Department of Science for Laboratory Animal Experimentation, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Hiromitsu Tanaka
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Nagasaki, Japan
- Correspondence: ; Tel./Fax: +81-956-20-5651
| |
Collapse
|
2
|
Egusquiza-Alvarez CA, Robles-Flores M. An approach to p32/gC1qR/HABP1: a multifunctional protein with an essential role in cancer. J Cancer Res Clin Oncol 2022; 148:1831-1854. [PMID: 35441886 DOI: 10.1007/s00432-022-04001-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022]
Abstract
P32/gC1qR/HABP1 is a doughnut-shaped acidic protein, highly conserved in eukaryote evolution and ubiquitous in the organism. Although its canonical subcellular localization is the mitochondria, p32 can also be found in the cytosol, nucleus, cytoplasmic membrane, and it can be secreted. Therefore, it is considered a multicompartmental protein. P32 can interact with many physiologically divergent ligands in each subcellular location and modulate their functions. The main ligands are C1q, hyaluronic acid, calreticulin, CD44, integrins, PKC, splicing factor ASF/SF2, and several microbial proteins. Among the functions in which p32 participates are mitochondrial metabolism and dynamics, apoptosis, splicing, immune response, inflammation, and modulates several cell signaling pathways. Notably, p32 is overexpressed in a significant number of epithelial tumors, where its expression level negatively correlates with patient survival. Several studies of gain and/or loss of function in cancer cells have demonstrated that p32 is a promoter of malignant hallmarks such as proliferation, cell survival, chemoresistance, angiogenesis, immunoregulation, migration, invasion, and metastasis. All of this strongly suggests that p32 is a potential diagnostic molecule and therapeutic target in cancer. Indeed, preclinical advances have been made in developing therapeutic strategies using p32 as a target. They include tumor homing peptides, monoclonal antibodies, an intracellular inhibitor, a p32 peptide vaccine, and p32 CAR T cells. These advances are promising and will allow soon to include p32 as part of targeted cancer therapies.
Collapse
Affiliation(s)
| | - Martha Robles-Flores
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
3
|
Therapeutic Effects of Bee Bread on Obesity-Induced Testicular-Derived Oxidative Stress, Inflammation, and Apoptosis in High-Fat Diet Obese Rat Model. Antioxidants (Basel) 2022; 11:antiox11020255. [PMID: 35204140 PMCID: PMC8868291 DOI: 10.3390/antiox11020255] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a debilitating disorder with a variety of problems including oxidative stress, inflammation, and apoptosis. The aim of our study was to investigate the therapeutic role of bee bread on oxidative stress, apoptosis, and inflammation in the testis of obese rats. Thirty-two adult male Sprague Dawley rats, with weights between 230–300 g, were distributed into four groups (n = 8/group), namely normal control (C), obese (Ob), obese + BB or obese + OR [high-fat diet (HFD) for 6 weeks then HFD plus bee bread or orlistat for another 6 weeks] groups. Bee bread (0.5 g/kg) or orlistat (10 mg/kg/day) was diluted with distilled water and administered daily for 6 weeks by oral gavage. There were significant decreases in the activities of antioxidant enzymes [glutathione-S-transferase (GST), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione reductase (GR)], glutathione (GSH)] and total antioxidant capacity (TAC) levels and mRNA expressions of nuclear factor erythroid 2–related factor 2 (Nrf2), superoxide dismutase (Sod), catalase (Cat) and glutathione peroxidase (Gpx) in the obese group relative to the control group. Meanwhile, the mRNA levels of pro-inflammatory markers, namely: inducible nitric oxide synthase (Inos), nuclear factor kappa B (Nf-κβ), tumour necrotic factor α (Tnf-α) and interleukin 1β (Il-1β) were significantly increased while interleukin (Il-10) was decreased in the obese group relative to the control group. Further, proliferating cell nuclear antigen (PCNA) immunoexpressions decreased while cleaved caspase-3 immunohistochemical staining increased significantly in the obese group, in addition to increases in the mRNA levels of p53, Bax, Caspases-8, 9 and 3, relative to the control group. Treatment with bee bread showed increases in antioxidant enzymes and PCNA immunoexpression, as well as decreases in inflammation and apoptosis markers in the testes. This study has shown that bee bread has therapeutic effects against oxidative stress, inflammation, apoptosis in the testis of HFD-induced obese male rats, thereby suggesting its role as a natural supplement capable of treating obesity-induced male reproductive impairment.
Collapse
|
4
|
Hosszu KK, Valentino A, Peerschke EI, Ghebrehiwet B. SLE: Novel Postulates for Therapeutic Options. Front Immunol 2020; 11:583853. [PMID: 33117397 PMCID: PMC7575694 DOI: 10.3389/fimmu.2020.583853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Genetic deficiency in C1q is a strong susceptibility factor for systemic lupus erythematosus (SLE). There are two major hypotheses that potentially explain the role of C1q in SLE. The first postulates that C1q deficiency abrogates apoptotic cell clearance, leading to persistently high loads of potentially immunogenic self-antigens that trigger autoimmune responses. While C1q undoubtedly plays an important role in apoptotic clearance, an essential biological process such as removal of self- waste is so critical for host survival that multiple ligand-receptor combinations do fortunately exist to ensure that proper disposal of apoptotic debris is accomplished even in the absence of C1q. The second hypothesis is based on the observation that locally synthesized C1q plays a critical role in regulating the earliest stages of monocyte to dendritic cell (DC) differentiation and function. Indeed, circulating C1q has been shown to keep monocytes in a pre-dendritic state by silencing key molecular players and ensuring that unwarranted DC-driven immune responses do not occur. Monocytes are also able to display macromolecular C1 on their surface, representing a novel mechanism for the recognition of circulating "danger." Translation of this danger signal in turn, provides the requisite "license" to trigger a differentiation pathway that leads to adaptive immune response. Based on this evidence, the second hypothesis proposes that deficiency in C1q dysregulates monocyte-to-DC differentiation and causes inefficient or defective maintenance of self-tolerance. The fact that C1q receptors (cC1qR and gC1qR) are also expressed on the surface of both monocytes and DCs, suggests that C1q/C1qR may regulate DC differentiation and function through specific cell-signaling pathways. While their primary ligand is C1q, C1qRs can also independently recognize a vast array of plasma proteins as well as pathogen-associated molecular ligands, indicating that these molecules may collaborate in antigen recognition and processing, and thus regulate DC-differentiation. This review will therefore focus on the role of C1q and C1qRs in SLE and explore the gC1qR/C1q axis as a potential target for therapy.
Collapse
Affiliation(s)
- Kinga K Hosszu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alisa Valentino
- Department of Lab Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ellinor I Peerschke
- Department of Lab Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Berhane Ghebrehiwet
- The Department of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
5
|
Vikramdeo KS, Saha P, Dutta S, Kumar N, Roy Chowdhury A, Kumar S, Tyagi RK, Ghosh I, Datta K. Hyaluronan-binding protein 1 (HABP1) overexpression triggers induction of senescence in fibroblasts cells. Cell Biol Int 2020; 44:1312-1330. [PMID: 32068317 DOI: 10.1002/cbin.11326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/16/2020] [Indexed: 01/01/2023]
Abstract
Hyaluronan-binding protein 1 (HABP1), a multi-compartmental, multi-functional protein has a wide range of functions, which can be attributed to its ability to associate with a variety of cellular ligands. Earlier we have reported that HABP1 overexpression in rat normal fibroblasts (F-HABP07) shows chronic generation of reactive oxygen species (ROS), induction of autophagy, and apoptosis. However, a significant proportion of cells remained viable after the majority went through apoptosis from 60 to 72 h. In this study, an attempt has been made to delineate the cellular events in the declined population of surviving cells. It has been elucidated here that, these cells at later time points of growth, that is, 72 and 84 h, not only appeared to shrink but also are devoid of autophagic vacuoles and displayed polyploidy. F-HABP07 cells exhibited an altered cytoskeletal structure from their parental cell line F111, assumed to be caused upon inhibition of actin polymerization and decrease in IQ motif-containing GTPase activating protein 1 (IQGAP1), a key protein associated with maintenance of cytoskeletal integrity. Enhanced expression and nuclear localization of AKT observed in F-HABP07 cells appears to be contributing toward the maintenance of high ROS levels in these cells and also potentially modulating the IQGAP1 activity. These observations, in fact have been considered to result in sustained DNA damage, which then leads to increased expression of p53 and activation of p21 and carry out the cellular events responsible for senescence. Subsequent assessment of the presence of positive β-gal staining and enhanced expression of p16INK4a in F-HABP07, confirmed that HABP1 overexpressing fibroblasts undergo senescence.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,Molecular Endocrinology Laboratory, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Shubhra Dutta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Naveen Kumar
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anindya Roy Chowdhury
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir Kumar
- Molecular Endocrinology Laboratory, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh Kumar Tyagi
- Molecular Endocrinology Laboratory, Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilora Ghosh
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
6
|
Hillman GA, Henry MF. The yeast protein Mam33 functions in the assembly of the mitochondrial ribosome. J Biol Chem 2019; 294:9813-9829. [PMID: 31053642 DOI: 10.1074/jbc.ra119.008476] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. Although remarkable progress has been made toward understanding the structure of mitoribosomes, the pathways and factors that facilitate their biogenesis remain largely unknown. The long unstructured domains of unassembled ribosomal proteins are highly prone to misfolding and often require dedicated chaperones to prevent aggregation. To date, chaperones that ensure safe delivery to the assembling ribosome have not been identified in the mitochondrion. In this study, a respiratory synthetic lethality screen revealed a role for an evolutionarily conserved mitochondrial matrix protein called Mam33 in Saccharomyces cerevisiae mitoribosome biogenesis. We found that the absence of Mam33 results in misassembled, aggregated ribosomes and a respiratory lethal phenotype in combination with other ribosome-assembly mutants. Using sucrose gradient sedimentation, native affinity purifications, in vitro binding assays, and SILAC-based quantitative proteomics, we found that Mam33 does not associate with the mature mitoribosome, but directly binds a subset of unassembled large subunit proteins. Based on these data, we propose that Mam33 binds specific mitoribosomal proteins to ensure proper assembly.
