1
|
Chen L, Ballout F, Lu H, Hu T, Zhu S, Chen Z, Peng D. Differential Expression of NEK Kinase Family Members in Esophageal Adenocarcinoma and Barrett's Esophagus. Cancers (Basel) 2023; 15:4821. [PMID: 37835513 PMCID: PMC10571661 DOI: 10.3390/cancers15194821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) has risen rapidly during the past four decades, making it the most common type of esophageal cancer in the USA and Western countries. The NEK (Never in mitosis A (NIMA) related kinase) gene family is a group of serine/threonine kinases with 11 members. Aberrant expression of NEKs has been recently found in a variety of human cancers and plays important roles in tumorigenesis, progression, and drug-resistance. However, the expression of the NEKs in EAC and its precancerous condition (Barrett's esophagus, BE) has not been investigated. In the present study, we first analyzed the TCGA and 9 GEO databases (a total of 10 databases in which 8 contain EAC and 6 contain BE) using bioinformatic approaches for NEKs expression in EAC and BE. We identified that several NEK members, such as NEK2 (7/8), NEK3 (6/8), and NEK6 (6/8), were significantly upregulated in EAC as compared to normal esophagus samples. Alternatively, NEK1 was downregulated in EAC as compared to the normal esophagus. On the contrary, genomic alterations of these NEKs are not frequent in EAC. We validated the above findings using qRT-PCR and the protein expression of NEKs in EAC cell lines using Western blotting and in primary EAC tissues using immunohistochemistry and immunofluorescence. Our data suggest that frequent upregulation of NEK2, NEK3, and NEK7 may be important in EAC.
Collapse
Affiliation(s)
- Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Tianling Hu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Shoumin Zhu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
2
|
Jeltema D, Wang J, Cai J, Kelley N, Yang Z, He Y. A Single Amino Acid Residue Defines the Difference in NLRP3 Inflammasome Activation between NEK7 and NEK6. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2029-2036. [PMID: 35354613 PMCID: PMC9012696 DOI: 10.4049/jimmunol.2101154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/13/2022] [Indexed: 11/19/2022]
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a critical component of the innate immune system that is activated by microbial infections and cellular stress signals. The molecular mechanism of NLRP3 inflammasome activation remains not fully understood. As an NLRP3-interacting partner, NEK7 has emerged as a critical mediator for NLRP3 inflammasome activation. In contrast to NEK7, NEK6, the closely related member of the NEK family, does not support NLRP3 inflammasome activation. In this study, we show that the mouse NEK7 catalytic domain, which shares high sequence identity with the counterpart of NEK6, mediates its interaction with NLRP3 and inflammasome activation in mouse macrophages. Within their catalytic domains, a single amino acid residue at a corresponding position (R121NEK7, Q132NEK6) differentiates their function in NLRP3 inflammasome activation. Surprisingly, substitution of the glutamine residue to an arginine residue at position 132 confers NEK6 the ability of NLRP3 binding and inflammasome activation in mouse macrophages. Furthermore, our results suggest a structural pocket surrounding the residue R121 of NEK7 that is essential for NLRP3 binding and inflammasome activation.
Collapse
Affiliation(s)
- Devon Jeltema
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| | - Jihong Wang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| | - Juan Cai
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| | - Nathan Kelley
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| | - Yuan He
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI
| |
Collapse
|
3
|
In Mitosis You Are Not: The NIMA Family of Kinases in Aspergillus, Yeast, and Mammals. Int J Mol Sci 2022; 23:ijms23074041. [PMID: 35409400 PMCID: PMC8999480 DOI: 10.3390/ijms23074041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
The Never in mitosis gene A (NIMA) family of serine/threonine kinases is a diverse group of protein kinases implicated in a wide variety of cellular processes, including cilia regulation, microtubule dynamics, mitotic processes, cell growth, and DNA damage response. The founding member of this family was initially identified in Aspergillus and was found to play important roles in mitosis and cell division. The yeast family has one member each, Fin1p in fission yeast and Kin3p in budding yeast, also with functions in mitotic processes, but, overall, these are poorly studied kinases. The mammalian family, the main focus of this review, consists of 11 members named Nek1 to Nek11. With the exception of a few members, the functions of the mammalian Neks are poorly understood but appear to be quite diverse. Like the prototypical NIMA, many members appear to play important roles in mitosis and meiosis, but their functions in the cell go well beyond these well-established activities. In this review, we explore the roles of fungal and mammalian NIMA kinases and highlight the most recent findings in the field.
