1
|
Liu S, Zhu X, Pei H, Zhao Y, Zong Y, Chen W, He Z, Du R. Ginseng Stem-and-Leaf Saponins Mitigate Chlorpyrifos-Evoked Intestinal Toxicity In Vivo and In Vitro: Oxidative Stress, Inflammatory Response and Apoptosis. Int J Mol Sci 2023; 24:15968. [PMID: 37958950 PMCID: PMC10650881 DOI: 10.3390/ijms242115968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, the phenomenon of acute poisoning and organ damage caused by organophosphorus pesticides (OPs) has been a frequent occurrence. Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides. The main active components of ginseng stems and leaves are total ginseng stem-and-leaf saponins (GSLSs), which have various biological effects, including anti-inflammatory, antioxidant and anti-tumor activities. We speculate that these could have great potential in the treatment of severe diseases and the relief of organophosphorus-pesticide-induced side effects; however, their mechanism of action is still unknown. At present, our work aims to evaluate the effects of GSLSs on the antioxidation of CPF in vivo and in vitro and their potential pharmacological mechanisms. Mice treated with CPF (5 mg/kg) showed severe intestinal mucosal injury, an elevated diamine oxidase (DAO) index, the decreased expression of occlusive protein-1 (ZO-1) and occlusive protein, an impaired intestinal mucosal oxidation system and intestinal villi relaxation. In addition, chlorpyrifos exposure significantly increased the contents of the inflammatory factor TNF-α and the oxidative-stress-related indicators superoxide dismutase (SOD), catalase (CAT), glutathione SH (GSH), glutathione peroxidase (GSH-PX), reactive oxygen species (ROS) and total antioxidant capacity (T-AOC); elevated the level of lipid peroxide malondialdehyde (MDA); reversed the expression of Bax and caspase; and activated NF-κB-related proteins. Interestingly, GSLS supplementation at doses of 100 and 200 mg/kg significantly reversed these changes after treatment. Similar results were observed in cultured RAW264.7 cells. Using flow cytometry, Hoechst staining showed that GSLSs (30 μg/mL, 60 μg/mL) could improve the cell injury and apoptosis caused by CPF and reduce the accumulation of ROS in cells. In conclusion, GSLSs play a protective role against CPF-induced enterotoxicity by inhibiting NF-κB-mediated apoptosis and alleviating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Xiaoying Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (X.Z.); (H.P.); (Y.Z.); (Y.Z.); (W.C.)
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130118, China
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
2
|
André ND, Silva VAO, Watanabe MAE, De Lucca FL. Intratumoral injection of PKR shRNA expressing plasmid inhibits B16-F10 melanoma growth. Oncol Rep 2014; 32:2267-73. [PMID: 25175769 DOI: 10.3892/or.2014.3410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/04/2014] [Indexed: 11/06/2022] Open
Abstract
The RNA-dependent protein kinase (PKR) is a serine/threonine kinase that is involved in the regulation of important cell processes such as apoptosis, signal transduction, cell proliferation and differentiation. However, the role played by PKR in cancer remains controversial. RNA interference (RNAi) has currently become an important technique in understanding gene function. Previously, we showed that PKR shRNA downregulates PKR expression in B16-F10 melanoma cells and reduces the metastatic potential of these tumor cells. In the present study, we examined the effect of the intratumoral injection of PKR shRNA‑expressing plasmid on the growth of B16-F10 melanoma in mice. The results showed that this treatment significantly reduced tumor growth. Thus, these findings suggested that PKR acts as a tumor suppressor, a finding that is consistent with our previous study on the experimental model of metastasis. Moreover, the results suggested that this effect may be mediated by the transcription factor NF-κB. The present study confirmed the hypothesis that the direct administration of RNAi-based therapeutics in the target tumor is a promising approach for overcoming the obstacles of systemic delivery. The results also suggested that the intratumoral injection of PKR shRNA‑expressing vector is a novel therapeutic approach for human solid tumors such as cutaneous melanoma and breast cancer, since PKR is overexpressed in these tumors.