Collapse
Affiliation(s)
- Gabrielle A Hillman
- From the Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084 and.,the Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey 08084
| | - Michael F Henry
- From the Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, New Jersey 08084 and .,the Graduate School of Biomedical Sciences, Rowan University, Stratford, New Jersey 08084
| |
Collapse
|
7
|
Barna J, Dimén D, Puska G, Kovács D, Csikós V, Oláh S, Udvari EB, Pál G, Dobolyi Á. Complement component 1q subcomponent binding protein in the brain of the rat. Sci Rep 2019; 9:4597. [PMID: 30872665 PMCID: PMC6418184 DOI: 10.1038/s41598-019-40788-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/19/2019] [Indexed: 12/17/2022] Open
Abstract
Complement component 1q subcomponent binding protein (C1qbp) is a multifunctional protein involved in immune response, energy homeostasis of cells as a plasma membrane receptor, and a nuclear, cytoplasmic or mitochondrial protein. Recent reports suggested its neuronal function, too, possibly in axon maintenance, synaptic function, and neuroplasticity. Therefore, we addressed to identify C1qbp in the rat brain using in situ hybridization histochemistry and immunolabelling at light and electron microscopic level. C1qbp has a topographical distribution in the brain established by the same pattern of C1qbp mRNA-expressing and protein-containing neurons with the highest abundance in the cerebral cortex, anterodorsal thalamic nucleus, hypothalamic paraventricular (PVN) and arcuate nuclei, spinal trigeminal nucleus. Double labelling of C1qbp with the neuronal marker NeuN, with the astrocyte marker S100, and the microglia marker Iba1 demonstrated the presence of C1qbp in neurons but not in glial cells in the normal brain, while C1qbp appeared in microglia following their activation induced by focal ischemic lesion. Only restricted neurons expressed C1qbp, for example, in the PVN, magnocellular neurons selectively contained C1qbp. Further double labelling by using the mitochondria marker Idh3a antibody suggested the mitochondrial localization of C1qbp in the brain, confirmed by correlated light and electron microscopy at 3 different brain regions. Post-embedding immunoelectron microscopy also suggested uneven C1qbp content of mitochondria in different brain areas but also heterogeneity within single neurons. These data suggest a specific function of C1qbp in the brain related to mitochondria, such as the regulation of local energy supply in neuronal cells.
Collapse
Affiliation(s)
- János Barna
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Diána Dimén
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Gina Puska
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Dávid Kovács
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Edina B Udvari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Pál
- Hungarian Defence Forces Military Hospital, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
8
|
Hong X, Yu Z, Chen Z, Jiang H, Niu Y, Huang Z. High molecular weight fibroblast growth factor 2 induces apoptosis by interacting with complement component 1 Q subcomponent-binding protein in vitro. J Cell Biochem 2018; 119:8807-8817. [PMID: 30159917 PMCID: PMC6220755 DOI: 10.1002/jcb.27131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/04/2018] [Indexed: 02/05/2023]
Abstract
Fibroblast growth factor 2 (FGF2) is a multifunctional cell growth factor that regulates cell proliferation, differentiation, adhesion, migration, and apoptosis. FGF2 has multiple isoforms, including an 18-kDa low molecular weight isoform (lo-FGF2) and 22-, 23-, 24-, and 34-kDa high molecular weight isoforms (hi-FGF2). Hi-FGF2 overexpression induces chromatin compaction, which requires the mitochondria and leads to apoptosis. Complement component 1 Q subcomponent-binding protein (C1QBP) plays an important role in mitochondria-dependent apoptosis by regulating the opening of the mitochondrial permeability transition pore. However, the interaction between C1QBP and hi-FGF2 and its role in hi-FGF2-mediated apoptosis remain unclear. Here, we found that hi-FGF2 overexpression induced depolarization of the mitochondrial membrane, cytochrome c release into the cytosol, and a considerable increase in C1QBP messenger RNA and protein expression. Furthermore, coimmunoprecipitation results showed that the mitochondrial protein, C1QBP, interacts with hi-FGF2. C1QBP knockdown using small interfering RNA significantly decreased the localization of hi-FGF2 to the mitochondria and increased the rate of apoptosis. Our results highlight a novel mechanism underlying hi-FGF2-induced, mitochondria-driven cell death involving the direct interaction between hi-FGF2 and C1QBP and the upregulation of C1QBP expression.
Collapse
Affiliation(s)
- Xiaobing Hong
- The Second Affiliated Hospital, Shantou University Medical CollegeShantouChina
| | - Zelin Yu
- The Second Affiliated Hospital, Shantou University Medical CollegeShantouChina
| | - Zhonglin Chen
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Hongyan Jiang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Yongdong Niu
- Department of PharmacologyShantou University Medical CollegeShantouChina
| | - Zhanqin Huang
- Department of PharmacologyShantou University Medical CollegeShantouChina
| |
Collapse
|
9
|
Ghose S, Biswas S, Datta K, Tyagi RK. Dynamic Hyaluronan drives liver endothelial cells towards angiogenesis. BMC Cancer 2018; 18:648. [PMID: 29890947 PMCID: PMC5996548 DOI: 10.1186/s12885-018-4532-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 05/18/2018] [Indexed: 12/19/2022] Open
Abstract
Background Angiogenesis, the formation of new blood vessels from pre-existing vasculature is essential in a number of physiological processes such as embryonic development, wound healing as well as pathological conditions like, tumor growth and metastasis. Hyaluronic acid (HA), a high molecular weight polysaccharide, major component of extracellular matrix is known to associate with malignant phenotypes in melanomas and various other carcinomas. Hyaluronic acid binding protein 1 (HABP1) has been previously reported to trigger enhanced cellular proliferation in human liver cancer cells upon its over-expression. In the present study, we have identified the HA mediated cellular behaviour of liver endothelial cells during angiogenesis. Methods Endothelial cells have been isolated from perfused liver of mice. Cell proliferation was studied using microwell plates with tetrazole dye. Cell migration was evaluated by measuring endothelial monolayer wound repair as well as through transwell migration assay. Alterations in proteins and mRNA expression were estimated by immunobloting and quantitative real time PCR using Applied Biosystems. The paraformaldehyde fixed endothelial cells were used for immuno- florescence staining and F-actin detection with conjugated antibodies. The images were captured by using Olympus florescence microscope (IX71). Results We observed that administration of HA enhanced cell proliferation, adhesion, tubular sprout formation as well as migration of liver endothelial cells (ECs). The effect of HA in the rearrangement of the actins confirmed HA -mediated cytoskeleton re-organization and cell migration. Further, we confirmed enhanced expression of angiogenic factors like VEGF-A and VEGFR1 in endothelial cells upon HA treatment. HA supplementation led to elevated expression of HABP1 in murine endothelial cells. It was interesting to note that, although protein levels of β- catenin remained unaltered, but translocation of this protein from membrane to nucleus was observed upon HA treatment, suggesting its role not only in vessel formation but also its involvement in angiogenesis signalling. Conclusions The elucidation of molecular mechanism (s) responsible for HA mediated regulation of endothelial cells and angiogenesis contributes not only to our understanding the mechanism of disease progression but also offer new avenues for therapeutic intervention. Electronic supplementary material The online version of this article (10.1186/s12885-018-4532-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sampa Ghose
- Department of Medical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India. .,Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| | - Subhrajit Biswas
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh (AUUP), Sector 125, NOIDA, Uttar Pradesh, 201313, India.