Collapse
|
4
|
Pavan ICB, Peres de Oliveira A, Dias PRF, Basei FL, Issayama LK, Ferezin CDC, Silva FR, Rodrigues de Oliveira AL, Alves dos Reis Moura L, Martins MB, Simabuco FM, Kobarg J. On Broken Ne(c)ks and Broken DNA: The Role of Human NEKs in the DNA Damage Response. Cells 2021; 10:507. [PMID: 33673578 PMCID: PMC7997185 DOI: 10.3390/cells10030507] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
NIMA-related kinases, or NEKs, are a family of Ser/Thr protein kinases involved in cell cycle and mitosis, centrosome disjunction, primary cilia functions, and DNA damage responses among other biological functional contexts in vertebrate cells. In human cells, there are 11 members, termed NEK1 to 11, and the research has mainly focused on exploring the more predominant roles of NEKs in mitosis regulation and cell cycle. A possible important role of NEKs in DNA damage response (DDR) first emerged for NEK1, but recent studies for most NEKs showed participation in DDR. A detailed analysis of the protein interactions, phosphorylation events, and studies of functional aspects of NEKs from the literature led us to propose a more general role of NEKs in DDR. In this review, we express that NEK1 is an activator of ataxia telangiectasia and Rad3-related (ATR), and its activation results in cell cycle arrest, guaranteeing DNA repair while activating specific repair pathways such as homology repair (HR) and DNA double-strand break (DSB) repair. For NEK2, 6, 8, 9, and 11, we found a role downstream of ATR and ataxia telangiectasia mutated (ATM) that results in cell cycle arrest, but details of possible activated repair pathways are still being investigated. NEK4 shows a connection to the regulation of the nonhomologous end-joining (NHEJ) repair of DNA DSBs, through recruitment of DNA-PK to DNA damage foci. NEK5 interacts with topoisomerase IIβ, and its knockdown results in the accumulation of damaged DNA. NEK7 has a regulatory role in the detection of oxidative damage to telomeric DNA. Finally, NEK10 has recently been shown to phosphorylate p53 at Y327, promoting cell cycle arrest after exposure to DNA damaging agents. In summary, this review highlights important discoveries of the ever-growing involvement of NEK kinases in the DDR pathways. A better understanding of these roles may open new diagnostic possibilities or pharmaceutical interventions regarding the chemo-sensitizing inhibition of NEKs in various forms of cancer and other diseases.
Collapse
Affiliation(s)
- Isadora Carolina Betim Pavan
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Andressa Peres de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Pedro Rafael Firmino Dias
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Fernanda Luisa Basei
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Luidy Kazuo Issayama
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Camila de Castro Ferezin
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | - Fernando Riback Silva
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Ana Luisa Rodrigues de Oliveira
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Lívia Alves dos Reis Moura
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
| | - Mariana Bonjiorno Martins
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| | | | - Jörg Kobarg
- Graduate Program in “Ciências Farmacêuticas”, School of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, State University of Campinas (UNICAMP), R. Cândido Portinari 200, Prédio 2, Campinas CEP 13083-871, Brazil; (I.C.B.P.); (A.P.d.O.); (P.R.F.D.); (F.L.B.); (L.K.I.); (F.R.S.); (A.L.R.d.O.); (L.A.d.R.M.); (M.B.M.)