Collapse
Affiliation(s)
| | - Viviane Aline Oliveira Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| | - Maria Angelica Ehara Watanabe
- Department of Pathological Sciences, Biological Sciences Center, State University of Londrina, 86057-970 Londrina, PR, Brazil
| | - Fernando Luiz De Lucca
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, SP, Brazil
| |
Collapse
|
3
|
Ortis F, Cardozo AK, Crispim D, Störling J, Mandrup-Poulsen T, Eizirik DL. Cytokine-induced proapoptotic gene expression in insulin-producing cells is related to rapid, sustained, and nonoscillatory nuclear factor-kappaB activation. Mol Endocrinol 2006; 20:1867-79. [PMID: 16556731 DOI: 10.1210/me.2005-0268] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytokines, such as IL-1beta and TNF-alpha, contribute to pancreatic beta-cell death in type 1 diabetes mellitus. The transcription factor nuclear factor-kappaB (NF-kappaB) mediates cytokine-induced beta-cell apoptosis. Paradoxically, NF-kappaB has mostly antiapoptotic effects in other cell types. The cellular actions of NF-kappaB depend on the cell type, the nature and duration of the stimulus, the periodicity, and the degree of activity of the particular dimers involved. To clarify the reasons behind the proapoptotic effects of NF-kappaB in pancreatic beta-cells, we compared the pattern of cytokine-induced NF-kappaB activation between rat insulin-producing cells (INS-1E cells) and fibroblasts (208F cells). NF-kappaB activation was induced in INS-1E cells and in 208F cells after exposure to cytokines, but apoptosis was induced only in INS-1E cells, with a more pronounced proapoptotic effect of IL-1beta than of TNF-alpha. NF-kappaB activation in IL-1beta-exposed INS-1E cells was earlier and more marked as compared with TNF-alpha-exposed INS-1E cells or IL-1beta-exposed 208F cells. Both cytokines induced a prolonged (up to 48 h) and stable NF-kappaB activation in INS-1E cells, whereas IL-1beta induced an oscillatory NF-kappaB activation in 208F cells. p65/p65 and p65/p50 were the predominant NF-kappaB dimers in IL-1beta-exposed INS-1E cells and 208F cells, respectively. IL-1beta induced a differential usage of cis-elements in the inducible nitric oxide synthase promoter region in the two cell-lines and an increase in ERK1/2 activity in INS-1E cells but not in 208F cells. Cytokine-induced expression of IkappaB isoforms and other NF-kappaB target genes (Fas, MCP-1, and inducible nitric oxide synthase) was severalfold higher in INS-1E cells than in 208F cells. These results suggest that cytokine-induced NF-kappaB activation in insulin-producing cells is more rapid, marked, and sustained than in fibroblasts, which correlates with a more pronounced activation of downstream genes and a proapoptotic outcome.
Collapse
Affiliation(s)
- Fernanda Ortis
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
4
|
Morissette G, Moreau E, C-Gaudreault R, Marceau F. N-Substituted 4-Aminobenzamides (Procainamide Analogs): An Assessment of Multiple Cellular Effects Concerning Ion Trapping. Mol Pharmacol 2005; 68:1576-89. [PMID: 16183854 DOI: 10.1124/mol.105.016527] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Procainamide and related triethylamine-substituted 4-aminobenzamides, such as metoclopramide and declopramide, exert cellular effects potentially exploitable in oncology at millimolar concentrations (DNA demethylation, nuclear factor-kappaB inhibition, apoptosis) and display anti-inflammatory properties. However, these drugs induce massive cell vacuolization at similar concentrations, a response initiated by vacuolar (V-) ATPase-dependent ion trapping into and osmotic swelling of acidic organelles. We have examined whether this overlooked response might be related to the effects on cell proliferation and viability using cultured vascular smooth muscle cells and tumor-derived cell lines (Morris 7777 hepatoma, HT-1080 fibrosarcoma). Giant vacuole formation, of confirmed trans-Golgi origin (labeled with C5-ceramide, p230, golgin-97), is a cellular response to all tested amines in the series (> or = 2.5 mM), including triethylamine. These drugs and the V-ATPase inhibitor bafilomycin A1 inhibited smooth muscle cell proliferation, suggesting that acidification of a cellular compartment is essential to cell division. The cytotoxicity was maximal with metoclopramide, and this effect was minimally influenced by bafilomycin A1; furthermore, metoclopramide (2.5 mM) induced apoptosis in tumor cells as judged by poly(ADP-ribose)polymerase (PARP) cleavage. Triethylamine and procainamide exhibit a low level of cytotoxicity variably reduced by bafilomycin co-treatment. In Morris cells, the secretion of alpha-fetoprotein is inhibited by amines, consistent with the impairment of the secretory pathway. The most highly substituted 4-aminobenzamides are significant NF-kappaB inhibitors in smooth muscle cells. Although some effects of 4-aminobenzamides are independent of V-ATPase-driven ion trapping (inhibition of NF-kappaB nuclear translocation, agent-specific cytotoxicity, PARP cleavage), other effects are dependent on this phenomenon (vacuolization, a component of the cytotoxicity, inhibition of secretion).