| | - Kasturi Datta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
10
|
Saha P, Datta K. Multi-functional, multicompartmental hyaluronan-binding protein 1 (HABP1/p32/gC1qR): implication in cancer progression and metastasis. Oncotarget 2018. [PMID: 29535843 PMCID: PMC5828189 DOI: 10.18632/oncotarget.24082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cancer is a complex, multi-factorial, multi-stage disease and a global threat to human health. Early detection of nature and stage of cancer is highly crucial for disease management. Recent studies have proved beyond any doubt about the involvement of the ubiquitous, myriad ligand binding, multi-functional human protein, hyaluronan-binding protein 1 (HABP1), which is identical to the splicing factor associated protein (p32) and the receptor of the globular head of the complement component (gC1qR) in tumorigenesis and cancer metastasis. Simultaneously three laboratories have discovered and named this protein separately as mentioned. Subsequently, different scientists have worked on the distinct functions in cellular processes ranging from immunological response, splicing mechanism, sperm-oocyte interactions, cell cycle regulation to cancer and have concentrated in their respective area of interest, referring it as either p32 or gC1qR or HABP1. HABP1 overexpression has been reported in almost all the tissue-specific forms of cancer and correlated with stage and poor prognosis in patients. In order to tackle this deadly disease and for therapeutic intervention, it is imperative to focus on all the regulatory aspects of this protein. Hence, this work is an attempt to combine an assortment of information on this protein to have an overview, which suggests its use as a diagnostic marker for cancer. The knowledge might assist in the designing of drugs for therapeutic intervention of HABP1/p32/gC1qR regulated specific ligand mediated pathways in cancer.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
11
|
Saha P, Kaul R, Datta K. Human gene encoding hyaluronan binding protein 1 (HABP1/p32/gC1qR): involvement in signaling cascade. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0207-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
12
|
Kim K, Kim MJ, Kim KH, Ahn SA, Kim JH, Cho JY, Yeo SG. C1QBP is upregulated in colon cancer and binds to apolipoprotein A-I. Exp Ther Med 2017; 13:2493-2500. [PMID: 28565870 DOI: 10.3892/etm.2017.4249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the expression of complement component 1, q subcomponent-binding protein (C1QBP) in colon cancer cells, and identify proteins that interact with C1QBP. Total proteins were extracted from both the tumor and normal tissues of 22 patients with colon cancer and analyzed using liquid chromatography-mass spectrometry (LC-MS) to identify proteins that were differentially-expressed in tumor tissues. C1QBP overexpression was induced in 293T cells using a pFLAG-CMV2 expression vector. Overexpressed FLAG-tagged C1QBP protein was then immunoprecipitated using anti-FLAG antibodies and C1QBP-interacting proteins were screened using LC-MS analysis of the immunoprecipitates. The C1QBP-interacting proteins were confirmed using reverse-immunoprecipitation and the differential expression of C1QBP in tissues and cell lines was confirmed using western blot analysis. LC-MS analysis revealed that C1QBP exhibited a typical tumor expression pattern. Two immune-reactive signals (33 and 14 kDa) were detected in normal and tumor tissues from 19 patients. Furthermore, 14 kDa C1QBP protein was upregulated in the tumors of 15 patients. In total, 39 proteins were identified as candidate C1QBP-interacting proteins, and an interaction between C1QBP and apolipoprotein A-I was confirmed. The present study indicates that C1QBP is involved in colon cancer carcinogenesis, and that the mechanisms underlying the established anti-tumor properties of apolipoprotein A-I may include interacting with and inhibiting the activity of C1QBP.
Collapse
Affiliation(s)
- Kun Kim
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea.,Laboratory of Cell Biology, Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Min-Jeong Kim
- Department of Radiology, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi 14068, Republic of Korea
| | - Kyung-Hee Kim
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Sun-A Ahn
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Jong Heon Kim
- Cancer Cell and Molecular Biology Branch, Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Republic of Korea
| | - Seung-Gu Yeo
- Department of Radiation Oncology, Soonchunhyang University College of Medicine, Soonchunhyang University Hospital, Cheonan, South Chungcheong 31151, Republic of Korea
| |
Collapse
|
13
|
Hyaluronic acid binding protein 1 overexpression is an indicator for disease-free survival in cervical cancer. Int J Clin Oncol 2016; 22:347-352. [PMID: 28039537 DOI: 10.1007/s10147-016-1077-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/11/2016] [Indexed: 10/20/2022]
Abstract
BACKGOUND Hyaluronic acid binding protein 1 (HABP1) is reported to overexpress in various cancer tissues and may therefore contribute to oncogenesis. However, the status of HABP1 expression in cervical cancer (CC) remains unknown. The aim of this study was to investigate the role of HABP1 and its relationship with clinical characteristics in patients with CC. METHODS Immunohistochemistry was used to explore the expression of HABP1 in 30 cervical intra-epithelial neoplasia (CIN) and 118 CC specimens compared to 10 normal cervical specimens. RESULTS HABP1 expression was found to be positively higher in CC than in CIN2/3 cases (P = 0.020). Moreover, clinicopathological analysis showed that HABP1 overexpression was associated with advanced FIGO stage (P = 0.001), poor histologic grade (P = 0.013), large tumor size (P = 0.025), LVSI (P = 0.024), deep stromal infiltration (P = 0.001), and lymph node metastasis (P = 0.023). Multivariate analysis suggested that HABP1 overexpression was an independent factor for disease-free survival (DFS) (hazard ratio 3.082; 95% confidence interval 1.372-7.501; P = 0.007). CONCLUSIONS The present data provide evidence that HABP1 overexpression predicts CC with high-risk factors and may therefore serve as a new molecular marker for the prediction of DFS in these patients.
Collapse
|
14
|
Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment. Biomaterials 2016; 108:44-56. [PMID: 27619239 DOI: 10.1016/j.biomaterials.2016.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/24/2016] [Accepted: 09/02/2016] [Indexed: 12/17/2022]
Abstract
Finding effective cures against aggressive malignancy remains a major challenge in cancer chemotherapy. Here, we report a "tadpole"-like peptide by covalently conjugating the alanine-alanine-asparagine "tail" residual to the cyclic tumor homing peptide iRGD (CCRGDKGPDC) to afford nRGD, which significantly enhanced tumoricidal effects of doxorubicin, by either co-administered as a physical mixture or as a targeting ligand covalently conjugated to the liposomal carrier. Given twice at an equivalent dose of 5 mg/kg, doxorubicin loaded liposomes modified with nRGD (nRGD-Lipo-Dox) showed excellent antitumor efficacy in 4T1 breast cancer mice, of which 44.4% remained alive for over 90 days without recurrence during the period of investigation. The dramatic improvement in antitumor efficacy was attributed to nRGD-Lipo-Dox which appeared to specifically interact with tumor vascular endothelial cells to achieve efficient tumor penetration, and modulate tumor microenvironment with depletion of tumor associated macrophages.
Collapse
|
15
|
Maurya N, Agarwal NR, Ghosh I. Low-dose rotenone exposure induces early senescence leading to late apoptotic signaling cascade in human trabecular meshwork (HTM) cell line: An in vitro glaucoma model. Cell Biol Int 2015; 40:107-20. [PMID: 26524696 DOI: 10.1002/cbin.10561] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/26/2015] [Indexed: 12/15/2022]
Abstract
This study aimed to determine whether the prolonged exposure of the human trabecular meshwork (HTM) cell line to a low dose (1 nM) of rotenone could simulate a glaucomatous-like condition and serve as a cellular model for its etiological analysis. Under 1-nM rotenone exposure for 24-72 h, HTM cells showed a decrease in cell viability as assessed by an MTT assay and showed mitochondrial dysfunction as assessed by measuring H2 DCFDA fluorescence; a decrease in ATP level was also observed. Flow cytometric analysis showed an increase in cellular size and granularity. Elevated AF showed initial senescence. LF staining with SBB and its spectrofluorometric quantification confirmed growth arrest. An accumulation of cytoplasmic myocilin, IL-6, and MMP-9 at 72 h of exposure supported glaucomatous induction. TEM revealed morphological changes in mitochondria and nuclei of treated cells. Signaling cascades were assessed by immunoblotting and immunocytochemical analysis. This study showed a shift in status of the cells from initial senescence to induction of apoptosis in the HTM cell line due to continuous low-dose exposure to rotenone; however, at 72 h, both senescence and apoptotic features are apparent in these cells. This is the first report that reveals the potential of a prolonged low-dose exposure of rotenone to simulate senescence in the HTM cell line to cause a glaucomatous condition.
Collapse
Affiliation(s)
- Nancy Maurya
- Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Nupur Rani Agarwal
- Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
16
|
Agnihotri SK, Agrawal U, Ghosh I. Brain most susceptible to cadmium induced oxidative stress in mice. J Trace Elem Med Biol 2015; 30:184-93. [PMID: 25617233 DOI: 10.1016/j.jtemb.2014.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/19/2014] [Accepted: 12/28/2014] [Indexed: 11/28/2022]
Abstract
Accumulated evidence over the years indicate that cadmium (Cd) may be a possible etiological factor for neurodegenerative diseases. This may possibly be linked to excessive generation of free radicals that damages the organs in the body depending on their defence mechanism. Since Cd is a toxic agent that affect several cell types, the aim of this study was to shed light on the effect of Cd and its consequences on different organs of the mice body. To test the hypothesis of concentration dependent Reactive Oxygen Species (ROS) generation and DNA damage, observations were done in the serum of 4-5 weeks old male Swiss albino mice by treating with cadmium chloride (CdCl2) in drinking water for 30 days. The expression of Bcl-2-associated X protein (Bax) an apoptotic marker protein was two times higher in brain compared to liver at an exposure level of 0.5mgL(-1) CdCl2. Furthermore the correlation and linkage data analysis of antioxidant defence system revealed a rapid alteration in the brain, compared to any other organs considered in this study. We report that even at low dose of Cd, it impaired the brain due to lipid peroxidase sensitivity which favoured the Cd-induced oxidative injury in the brain.