- Graduate Program in “Biologia Funcional e Molecular”, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-857, Brazil;
| |
Collapse
|
5
|
Sun Z, Gong W, Zhang Y, Jia Z. Physiological and Pathological Roles of Mammalian NEK7. Front Physiol 2020; 11:606996. [PMID: 33364979 PMCID: PMC7750478 DOI: 10.3389/fphys.2020.606996] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
NEK7 is the smallest NIMA-related kinase (NEK) in mammals. The pathological and physiological roles of NEK7 have been widely reported in many studies. To date, the major function of NEK7 has been well documented in mitosis and NLRP3 inflammasome activation, but the detailed mechanisms of its regulation remain unclear. This review summarizes current advances in NEK7 research involving mitotic regulation, NLRP3 inflammasome activation, related diseases and potential inhibitors, which may provide new insights into the understanding and therapy of the diseases associated with NEK7, as well as the subsequent studies in the future.
Collapse
Affiliation(s)
- Zhenzhen Sun
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wei Gong
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Chen Y, Meng J, Bi F, Li H, Chang C, Ji C, Liu W. EK7 Regulates NLRP3 Inflammasome Activation and Neuroinflammation Post-traumatic Brain Injury. Front Mol Neurosci 2019; 12:202. [PMID: 31555089 PMCID: PMC6727020 DOI: 10.3389/fnmol.2019.00202] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
As one of the most common causes of mortality and disability, traumatic brain injury (TBI) is a huge psychological and economic burden to patients, families, and societies worldwide. Neuroinflammation reduction may be a favorable option to alleviate secondary brain injuries and ameliorate the outcome of TBI. The nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome, has been shown to be involved in TBI. NIMA-related kinase 7 (NEK7) has been verified as an essential mediator of NLRP3 inflammasome activation that is recruited upstream of the formation of inflammasomes in response to NLRP3 activators. However, the underlying mechanism by which NEK7 operates post-TBI remains undefined. In this study, we performed both in vivo and in vitro experiments. Using an in vivo mouse TBI model, mice were administered an intracerebroventricular injection of NEK7-shRNA virus. For the in vitro analysis, primary cortical neurons with NEK7-shRNA were stimulated with lipopolysaccharide (LPS)/ATP or potassium (K+). We evaluated the effects of NEK7 knock-down on neurological deficits, NLRP3 inflammasomes, caspase-1 activation, and neuronal injury. During the 0–168 h post-TBI period in vivo, NEK7 and NLRP3 inflammasome activation increased in what appeared to be a time-dependent manner. As well as pyroptosis-related markers, caspase-1 activation (p20) and interleukin-1β (IL-1β) activation (p17) were up-regulated. NEK7 down-regulation attenuated neurological deficits, NLRP3 inflammasomes, caspase-1 activation, and neuronal injury. The same phenomena were observed during the in vitro experiments. Furthermore, NEK7 knock-down suppressed NLRP3 inflammasome activation and pyroptosis, which were triggered by K+ efflux, and the LPS + ATP-triggered NEK7–NLRP3 complex was reversed in primary cortical neurons placed in 50 mM K+ medium. Collectively, the data demonstrated that NEK7, as a modulator, regulates NLRP3 inflammasomes and downstream neuroinflammation in response to K+ efflux, through NEK7–NLRP3 assembly, pro-caspase-1 recruitment, caspase-1 activation, and pyroptosis in nerve injuries, post-TBI. NEK7 may be a potential therapeutic target for attenuating neuroinflammation and nerve injury post-TBI.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China.,Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jiao Meng
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China.,Department of Basic Medical Science Research Center, Shaanxi Fourth People's Hospital, Xi'an, China
| | - Fangfang Bi
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China.,Department of Basic Medical Science Research Center, Shaanxi Fourth People's Hospital, Xi'an, China
| | - Hua Li
- Department of Basic Medical Science Research Center, Shaanxi Fourth People's Hospital, Xi'an, China
| | - Cuicui Chang