Collapse
Affiliation(s)
- Guillaume Morissette
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, 2705 Laurier Blvd., Québec, QC, Canada G1V 4G2
| | | | | | | |
Collapse
|
5
|
Pleguezuelos O, Hagi-Pavli E, Crowther G, Kapas S. Adrenomedullin signals through NF-kappaB in epithelial cells. FEBS Lett 2005; 577:249-54. [PMID: 15527794 DOI: 10.1016/j.febslet.2004.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 10/08/2004] [Accepted: 10/08/2004] [Indexed: 11/16/2022]
Abstract
Adrenomedullin is a peptide found in a variety of cells and tissues and involved in a multitude of biological processes. Recently, adrenomedullin has been identified as a host defense peptide and as such it plays a role in the inflammatory response. The transcription factor NF-kappaB is a major regulator of genes involved in the inflammatory response and the aim of this study was to determine whether NF-kappaB played a role in the inflammatory process triggered by adrenomedullin. Skin epithelial cells (HaCaTs) were used as our model in vitro. Western blot analysis from adrenomedullin-stimulated HaCaT cells revealed a rapid degradation of NF-kappaB inhibitor alpha and beta followed by the translocation of free NF-kappaB to the nucleus, where it was detected by Texas Red immunostaining after incubation with adrenomedullin for 15 min. Electromobility shift assay showed that NF-kappaB present in the nucleus was active, since it bound to a probe containing an NF-kappaB binding site. Supershift assays indicated that p50 and p65, members of the NF-kappaB family, were both part of the NF-kappaB dimmers involved in adrenomedullin cell signaling. HaCaTs secreted interleukin-6 in response to AM, which was significantly attenuated by the NF-kappaB inhibitor SN-50. Taken together, the data lend support for an immunoregulatory role for AM.
Collapse
Affiliation(s)
- Olga Pleguezuelos
- Molecular Signalling Group, Clinical and Diagnostic Oral Sciences, Barts & the London, Queen Mary University of London, 2 Newark street, London E1 2AD, UK
| | | | | | | |
Collapse
|
6
|
Lazar C, Kluczyk A, Kiyota T, Konishi Y. Drug Evolution Concept in Drug Design: 1. Hybridization Method†. J Med Chem 2004; 47:6973-82. [PMID: 15615546 DOI: 10.1021/jm049637+] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel concept, "drug evolution", is proposed to develop chemical libraries that have a high probability of finding drugs or drug candidates. It converts biological evolution into chemical evolution. In this paper, we present "hybridization" drug evolution, which is the equivalent of sexual recombination of parental genomes in biological evolution. The hybridization essentially shuffles the building blocks of the parent drugs and ought to drug(s); no drug evolution can otherwise occur. We hybridized two drugs, benzocaine and metoclopramide and generated 16 molecules that include the parent drugs, four known drugs, and two molecules whose therapeutic activities are reported. The unusually high number of drugs and drug candidates in the library encourages high expectations of finding new drug(s) or drug candidate(s) within the remaining eight compounds. Interestingly, the therapeutic applications of the eight drugs or drug candidates in the library are fairly diverse as 38 therapeutic applications and 25 molecular targets are counted. Therefore, the library fits as a general chemical library for unspecified therapeutic activities. The hybridization of other two drugs, aspirin and cresotamide, is also described to demonstrate the generality of the method.
Collapse
Affiliation(s)
- Carmen Lazar
- Biotechnology Research Institute, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2
| | | | | | | |
Collapse
|