Collapse
Affiliation(s)
- Sandeep K Agnihotri
- Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Usha Agrawal
- National Institute of Pathology, Safdarjang Hospital Campus, Post Box No 4909, New Delhi 110029, India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology, Laboratory # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
17
|
Elevated expression of HABP1 is a novel prognostic indicator in triple-negative breast cancers. Tumour Biol 2015; 36:4793-9. [DOI: 10.1007/s13277-015-3131-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022] Open
|
18
|
Ye T, Huang X, Wang XW, Shi YR, Hui KM, Ren Q. Characterization of a gC1qR from the giant freshwater prawn, Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2015; 43:200-208. [PMID: 25555810 DOI: 10.1016/j.fsi.2014.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
gC1qR, as a multicompartmental and a multifunctional protein, plays an important role in innate immunity. In this study, a gC1qR homolog (MrgC1qR) in the giant freshwater prawn, Macrobrachium rosenbergii was identified. MrgC1qR, a 258-amino-acid polypeptide, shares high identities with gC1qR from other species. MrgC1qR gene was expressed in different tissues and was highest expressed in the hepatopancreas. In addition, the MrgC1qR transcript was significantly enhanced after 6 h of white spot syndrome virus (WSSV) infection or post 2 h, 24 h of Vibrio anguillarum challenge compared to appropriate controls. Moreover, recombinant MrgC1qR (rMrgC1qR) had bacterial binding activity, the result also revealed that rMrgC1qR could bind pathogen-associated molecular patterns (PAMPs) such as LPS or PGN, suggesting that MrgC1qRmight function as a pathogen-recognition receptor (PRR). Furthermore, glutathione S-transferase (GST) pull-down assays showed that rMrgC1qR with GST-tag could bind to rMrFicolin1 or rMrFicolin2 with His-tag. Altogether, these results may demonstrate a role for MrgC1qR in innate immunity in the giant freshwater prawns.
Collapse
Affiliation(s)
- Ting Ye
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xin Huang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Xian-Wei Wang
- MOE Key Laboratory of Plant Cell Engineering and Germplasm Innovation/Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Ru Shi
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| |
Collapse
|
19
|
Overexpression of HABP1 correlated with clinicopathological characteristics and unfavorable prognosis in endometrial cancer. Tumour Biol 2014; 36:1299-306. [PMID: 25355598 DOI: 10.1007/s13277-014-2761-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/22/2014] [Indexed: 12/28/2022] Open
Abstract
Hyaluronic acid binding protein 1 (HABP1/gC1qR/p32), a ubiquitous multifunctional protein belonging to the hyaladherin family, has been implicated in the tumorigenesis, progression, invasion, and metastasis of several malignant tumors. However, the role of HABP1 in endometrial cancer has not yet been studied. This study aimed to detect the expression of HABP1 in endometrial cancer and explore its role in the clinicopathological features and prognosis of endometrial cancer. We analyzed HABP1 expression by immunohistochemistry in 188 endometrial cancer specimens, 43 benign endometrial lesion specimens, and 41 normal endometrium specimens and assessed using Western blot analysis. Statistical analysis showed that HABP1 was overexpressed in endometrial cancer and benign endometrial lesion compared with normal endometrium (P < 0.001 and P = 0.012, respectively). In addition, HABP1 expression was significantly higher in endometrial cancer than in benign endometrial lesion (P < 0.001). High HABP1 expression was significantly associated with advanced International Federation of Gynecology and Obstetrics stage (P = 0.019), higher histologic grade (P < 0.001), deep myometrial invasion (P = 0.013), lymphovascular space invasion (P = 0.010), lymph node metastasis (P = 0.015), and recurrence (P = 0.009). Patients with high HABP1 expression had a poorer overall survival (OS) and disease-free survival (DFS) than patients with low HABP1 expression (P = 0.015 and P = 0.012, respectively). Multivariate Cox regression analysis showed that the HABP1 expression status was an independent prognostic factor of OS and DFS (P = 0.025 and P = 0.022, respectively) in patients with endometrial cancer. Our results indicated that overexpression of HABP1 may serve as a new biomarker to predict the progression and prognosis of endometrial cancer.
Collapse
|
20
|
Alshatwi AA, Hasan TN, Alqahtani AM, Syed NA, Shafi G, Al-Assaf AH, Al-Khalifa AS. Delineating the anti-cytotoxic and anti-genotoxic potentials of catechin hydrate against cadmium toxicity in human peripheral blood lymphocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:653-662. [PMID: 25218093 DOI: 10.1016/j.etap.2014.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/12/2014] [Accepted: 07/19/2014] [Indexed: 06/03/2023]
Abstract
Catechins (flavan-3-ol) are a type of natural phenol and well-studied antioxidants. Catechin hydrate, also known as taxifolin; is non-mutagenic, low in toxicity compared to other immunomodulator antioxidants. We aimed to determine the potential of catechin hydrate to prevent the cyto-genotoxic effects of cadmium in lymphocytes; demonstrate the immuno-protective activity of catechin hydrate. Our previous study indicated that cadmium is apoptogenic. Lymphocytes were treated with catechin hydrate or cadmium and catechine hydrate combinations (range 0.1-100μM) to determine their effects on cell viability. Lymphocytes treated with 100μM catechin hydrate and 100μM cadmium showed cell viability 70.65±6.92% and 5.69±2.27%, respectively. In our previous study cadmium (10 and 20μM) induced apoptosis in 31.8% and 44.4% of lymphocytes, respectively. However, the percentage of apoptotic cells after treatment with the combination of cadmium and catechin hydrate was not significantly different from that of catechin hydrate (P>0.05). Only 7.3% and 10.5% of the lymphocytes were apoptotic after treatment with 10μM cadmium+10μM catechin hydrate and 20μM cadmium+20μM catechin hydrate, respectively. The anti-geno-cytotoxic and immuno-protective potential of catechin hydrate was also demonstrated by the non-significant expression of apoptosis-related genes after treatment with catechin hydrate.
Collapse
Affiliation(s)
- Ali A Alshatwi
- Molecular Cancer Biology Research Lab (MCBRL), Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Tarique N Hasan
- Molecular Cancer Biology Research Lab (MCBRL), Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali M Alqahtani
- Molecular Cancer Biology Research Lab (MCBRL), Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naveed A Syed
- Molecular Cancer Biology Research Lab (MCBRL), Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Gowhar Shafi
- Molecular Cancer Biology Research Lab (MCBRL), Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah H Al-Assaf
- Molecular Cancer Biology Research Lab (MCBRL), Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahmann S Al-Khalifa
- Molecular Cancer Biology Research Lab (MCBRL), Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
21
|
Xiao K, Wang Y, Chang Z, Lao Y, Chang DC. p32, a novel binding partner of Mcl-1, positively regulates mitochondrial Ca2+ uptake and apoptosis. Biochem Biophys Res Commun 2014; 451:322-8. [DOI: 10.1016/j.bbrc.2014.07.122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/27/2014] [Indexed: 10/25/2022]
|
22
|
Saha P, Ghosh I, Datta K. Increased hyaluronan levels in HABP1/p32/gC1qR overexpressing HepG2 cells inhibit autophagic vacuolation regulating tumor potency. PLoS One 2014; 9:e103208. [PMID: 25061661 PMCID: PMC4111551 DOI: 10.1371/journal.pone.0103208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022] Open
Abstract
Tumor growth and development is influenced by its microenvironment. A major extracellular matrix molecule involved in cancer progression is hyaluronan (HA). Hyaluronan and expression of a number of hyaladherin family proteins are dramatically increased in many cancer malignancies. One such hyaladherin, hyaluronan-binding protein 1 (HABP1/p32/gC1qR) has been considered to be a biomarker for tumor progression. Interestingly, overexpression of HABP1 in fibroblast has been shown to increase autophagy via generation of excess reactive oxygen species (ROS) and depletion of HA leading to apoptosis. Cancerous cells are often found to exhibit decreased rate of proteolysis/autophagy in comparison to their normal counterparts. To determine if HABP1 levels alter tumorigenicity of cancerous cells, HepR21, the stable transfectant overexpressing HABP1 in HepG2 cell line was derived. HepR21 has been shown to have increased proliferation rate than HepG2, intracellular HA cable formation and enhanced tumor potency without any significant alteration of intracellular ROS. In this paper we have observed that HepR21 cells containing higher endogenous HA levels, have downregulated expression of the autophagic marker, MAP-LC3, consistent with unaltered levels of endogenous ROS. In fact, HepR21 cells seem to have significant resistance to exogenous ROS stimuli and glutathione depletion. HepR21 cells were also found to be more resilient to nutrient starvation in comparison to its parent cell line. Decline in intracellular HA levels and HA cables in HepR21 cells upon treatment with HAS inhibitor (4-MU), induced a surge in ROS levels leading to increased expression of MAP-LC3 and tumor suppressors Beclin 1 and PTEN. This suggests the importance of HABP1 induced HA cable formation in enhancing tumor potency by maintaining the oxidant levels and subsequent autophagic vacuolation.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilora Ghosh
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (IG); (KD)
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (IG); (KD)
| |
Collapse
|
23
|
Wang X, Lin G, Liu C, Feng C, Zhou H, Wang T, Li D, Wu G, Wang J. Temporal proteomic analysis reveals defects in small-intestinal development of porcine fetuses with intrauterine growth restriction. J Nutr Biochem 2014; 25:785-95. [DOI: 10.1016/j.jnutbio.2014.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/09/2013] [Accepted: 03/10/2014] [Indexed: 02/06/2023]
|
24
|
Al-Assaf AH, Alqahtani AM, Alshatwi AA, Syed NA, Shafi G, Hasan TN. Mechanism of cadmium induced apoptosis in human peripheral blood lymphocytes: the role of p53, Fas and Caspase-3. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:1033-1039. [PMID: 24100270 DOI: 10.1016/j.etap.2013.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/03/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
Cadmium (Cd) is a major pollutant of environment. It can be fatal to human. In spite of bulk of research and literatures, the mechanism of a fatality against human is still not understood completely. Toxic and carcinogenic effects of Cd in rodents and humans are well known. However, effects of Cd on induction of apoptosis are still elusive. This study indicates immunosuppression and immunotoxicity due to Cd exposure. Present study was undertaken to determine the mechanism of cell death in vitro in human peripheral blood lymphocytes induced by Cd. Our findings suggest the toxicity due to Cd is attributed to programmed cell death-apoptosis. IC₅₀ was calculated at 21.74 μM. A significant increase of expression of the pro-apoptotic genep53, Fas and Caspase-3 in human lymphocytes was found. Cd induced p53-dependent apoptosis through cooperation between Bak upregulation without changing the Bcl-2 and Bax expression. Data of this study compel to speculate that apoptosis may also be attributed to CD95/Fas complex formation, and p53 direct apoptogenic potential at mitochondria. It was confirmed by the increased expression of Caspase-3. Although, this work does not address all the questions regarding the mechanism of Cd induced apoptosis, but these findings establish an important role of p53 and mitochondrial function during apoptosis in human lymphocyte. Moreover, based upon our findings, the role of Fas in Cd induced apoptosis is also undeniable. Hence further investigations are required to understand the different mechanism involved into apoptosis of lymphocytes due to Cd exposure.