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China
| | - Chen Ji
- Department of Central Laboratory, Xi'an Peihua University, Xi'an, China
| | - Wei Liu
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| |
Collapse
|
7
|
Eisa NH, Jilani Y, Kainth K, Redd P, Lu S, Bougrine O, Abdul Sater H, Patwardhan CA, Shull A, Shi H, Liu K, Elsherbiny NM, Eissa LA, El-Shishtawy MM, Horuzsko A, Bollag R, Maihle N, Roig J, Korkaya H, Cowell JK, Chadli A. The co-chaperone UNC45A is essential for the expression of mitotic kinase NEK7 and tumorigenesis. J Biol Chem 2019; 294:5246-5260. [PMID: 30737284 DOI: 10.1074/jbc.ra118.006597] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/18/2019] [Indexed: 12/27/2022] Open
Abstract
Cumulative evidence suggests that the heat shock protein 90 (Hsp90) co-chaperone UNC-45 myosin chaperone A (UNC45A) contributes to tumorigenesis and that its expression in cancer cells correlates with proliferation and metastasis of solid tumors. However, the molecular mechanism by which UNC45A regulates cancer cell proliferation remains largely unknown. Here, using siRNA-mediated gene silencing and various human cells, we report that UNC45A is essential for breast cancer cell growth, but is dispensable for normal cell proliferation. Immunofluorescence microscopy, along with gene microarray and RT-quantitative PCR analyses, revealed that UNC45A localizes to the cancer cell nucleus, where it up-regulates the transcriptional activity of the glucocorticoid receptor and thereby promotes expression of the mitotic kinase NIMA-related kinase 7 (NEK7). We observed that UNC45A-deficient cancer cells exhibit extensive pericentrosomal material disorganization, as well as defects in centrosomal separation and mitotic chromosome alignment. Consequently, these cells stalled in metaphase and cytokinesis and ultimately underwent mitotic catastrophe, phenotypes that were rescued by heterologous NEK7 expression. Our results identify a key role for the co-chaperone UNC45A in cell proliferation and provide insight into the regulatory mechanism. We propose that UNC45A represents a promising new therapeutic target to inhibit cancer cell growth in solid tumor types.
Collapse
Affiliation(s)
- Nada H Eisa
- From the Georgia Cancer Center.,the Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt 35516
| | | | | | | | - Su Lu
- From the Georgia Cancer Center
| | - Oulia Bougrine
- the Department of Pathology, Augusta University, CN-3151, Augusta, Georgia 30912
| | - Houssein Abdul Sater
- the Department of Pathology, Augusta University, CN-3151, Augusta, Georgia 30912
| | | | | | | | - Kebin Liu
- the Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt 35516
| | - Nehal M Elsherbiny
- the Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt 35516
| | - Laila A Eissa
- the Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt 35516
| | - Mamdouh M El-Shishtawy
- the Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt 35516
| | | | - Roni Bollag
- From the Georgia Cancer Center.,the Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt 35516.,the Georgia Cancer Center Biorepository, Augusta University, Augusta, Georgia 30912, and
| | | | - Joan Roig
- the Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, c/Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
8
|
van Ree JH, Nam HJ, van Deursen JM. Mitotic kinase cascades orchestrating timely disjunction and movement of centrosomes maintain chromosomal stability and prevent cancer. Chromosome Res 2016; 24:67-76. [PMID: 26615533 DOI: 10.1007/s10577-015-9501-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Centrosomes are microtubule-organizing centers that duplicate in S phase to form bipolar spindles that separate duplicated chromosomes faithfully into two daughter cells during cell division. Recent studies show that proper timing of centrosome dynamics, the disjunction and movement of centrosomes, is tightly linked to spindle symmetry, correct microtubule-kinetochore attachment, and chromosome segregation. Here, we review mechanisms that regulate centrosome dynamics, with emphasis on the roles of key mitotic kinases in the proper timing of centrosome dynamics and how aberrancies in these processes may cause chromosomal instability and cancer.