Collapse
Affiliation(s)
- Abdullah H Al-Assaf
- Molecular Cancer Biology Research Lab. (MCBRL), Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | | | | | | | | | | |
Collapse
|
25
|
Saha P, Chowdhury AR, Dutta S, Chatterjee S, Ghosh I, Datta K. Autophagic vacuolation induced by excess ROS generation in HABP1/p32/gC1qR overexpressing fibroblasts and its reversal by polymeric hyaluronan. PLoS One 2013; 8:e78131. [PMID: 24205125 PMCID: PMC3799741 DOI: 10.1371/journal.pone.0078131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/17/2013] [Indexed: 01/24/2023] Open
Abstract
The ubiquitous hyaladherin, hyaluronan-binding protein 1 (HABP1/p32/gC1qR) upon stable overexpression in normal fibroblasts (F-HABP07) has been reported to induce mitochondrial dysfunction, growth retardation and apoptosis after 72 h of growth. HABP1 has been observed to accumulate in the mitochondria resulting in generation of excess Reactive Oxygen Species (ROS), mitochondrial Ca++ efflux and drop in mitochondrial membrane potential. In the present study, autophagic vacuolation was detected with monodansylcadaverin (MDC) staining from 36 h to 60 h of culture period along with elevated level of ROS in F-HABP07 cells. Increased expression of autophagic markers like MAP-LC3-II, Beclin 1 and autophagic modulator, DRAM confirmed the occurrence of the phenomenon. Reduced vacuole formation was observed upon treatment with 3-MA, a known PI3 kinase inhibitor, only at 32 h and was ineffective if treated later, as high ROS level was already attained. Treatment of F111 and F-HABP07 cells with bafilomycin A1 further indicated an increase in autophagosome formation along with autophagic degradation in HABP1 overexpressed fibroblasts. Comparison between normal fibroblast (F111) and F-HABP07 cells indicate reduced level of polymeric HA, its depolymerization and perturbed HA-HABP1 interaction in F-HABP07. Interestingly, supplementation of polymeric HA, an endogenous ROS scavenger, in the culture medium prompted reduction in number of vacuoles in F-HABP07 along with drop in ROS level, implying that excess ROS generation triggers initiation of autophagic vacuole formation prior to apoptosis due to overexpression of HABP1. Thus, the phenomenon of autophagy takes place prior to apoptosis induction in the HABP1 overexpressing cell line, F-HABP07.
Collapse
Affiliation(s)
- Paramita Saha
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Anindya Roy Chowdhury
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shubhra Dutta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Soumya Chatterjee
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ilora Ghosh
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (KD); (IG)
| | - Kasturi Datta
- Biochemistry and Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: (KD); (IG)
| |
Collapse
|
26
|
Wang Y, Guo SY, Gu PQ, Wang XM, Sun N, Gao LJ. The globular heads of the C1q receptor regulate apoptosis in human extravillous cytotrophoblast-derived transformed cells via a mitochondria-dependent pathway. Am J Reprod Immunol 2013; 71:73-85. [PMID: 24028077 DOI: 10.1111/aji.12160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/15/2013] [Indexed: 12/01/2022] Open
Abstract
PROBLEM The receptor for the globular head of human C1q (gC1qR) predominantly localizes to the mitochondrial matrix. gC1qR mediates many biological responses, including growth perturbations, morphological abnormalities and the initiation of apoptosis. The purpose of this study was to investigate the relationship between gC1qR expression, mitochondrial dysfunction and the regulation of apoptosis in human extravillous cytotrophoblast (EVCT)-derived transformed cell lines (HTR-8/SVneo and HPT-8). METHOD OF STUDY gC1qR expression was examined in human placental villi using real-time qPCR and Western blot analysis. The apoptotic death of HTR-8/SVneo and HPT-8 cells was assessed using flow cytometric analysis. Mitochondrial function was assessed via ROS generation, the amount of cytosolic Ca(2+) and changes in the mitochondrial membrane potential (Δψm). RESULTS The expression of the gC1qR gene was significantly increased in spontaneous abortion samples relative to induced abortion samples. HTR-8/SVneo and HPT-8 cells transfected with a gC1qR vector showed upregulation of cellular apoptosis and mitochondrial dysfunction, interestingly, which were abrogated by the addition of metformin. Metformin may protect mitochondrial function. CONCLUSION These data support a mechanism whereby gC1qR induces apoptosis through mitochondria-dependent pathways in human EVCT-derived transformed cells.
Collapse
Affiliation(s)
- Ying Wang
- Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | | | | | | | | | | |
Collapse
|
27
|
Chen ZL, Gu PQ, Liu K, Su YJ, Gao LJ. The globular heads of the C1q receptor regulate apoptosis in human cervical squamous carcinoma cells via a p53-dependent pathway. J Transl Med 2012; 10:255. [PMID: 23268996 PMCID: PMC3567992 DOI: 10.1186/1479-5876-10-255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/21/2012] [Indexed: 01/09/2023] Open
Abstract
Background The globular heads of the human C1q receptor (gC1qR) localize predominantly to the mitochondrial matrix. gC1qR mediates many biological responses, including growth perturbation, morphological abnormalities and the initiation of apoptosis. The purpose of this study was to investigate the relationship between mitochondrial dysfunction, p53 status and gC1qR expression and the regulation of apoptosis in human cervical squamous carcinoma cells (C33a and SiHa). Methods Here, gC1qR expression was examined in human cervical tissues using real-time PCR and Western blot analysis. Apoptotic death of C33a and SiHa cells was assessed by flow cytometric analysis that detected the subG1 population. Mitochondrial function was assessed via ROS generation, the content of cytosolic Ca2+, and the change in mitochondrial membrane potential (Δψm). The viability and migration of C33a and SiHa cells were detected via the water-soluble tetrazolium salt (WST-1) assay and the transwell assay, respectively. Results gC1qR expression was decreased in cervical squamous cell carcinoma tissues compared with normal tissues. C33a and SiHa cells transfected with a vector encoding gC1qR displayed mitochondrial dysfunction and apoptosis, which was abrogated by the addition of a mutant form of p53 or p53 small interference RNA (siRNA). Furthermore, upon overexpression of gC1qR, cell viability and migration were significantly enhanced, and the apoptosis of C33a and SiHa cells were decreased when cells were treated with mutant p53 or p53 siRNA. Conclusions These data support a mechanism whereby gC1qR induces apoptosis through the mitochondrial and p53-dependent pathways in cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- Zheng-Lin Chen
- Clinical Laboratory, Jiangsu Provicial Official Hospital, Nanjing 210024, China
| | | | | | | | | |
Collapse
|
28
|
Liu Z, Su YJ, Gu PQ, Ji ZY, Wang XG, Gao LJ. The role of the globular heads of C1q receptor (gC1qR) gene in regulating apoptosis of human cervical squamous cell carcinoma. Cell Physiol Biochem 2012; 30:1181-90. [PMID: 23052251 DOI: 10.1159/000343308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The globular heads of the human C1q receptor (gC1qR) are multi-compartmental and multi-functional cellular proteins. The list of biological responses mediated by the gC1qR includes growth perturbation and morphological abnormalities, along with the initiation of apoptosis. However, the effects of the gC1qR on the apoptosis of cervical squamous carcinoma cells (C33a and SiHa) have not been demonstrated. METHODS Here, human cervical tissues were examined for the expression of the gC1qR using real-time PCR and Western blot analysis. Apoptotic death of C33a and SiHa cells was assessed by flow cytometric analysis to detect the subG1 population. Viability, migration and proliferation of C33a and SiHa cells were detected via the water-soluble tetrazolium salt (WST-1) assay, the Transwell assay and the (3)H-thymidine incorporation into DNA assay ((3)H-TdR), respectively. RESULTS These data showed that expression of the gC1qR protein was significantly decreased in human cervical squamous cell carcinoma tissues relative to normal cervix tissues. C33a and SiHa cells transfected with a GFP-gC1qR vector resulted in the up-regulation of cellular apoptosis and an apparent increase in the expression of the p38 mitogen-activated protein kinase (p38 MAPK). Further, the changes in C33a and SiHa cells viability, migration and proliferation observed upon overexpression of gC1qR could be abrogated using the p38 MAPK inhibitor SB202190. CONCLUSION These data indicate that gC1qR inhibits viability, migration and proliferation of cervical squamous cells carcinoma via the p38 MAPK signalling pathway.