Collapse
Affiliation(s)
- Janine H van Ree
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Hyun-Ja Nam
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
de Souza EE, Meirelles GV, Godoy BB, Perez AM, Smetana JHC, Doxsey SJ, McComb ME, Costello CE, Whelan SA, Kobarg J. Characterization of the human NEK7 interactome suggests catalytic and regulatory properties distinct from those of NEK6. J Proteome Res 2014; 13:4074-90. [PMID: 25093993 PMCID: PMC4156247 DOI: 10.1021/pr500437x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human NEK7 is a regulator of cell division and plays an important role in growth and survival of mammalian cells. Human NEK6 and NEK7 are closely related, consisting of a conserved C-terminal catalytic domain and a nonconserved and disordered N-terminal regulatory domain, crucial to mediate the interactions with their respective proteins. Here, in order to better understand NEK7 cellular functions, we characterize the NEK7 interactome by two screening approaches: one using a yeast two-hybrid system and the other based on immunoprecipitation followed by mass spectrometry analysis. These approaches led to the identification of 61 NEK7 interactors that contribute to a variety of biological processes, including cell division. Combining additional interaction and phosphorylation assays from yeast two-hybrid screens, we validated CC2D1A, TUBB2B, MNAT1, and NEK9 proteins as potential NEK7 interactors and substrates. Notably, endogenous RGS2, TUBB, MNAT1, NEK9, and PLEKHA8 localized with NEK7 at key sites throughout the cell cycle, especially during mitosis and cytokinesis. Furthermore, we obtained evidence that the closely related kinases NEK6 and NEK7 do not share common interactors, with the exception of NEK9, and display different modes of protein interaction, depending on their N- and C-terminal regions, in distinct fashions. In summary, our work shows for the first time a comprehensive NEK7 interactome that, combined with functional in vitro and in vivo assays, suggests that NEK7 is a multifunctional kinase acting in different cellular processes in concert with cell division signaling and independently of NEK6.
Collapse
Affiliation(s)
- Edmarcia Elisa de Souza
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais , Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Meirelles GV, Perez AM, de Souza EE, Basei FL, Papa PF, Melo Hanchuk TD, Cardoso VB, Kobarg J. “Stop Ne(c)king around”: How interactomics contributes to functionally characterize Nek family kinases. World J Biol Chem 2014; 5:141-160. [PMID: 24921005 PMCID: PMC4050109 DOI: 10.4331/wjbc.v5.i2.141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/07/2014] [Accepted: 02/18/2014] [Indexed: 02/05/2023] Open
Abstract
Aside from Polo and Aurora, a third but less studied kinase family involved in mitosis regulation is the never in mitosis-gene A (NIMA)-related kinases (Neks). The founding member of this family is the sole member NIMA of Aspergillus nidulans, which is crucial for the initiation of mitosis in that organism. All 11 human Neks have been functionally assigned to one of the three core functions established for this family in mammals: (1) centrioles/mitosis; (2) primary ciliary function/ciliopathies; and (3) DNA damage response (DDR). Recent findings, especially on Nek 1 and 8, showed however, that several Neks participate in parallel in at least two of these contexts: primary ciliary function and DDR. In the core section of this in-depth review, we report the current detailed functional knowledge on each of the 11 Neks. In the discussion, we return to the cross-connections among Neks and point out how our and other groups’ functional and interactomics studies revealed that most Neks interact with protein partners associated with two if not all three of the functional contexts. We then raise the hypothesis that Neks may be the connecting regulatory elements that allow the cell to fine tune and synchronize the cellular events associated with these three core functions. The new and exciting findings on the Nek family open new perspectives and should allow the Neks to finally claim the attention they deserve in the field of kinases and cell cycle biology.
Collapse
|
11
|
Meirelles GV, Silva JC, Mendonça YDA, Ramos CHI, Torriani IL, Kobarg J. Human Nek6 is a monomeric mostly globular kinase with an unfolded short N-terminal domain. BMC STRUCTURAL BIOLOGY 2011; 11:12. [PMID: 21320329 PMCID: PMC3053220 DOI: 10.1186/1472-6807-11-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/14/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND The NIMA-related kinases (Neks) are widespread among eukaryotes. In mammalians they represent an evolutionarily conserved family of 11 serine/threonine kinases, with 40-45% amino acid sequence identity to the Aspergillus nidulans mitotic regulator NIMA within their catalytic domains. Neks have cell cycle-related functions and were recently described as related to pathologies, particularly cancer, consisting in potential chemotherapeutic targets. Human Nek6, -7 and -9 are involved in the control of mitotic spindle formation, acting together in a mitotic kinase cascade, but their mechanism of regulation remain elusive. RESULTS In this study we performed a biophysical and structural characterization of human Nek6 with the aim of obtaining its low resolution and homology models. SAXS experiments showed that hNek6 is a monomer of a mostly globular, though slightly elongated shape. Comparative molecular modeling together with disorder prediction analysis also revealed a flexible disordered N-terminal domain for hNek6, which we found to be important to mediate interactions with diverse partners. SEC-MALS experiments showed that hNek6 conformation is dependent on its activation/phosphorylation status, a higher phosphorylation degree corresponding to a bigger Stokes radius. Circular dichroism spectroscopy confirmed our in silico predictions of secondary structure content and thermal stability shift assays revealed a slightly higher stability of wild-type hNek6 compared to the activation loop mutant hNek6(S206A). CONCLUSIONS Our data present the first low resolution 3D structure of hNek6 protein in solution. SAXS, comparative modeling and SEC-MALS analysis revealed that hNek6 is a monomeric kinase of slightly elongated shape and a short unfolded N-terminal domain.
Collapse
Affiliation(s)
- Gabriela V Meirelles
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| | - Júlio C Silva
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
| | - Yuri de A Mendonça
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Carlos HI Ramos
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
- Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Iris L Torriani
- Laboratório Nacional de Luz Síncrotron, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Instituto de Física "Gleb Wataghin", Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Jörg Kobarg
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, Brazil
- Departamento de Bioquímica-Programa de Pós-graduação em Biologia Funcional e Molecular, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| |
Collapse
|
12
|
Nassirpour R, Shao L, Flanagan P, Abrams T, Jallal B, Smeal T, Yin MJ. Nek6 mediates human cancer cell transformation and is a potential cancer therapeutic target. Mol Cancer Res 2010; 8:717-28. [PMID: 20407017 DOI: 10.1158/1541-7786.mcr-09-0291] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the role of Nek6, a member of the NIMA-related serine/threonine kinase family, in tumorigenesis. Transcript, protein, and kinase activity levels of Nek6 were highly elevated in the malignant tumors and human cancer cell lines compared with normal tissue and fibroblast cells. Expression of exogenous wild-type Nek6 increased anchorage-independent growth of a variety of human cancer cell lines, whereas overexpression of the kinase-dead Nek6 and RNAi knockdown of endogenous Nek6 suppressed cancer cell transformation and induced apoptosis. Additionally, in in vivo xenograft nude mouse model, knockdown of Nek6 in HeLa cells resulted in reduction of tumor size relative to control siRNA tumors. Most importantly, knocking down endogenous Nek6 levels or exogenous expression of the kinase-dead form did not inhibit cell proliferation, nor did it induce apoptosis in normal fibroblast cells. Taken together, our data indicate a pivotal role for Nek6 in tumorigenesis and establish Nek6 as a potential target for treatment of a variety of human cancers.