Collapse
Affiliation(s)
- Zhu Liu
- Clinical Laboratory, Huangdao District of Traditional Chinese Medicine, Qingdao, China
| | | | | | | | | | | |
Collapse
|
29
|
Kaul R, Saha P, Saradhi M, Prasad RLA, Chatterjee S, Ghosh I, Tyagi RK, Datta K. Overexpression of hyaluronan-binding protein 1 (HABP1/p32/gC1qR) in HepG2 cells leads to increased hyaluronan synthesis and cell proliferation by up-regulation of cyclin D1 in AKT-dependent pathway. J Biol Chem 2012; 287:19750-64. [PMID: 22451658 DOI: 10.1074/jbc.m111.266270] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Overexpression of the mature form of hyaluronan-binding protein 1 (HABP1/gC1qR/p32), a ubiquitous multifunctional protein involved in cellular signaling, in normal murine fibroblast cells leads to enhanced generation of reactive oxygen species (ROS), mitochondrial dysfunction, and ultimately apoptosis with the release of cytochrome c. In the present study, human liver cancer cell line HepG2, having high intracellular antioxidant levels was chosen for stable overexpression of HABP1. The stable transformant of HepG2, overexpressing HABP1 does not lead to ROS generation, cellular stress, and apoptosis, rather it induced enhanced cell growth and proliferation over longer periods. Phenotypic changes in the stable transformant were associated with the increased "HA pool," formation of the "HA cable" structure, up-regulation of HA synthase-2, and CD44, a receptor for HA. Enhanced cell survival was further supported by activation of MAP kinase and AKT-mediated cell survival pathways, which leads to an increase in CYCLIN D1 promoter activity. Compared with its parent counterpart HepG2, the stable transformant showed enhanced tumorigenicity as evident by its sustained growth in low serum conditions, formation of the HA cable structure, increased anchorage-independent growth, and cell-cell adhesion. This study suggests that overexpression of HABP1 in HepG2 cells leads to enhanced cell survival and tumorigenicity by activating HA-mediated cell survival pathways.
Collapse
Affiliation(s)
- Rachna Kaul
- Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Validation of the Antiproliferative Effects of Organic Extracts from the Green Husk of Juglans regia L. on PC-3 Human Prostate Cancer Cells by Assessment of Apoptosis-Related Genes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:103026. [PMID: 22454652 PMCID: PMC3291301 DOI: 10.1155/2012/103026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/28/2011] [Accepted: 10/28/2011] [Indexed: 11/21/2022]
Abstract
With the increased use of plant-based cancer chemotherapy, exploring the antiproliferative effects of phytochemicals for anticancer drug design has gained considerable attention worldwide. This study was undertaken to investigate the effect of walnut green husk extracts on cell proliferation and to determine the possible molecular mechanism of extract-induced cell death by quantifying the expression of Bcl-2, Bax, caspases-3, and Tp53. PC-3 human prostate cancer cells. In this study, we found that green husk extracts suppressed proliferation and induced apoptosis in a dose- and time-dependent manner by modulating expression of apoptosis-related genes. This involved DNA fragmentation (determined by TUNEL assay) and significant changes in levels of mRNA and the expression of corresponding proteins. An increase in expressions of Bax, caspase-3, and tp53 genes and their corresponding proteins was detected using real-time PCR and western blot analysis in PC-3 cells treated with the green husk organic extracts. In contrast, Bcl2 expression was downregulated after exposure to the extracts. Our data suggest the presence of bioactive compound(s) in walnut green husks that are capable of killing prostate carcinoma cells by inducing apoptosis and that the husks are a candidate source of anticancer drugs.
Collapse
|
31
|
Gu PQ, Gao LJ, Li L, Liu Z, Luan FQ, Peng YZ, Guo XR. Endocrine disruptors, polychlorinated biphenyls-induced gC1qR-dependent apoptosis in human trophoblast cell line HTR-8/SVneo. Reprod Sci 2011; 19:181-9. [PMID: 22101238 DOI: 10.1177/1933719111415866] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although an association exists between exposure to polychlorinated biphenyls (PCBs) and spontaneous miscarriage, the mechanisms underlying this phenomenon remain unclear. In this study, PCBs content in plasma was detected by gas chromatography-mass spectrometry (GC-MS) and decidua tissues were examined for the expression of globular heads of C1q receptor (gC1qR) using Western blot in patients who underwent induced abortion and spontaneous abortion. Results showed increased PCBs content and gC1qR expression in patients who experienced spontaneous abortion. In vitro, Western blot analysis demonstrated significantly higher caspase 3 expression and apoptotic cell counts in green fluorescent protein (GFP)-gC1qR vector group. Additionally, gC1qR and caspase 3 showed decreased expression following PCBs plus gC1qR small interfering RNA (siRNA) treatment. The percentage of apoptotic cells increased in cells treated with PCBs alone or PCB plus negative siRNA. These data suggest that maternal exposure to PCBs is associated with adverse pregnancy outcomes and that upregulation of gC1qR is important for PCBs-mediated trophoblast cell apoptosis.
Collapse
Affiliation(s)
- Ping-Qing Gu
- Clinical Laboratory, Nanjing Maternity and Child Health Care Hospital, Nanjing, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
32
|
Dutta S, Chowdhury AR, Srivastava SK, Ghosh I, Datta K. Evidence for Serpentine as a novel antioxidant by a redox sensitive HABP1 overexpressing cell line by inhibiting its nuclear translocation of NF-κB. Free Radic Res 2011; 45:1279-88. [PMID: 21815883 DOI: 10.3109/10715762.2011.610794] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herbal antioxidants are gradually gaining importance as dietary supplements considering the growing implications of oxidative stress in most degenerative diseases and aging. Thus, continuous attempts are made to search for novel herbal molecules with antioxidative properties, using chemical methods predominantly with the need arising for cell based assays. We have generated a stable cell line F-HABP07, by constitutively overexpressing human Hyaluronan Binding Protein1 (HABP1) in murine fibroblasts which accumulates in the mitochondria leading to excess ROS generation without any external stimuli. In the present study, we demonstrated the nuclear translocation of p65 subunit of NF-κB in F-HABP07 cells, an important signature of ROS induced signalling cascade providing us an opportunity to use it as a screening system for ROS scavengers. Using known antioxidants on our designer cell line, we have demonstrated a dose dependant reduction in ROS generation and observed inhibition of p65 subunit of NF-κB nuclear translocation, increase in glutathione content and down-regulation of apoptotic marker Bax establishing its antioxidant biosensing capacity. With the help of this cell line, we for the first time demonstrated serpentine, one of the active components from the roots of Rauwolfia serpentina (a traditional medicinal plant), to be a novel non-cytotoxic antioxidant. The authenticity of this cell line screening system based discovery was validated using standard chemical assays thus, opening up new therapeutic avenues for this herbal compound and the use of this designer cell line.
Collapse
Affiliation(s)
- Shubhra Dutta
- Environmental Toxicology and Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | | | |
Collapse
|
33
|
Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev 2011; 91:221-64. [PMID: 21248167 DOI: 10.1152/physrev.00052.2009] [Citation(s) in RCA: 751] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on various cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage from the environment by interacting with TLR2 and TLR4. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury, and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases.
Collapse
Affiliation(s)
- Dianhua Jiang
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
34
|
Milli A, Perego P, Beretta GL, Corvo A, Righetti PG, Carenini N, Corna E, Zuco V, Zunino F, Cecconi D. Proteomic Analysis of Cellular Response to Novel Proapoptotic Agents Related to Atypical Retinoids in Human IGROV-1 Ovarian Carcinoma Cells. J Proteome Res 2010; 10:1191-207. [DOI: 10.1021/pr100963n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Alberto Milli
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Paola Perego
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Giovanni L. Beretta
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Alice Corvo
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| | - Pier Giorgio Righetti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Nives Carenini
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Elisabetta Corna
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Valentina Zuco
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Franco Zunino
- Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, 20133, Milano, Italy
| | - Daniela Cecconi
- Dipartimento di Biotecnologie, Laboratorio di Proteomica e Spettrometria di Massa, University of Verona, Strada le Grazie 15, 37134, Verona, Italy
| |
Collapse
|
35
|
Recombinant PBD-1 (porcine beta-defensin 1) expressed in the milk by transplanting transgenic mES-like-derived cells into mouse mammary gland. Cell Biol Int 2010; 34:1033-40. [PMID: 20597860 DOI: 10.1042/cbi20090453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ES (embryonic stem)-derived cells have been investigated in many animal models of severe injury and degenerative disease. However, few studies have examined the ability of ES-derived cells to improve functional outcome following partially damaged breast and also the modification of mammary tissue to produce costly proteins. This study investigates the feasibility of implanting mES-dK (mouse ES-derived keratinocytes-like) cells stably transfected with a mammary gland special expression vector for the PBD-1 (porcine beta-defensin 1) in developing mammary glands. Our aim was to assess the ability of cell grafting to improve functional outcome following partial damage of the breast, also on the breast modification mammary tissue in mice for the production of PBD-1 protein secreted in the milk. Our results showed that the ratios of the surviving cells labelled with the myoepithelial or luminal cell markers, EMA (epithelial membrane antigen) and CALLA, were 41.7 +/- 15.2% and 28.4 +/- 9.6%, respectively, which revealed that transplanted mES-dK cells survived, integrated in vivo and differentiated into myoepithelial or luminal cells. In addition, Western blot analysis showed that 37.5% (3 out of 8) female transplanted mice had PBD-1 expression in their milk and reached 0.4998, 0.5229 and 0.5195 microg/ml, respectively.
Collapse
|
36
|
Tan X, Wang DB, Lu X, Wei H, Zhu R, Zhu SS, Jiang H, Yang ZJ. Doxorubicin induces apoptosis in H9c2 cardiomyocytes: role of overexpressed eukaryotic translation initiation factor 5A. Biol Pharm Bull 2010; 33:1666-72. [PMID: 20930373 DOI: 10.1248/bpb.33.1666] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The cardiotoxicity of doxorubicin limits its clinical use in the treatment of a variety of solid tumors and malignant hematologic disease. Although the mechanism by which it causes cardiac injury is not yet known, apoptosis has been regarded as one of mechanisms underlying the cardiotoxic effects of doxorubicin. Eukaryotic translation initiation factor 5A (eIF5A) is a ubiquitously expressed multifunctional protein that interacts with a range of ligands and is implicated in cell signaling. However, there has been no direct evidence for the critical involvement of eIF5A in doxorubicin-induced apoptosis. Overexpression of eIF5A induced by doxorubicin in cardiomyocyte leads to growth perturbation along with initiation of apoptosis. Overexpression of eIF5A results in a gradual increase in reactive oxygen species (ROS) generation. This mitochondrial dysfunction is due to a gradual increase in ROS generation in eIF5A-overexpressing H9c2 cells. Along with ROS generation, increased Ca(2+) influx in mitochondria leads to loss of the mitochondrial transmembrane potential, release of cytochrome-c, and caspase activation. However, small interfering RNA (siRNA)-mediated suppression of eIF5A results in inhibition of apoptosis. Interestingly, upon overexpression of eIF5A induced by doxorubicin, cell apoptosis was shown to be significantly inhibited when cells were treated with SB202190 (p38 mitogen-activated protein kinase inhibitor) and SP600125 (anti-c-Jun N-terminal kinase inhibitor) for 18 h. The reduction in oxidant generation and reduction in the apoptotic cell population were the results of the disruption of eIF5A expression, corroborating the hypothesis that excess ROS generation with overexpression of eIF5A induced by doxorubicin leads to apoptosis due to the accumulation of eIF5A.
Collapse
Affiliation(s)
- Xiao Tan
- Department of Cardiology, Second Clinical Medical School of Nanjing Medical University, Nanjing 210011, PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen YB, Jiang CT, Zhang GQ, Wang JS, Pang D. Increased expression of hyaluronic acid binding protein 1 is correlated with poor prognosis in patients with breast cancer. J Surg Oncol 2009; 100:382-6. [PMID: 19565630 DOI: 10.1002/jso.21329] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Hyaluronic acid binding protein 1 (HABP1), a family of proteins interacting with hyaluronan (HA), had been associated with cell adhesion and tumor invasion. The aim of this study was to investigate the correlation between clinicopathologic factors and patient survival time with the expression of HABP1 in breast cancer patients. METHODS Expression of HABP1 mRNA and protein were detected with real-time quantitative PCR and immunohistochemical staining in 63 breast cancer and non-cancerous matched tissues. RESULTS The mRNA expression level of HABP1 was unrelated to the patient's age, tumor size, histological grade, TNM stage. However, it proved to be positively related to axillary nodes metastasis (P = 0.008). Furthermore, it was shown that the survival rate of patients with low HABP1 expression was significantly higher than that of patients with high HABP1 expression (P = 0.025). Multivariate analysis revealed that HABP1 mRNA expression level was a significant factor for predicting prognosis (P = 0.022). The immunohistochemistry results showed that the expression level of HABP1 in breast cancer cells was higher than that in normal breast cells. CONCLUSION HABP1 might be an independent predictive factor for breast cancer prognosis and up-regulation of HABP1 might play an important role in the metastasis of breast cancer.
Collapse
Affiliation(s)
- Yan-Bo Chen
- Department of Breast Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, PR China
| | | | | | | | | |
Collapse
|
38
|
Seo M, Lee WH, Suk K. Identification of novel cell migration-promoting genes by a functional genetic screen. FASEB J 2009; 24:464-78. [PMID: 19812375 DOI: 10.1096/fj.09-137562] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we describe the identification of novel cell migration-promoting genes based on an unbiased functional genetic screen in cultured cells. After the introduction of the retroviral mouse brain cDNA library into NIH3T3 mouse fibroblast cells, migration-promoted cells were selected by a 3-dimensional migration assay using cell culture inserts. After 5 rounds of enrichment, cDNAs were retrieved from the cells with a selected phenotype. Cell migration-promoting activity was confirmed by independent migration assays for the retrieved cDNAs, among which further investigation was focused on coiled-coil-helix-coiled-coil-helix domain-containing protein 2 (chchd2). Whereas overexpression of chchd2 promoted cell migration, knockdown of endogenous chchd2 expression reduced cell migration. Chchd2-induced cell migration was associated with augmented formation of actin stress fibers and focal adhesion, which was mediated through Akt, RhoA/ROCK, and Jnk pathways. CHCHD2 protein directly interacted with hyaluronic acid-binding protein 1 (HABP1) that possessed migration-suppressing activity. Intracellular localization and further functional studies suggested that CHCHD2 and HABP1 may mutually regulate each other to balance cell migration. Thus, chchd2 is a novel cell migration determinant identified by an in vitro functional genetic selection strategy. The selection method can also be useful for the isolation of genes that give other phenotypes of interest.
Collapse
Affiliation(s)
- Minchul Seo
- Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, Korea
| | | | | |
Collapse
|
39
|
Cecconi D, Zamò A, Parisi A, Bianchi E, Parolini C, Timperio AM, Zolla L, Chilosi M. Induction of Apoptosis in Jeko-1 Mantle Cell Lymphoma Cell Line by Resveratrol: A Proteomic Analysis. J Proteome Res 2008; 7:2670-80. [DOI: 10.1021/pr700712p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Daniela Cecconi
- Dipartimento Scientifico e Tecnologico, Laboratorio di Proteomica, University of Verona, Verona, Italy, Dipartimento di Patologia, Sezione di Anatomia Patologica, University of Verona, Verona, Italy, and Dipartimento di Scienze Ambientali, University of Tuscia, Viterbo, Italy
| | - Alberto Zamò
- Dipartimento Scientifico e Tecnologico, Laboratorio di Proteomica, University of Verona, Verona, Italy, Dipartimento di Patologia, Sezione di Anatomia Patologica, University of Verona, Verona, Italy, and Dipartimento di Scienze Ambientali, University of Tuscia, Viterbo, Italy
| | - Alice Parisi
- Dipartimento Scientifico e Tecnologico, Laboratorio di Proteomica, University of Verona, Verona, Italy, Dipartimento di Patologia, Sezione di Anatomia Patologica, University of Verona, Verona, Italy, and Dipartimento di Scienze Ambientali, University of Tuscia, Viterbo, Italy
| | - Elena Bianchi
- Dipartimento Scientifico e Tecnologico, Laboratorio di Proteomica, University of Verona, Verona, Italy, Dipartimento di Patologia, Sezione di Anatomia Patologica, University of Verona, Verona, Italy, and Dipartimento di Scienze Ambientali, University of Tuscia, Viterbo, Italy
| | - Claudia Parolini
- Dipartimento Scientifico e Tecnologico, Laboratorio di Proteomica, University of Verona, Verona, Italy, Dipartimento di Patologia, Sezione di Anatomia Patologica, University of Verona, Verona, Italy, and Dipartimento di Scienze Ambientali, University of Tuscia, Viterbo, Italy
| | - Anna Maria Timperio
- Dipartimento Scientifico e Tecnologico, Laboratorio di Proteomica, University of Verona, Verona, Italy, Dipartimento di Patologia, Sezione di Anatomia Patologica, University of Verona, Verona, Italy, and Dipartimento di Scienze Ambientali, University of Tuscia, Viterbo, Italy
| | - Lello Zolla
- Dipartimento Scientifico e Tecnologico, Laboratorio di Proteomica, University of Verona, Verona, Italy, Dipartimento di Patologia, Sezione di Anatomia Patologica, University of Verona, Verona, Italy, and Dipartimento di Scienze Ambientali, University of Tuscia, Viterbo, Italy
| | - Marco Chilosi
- Dipartimento Scientifico e Tecnologico, Laboratorio di Proteomica, University of Verona, Verona, Italy, Dipartimento di Patologia, Sezione di Anatomia Patologica, University of Verona, Verona, Italy, and Dipartimento di Scienze Ambientali, University of Tuscia, Viterbo, Italy
| |
Collapse
|
40
|
Chowdhury AR, Ghosh I, Datta K. Excessive reactive oxygen species induces apoptosis in fibroblasts: role of mitochondrially accumulated hyaluronic acid binding protein 1 (HABP1/p32/gC1qR). Exp Cell Res 2007; 314:651-67. [PMID: 18166172 DOI: 10.1016/j.yexcr.2007.10.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 10/11/2007] [Accepted: 10/31/2007] [Indexed: 11/29/2022]
Abstract
Constitutively expressed HABP1 in normal murine fibroblast cell line induces growth perturbation, morphological abnormalities along with initiation of apoptosis. Here, we demonstrate that though HABP1 accumulation started in mitochondria from 48 hr of growth, induction of apoptosis with the release of cytochrome c and apoptosome complex formation occurred only after 60 hr. This mitochondrial dysfunction was due to gradual increase in ROS generation in HABP1 overexpressing cells. Along with ROS generation, increased Ca 2+ influx in mitochondria leading to drop in membrane potential was evident. Interestingly, upon expression of HABP1, the respiratory chain complex I was shown to be significantly inhibited. Electronmicrograph confirmed defective mitochondrial ultrastructure. The reduction in oxidant generation and drop in apoptotic cell population accomplished by disruption of HABP1 expression, corroborating the fact that excess ROS generation in HABP1 overexpressing cells leading to apoptosis was due to mitochondrial HABP1 accumulation.
Collapse
Affiliation(s)
- Anindya Roy Chowdhury
- Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | |
Collapse
|
41
|
Xiao JX, Huang GQ, Zhu CP, Ren DD, Zhang SH. Morphological study on apoptosis Hela cells induced by soyasaponins. Toxicol In Vitro 2007; 21:820-6. [PMID: 17367985 DOI: 10.1016/j.tiv.2007.01.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Revised: 11/30/2006] [Accepted: 01/27/2007] [Indexed: 10/23/2022]
Abstract
Soyasaponins are present in legumes and soybeans are the primary dietary source of saponins. SS-II, the second fraction of soyasaponins, was separated by column chromatographic method with D101A macroporous resin from soybean. In this paper, at the concentration range of 100-400 mg/L, SS-II had obvious cytotoxic effect on Hela cells by MTT assay. After Hela cells were treated with SS-II, typical apoptotic morphological changes, including nuclear fragmentation, cytoplasm shrinkage and decrease of cell volume, were observed by fluorescence microscope, transmission electron microscope (TEM) and confocal laser scanning microscope (CLSM), respectively. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay also confirmed that SS-II-treated Hela cells showed apoptotic features. The results suggested that soyasaponins were a potential antitumor compound and the apoptosis induced by soyasaponins was a key antitumor mechanism.
Collapse
Affiliation(s)
- Jun-Xia Xiao
- School of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | |
Collapse
|
42
|
Puxeddu E, Susta F, Orvietani PL, Chiasserini D, Barbi F, Moretti S, Cavaliere A, Santeusanio F, Avenia N, Binaglia L. Identification of differentially expressed proteins in papillary thyroid carcinomas with V600E mutation of BRAF. Proteomics Clin Appl 2007; 1:672-80. [DOI: 10.1002/prca.200600776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Indexed: 11/11/2022]
|
43
|
Bowes T, Singh B, Gupta RS. Subcellular localization of fumarase in mammalian cells and tissues. Histochem Cell Biol 2006; 127:335-46. [PMID: 17111171 DOI: 10.1007/s00418-006-0249-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2006] [Indexed: 11/29/2022]
Abstract
Fumarase, a mitochondrial matrix protein, is previously indicated to be present in substantial amounts in the cytosol as well. However, recent studies show that newly synthesized human fumarase is efficiently imported into mitochondria with no detectable amount in the cytosol. To clarify its subcellular localization, the subcellular distribution of fumarase in mammalian cells/tissues was examined by a number of different methods. Cell fractionation using either a mitochondria fraction kit or extraction with low concentrations of digitonin, detected no fumarase in a 100,000 g supernatant fraction. Immunofluorescence labeling with an affinity-purified antibody to fumarase and an antibody to the mitochondrial Hsp60 protein showed identical labeling pattern with labeling seen mainly in mitochondria. Detailed studies were performed using high-resolution immunogold electron microscopy to determine the subcellular localization of fumarase in rat tissues, embedded in LR White resin. In thin sections from kidney, liver, heart, adrenal gland and anterior pituitary, strong and specific labeling due to fumarase antibody was only detected in mitochondria. However, in the pancreatic acinar cells, in addition to mitochondria, highly significant labeling was also observed in the zymogen granules and endoplasmic reticulum. The observed labeling in all cases was completely abolished upon omission of the primary antibody indicating that it was specific. In a western blot of purified zymogen granules, a fumarase-antibody cross-reactive protein of the same molecular mass as seen in the mitochondria was present. These results provide evidence that fumarase in mammalian cells/tissues is mainly localized in mitochondria and significant amounts of this protein are not present in the cytosol. However, these studies also reveal that in certain tissues, in addition to mitochondria, this protein is also present at specific extramitochondrial sites. Although the cellular function of fumarase at these extramitochondrial locations is not known, the appearance/localization of fumarase outside mitochondria may help explain how mutations in this mitochondrial protein can give rise to a number of different types of cancers.
Collapse
Affiliation(s)
- Timothy Bowes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada, L8N 3Z5
| | | | | |
Collapse
|
44
|
Kamal A, Datta K. Upregulation of hyaluronan binding protein 1 (HABP1/p32/gC1qR) is associated with Cisplatin induced apoptosis. Apoptosis 2006; 11:861-74. [PMID: 16544101 DOI: 10.1007/s10495-006-5396-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have earlier reported that overexpression of HABP1 in fibroblast cells causes perturbed cell growth, extensive vacuolation and restricted entry to the S-phase, finally leading to apoptosis (Biochem Biophys Res Commun 2003; 300: 686-693). In the present study, we investigate the regulation of HABP1 expression in cisplatin induced apoptosis in HeLa cells. Apoptosis induced in HeLa cells at 24 h of cisplatin treatment was confirmed by nuclear fragmentation, increase in subdiploid population and the enhanced activation of ERK and upregulation of p53. In association with apoptosis induction, an upregulation of HABP1 expression was observed in HeLa cells at 18 and 24 h of cisplatin treatment. Quantification of HABP1 expression by flow cytometry confirmed a two-fold increase in total intracellular HABP1 expression at 24 h of cisplatin treatment. Under the same condition the HABP1 transcript level measured by semi quantitative RT PCR showed 2.5-fold increase ascertaining transcriptional regulation of HABP1 during cisplatin induced apoptosis. Further, in normal HeLa cells though a small amount of HABP1 can be detected in nucleus, but with apoptosis induction the protein is mainly concentrating around the nuclear periphery at 18 h of cisplatin treatment and is present both in the nucleus as well as in the cytosol at 24 h of treatment, suggesting its nuclear translocation during apoptosis. To substantiate our findings prior to the cisplatin treatment, the expression of HABP1 was reduced by small interfering RNA mediated knockdown. We observed a reduction in apoptotic cell population in cisplatin treated HeLa cells with disrupted HABP1 conferring resistance to cisplatin induced apoptosis. We report here that HABP1 upregulation in the cell is important for cisplatin induced apoptosis.
Collapse
Affiliation(s)
- Anupama Kamal
- Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | |
Collapse
|
45
|
Sengupta A, Tyagi RK, Datta K. Truncated variants of hyaluronan-binding protein 1 bind hyaluronan and induce identical morphological aberrations in COS-1 cells. Biochem J 2004; 380:837-44. [PMID: 15005653 PMCID: PMC1224209 DOI: 10.1042/bj20040264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 03/03/2004] [Indexed: 01/29/2023]
Abstract
Hyaluronan (HA)-binding protein 1 (HABP1) is multifunctional in nature and exists as a trimer through coiled-coil interaction between alpha-helices at its N- and C-termini. To investigate the importance of trimeric assemblage and HA-binding ability of HABP1, we generated and overexpressed variants of HABP1 by truncating the alpha-helices at its termini. Subsequently, these variants were transiently expressed in COS-1 cells to examine the influence of these structural variations on normal cell morphology, as compared with those imparted by HABP1. Substantiating the centrality of coiled-coil interaction for maintaining the trimeric assembly of HABP1, we demonstrate that disruption of trimerization does not alter the affinity of variants towards its ligand HA. Transient expression of HABP1 altered the morphology of COS-1 cells by generating numerous cytoplasmic vacuoles along with disruption of the f-actin network. Interestingly, the truncated variants also imparted identical morphological changes. Characterization of the cytoplasmic vacuoles revealed that most of these vacuoles were autophagic in nature, resembling those generated under stress conditions. The identical morphological changes manifested in COS-1 cells on transient expression of HABP1 or its variants is attributed to their comparable HA-binding ability, which in concert with endogenous HABP1, may deplete the cellular HA pool. Such quenching of HA below a threshold level in the cellular milieu could generate a stress condition, manifested through cytoplasmic vacuoles and a disassembly of the f-actin network.
Collapse
Affiliation(s)
- Aniruddha Sengupta
- Biochemistry Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | |
Collapse
|
46
|
Affiliation(s)
- Bryan P Toole
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA.
| |
Collapse
|