Collapse
Affiliation(s)
- Rounak Nassirpour
- Pfizer Global Research and Development, La Jolla Laboratories, 10724 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Richards MW, O'Regan L, Mas-Droux C, Blot JM, Cheung J, Hoelder S, Fry AM, Bayliss R. An autoinhibitory tyrosine motif in the cell-cycle-regulated Nek7 kinase is released through binding of Nek9. Mol Cell 2009; 36:560-70. [PMID: 19941817 PMCID: PMC2807034 DOI: 10.1016/j.molcel.2009.09.038] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 07/24/2009] [Accepted: 09/04/2009] [Indexed: 02/06/2023]
Abstract
Mitosis is controlled by multiple protein kinases, many of which are abnormally expressed in human cancers. Nek2, Nek6, Nek7, and Nek9 are NIMA-related kinases essential for proper mitotic progression. We determined the atomic structure of Nek7 and discovered an autoinhibited conformation that suggests a regulatory mechanism not previously described in kinases. Additionally, Nek2 adopts the same conformation when bound to a drug-like molecule. In both structures, a tyrosine side chain points into the active site, interacts with the activation loop, and blocks the alphaC helix. Tyrosine mutants of Nek7 and the related kinase Nek6 are constitutively active. The activity of Nek6 and Nek7, but not the tyrosine mutant, is increased by interaction with the Nek9 noncatalytic C-terminal domain, suggesting a mechanism in which the tyrosine is released from its autoinhibitory position. The autoinhibitory conformation is common to three Neks and provides a potential target for selective kinase inhibitors.
Collapse
Affiliation(s)
- Mark W. Richards
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Laura O'Regan
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Corine Mas-Droux
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Joelle M.Y. Blot
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Jack Cheung
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Swen Hoelder
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Andrew M. Fry
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | - Richard Bayliss
- Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
14
|
The Nek6 and Nek7 protein kinases are required for robust mitotic spindle formation and cytokinesis. Mol Cell Biol 2009; 29:3975-90. [PMID: 19414596 PMCID: PMC2704745 DOI: 10.1128/mcb.01867-08] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nek6 and Nek7 are members of the NIMA-related serine/threonine kinase family. Previous work showed that they contribute to mitotic progression downstream of another NIMA-related kinase, Nek9, although the roles of these different kinases remain to be defined. Here, we carried out a comprehensive analysis of the regulation and function of Nek6 and Nek7 in human cells. By generating specific antibodies, we show that both Nek6 and Nek7 are activated in mitosis and that interfering with their activity by either depletion or expression of reduced-activity mutants leads to mitotic arrest and apoptosis. Interestingly, while completely inactive mutants and small interfering RNA-mediated depletion delay cells at metaphase with fragile mitotic spindles, hypomorphic mutants or RNA interference treatment combined with a spindle assembly checkpoint inhibitor delays cells at cytokinesis. Importantly, depletion of either Nek6 or Nek7 leads to defective mitotic progression, indicating that although highly similar, they are not redundant. Indeed, while both kinases localize to spindle poles, only Nek6 obviously localizes to spindle microtubules in metaphase and anaphase and to the midbody during cytokinesis. Together, these data lead us to propose that Nek6 and Nek7 play independent roles not only in robust mitotic spindle formation but also potentially in cytokinesis.
Collapse
|
15
|
Lee MY, Kim HJ, Kim MA, Jee HJ, Kim AJ, Bae YS, Park JI, Chung JH, Yun J. Nek6 is involved in G2/M phase cell cycle arrest through DNA damage-induced phosphorylation. Cell Cycle 2008; 7:2705-9. [PMID: 18728393 DOI: 10.4161/cc.7.17.6551] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nek6 is a recently identified NIMA-related kinase that is required for mitotic cell cycle progression. In the present study, we examined the role of Nek6 in the DNA damage response. We found that Nek6 is phosphorylated upon IR and UV irradiation through the DNA damage checkpoint in vivo. Nek6 is also directly phosphorylated by the checkpoint kinases Chk1 and Chk2 in vitro. Notably, Nek6 activation during mitosis is completely abolished by IR and UV irradiation. Moreover, the ectopic expression of Nek6 overrides DNA damage-induced G(2)/M arrest. These results suggest that Nek6 is a novel target of the DNA damage checkpoint and that the inhibition of Nek6 activity is required for proper cell cycle arrest in the G(2)/M phase upon DNA damage.
Collapse
Affiliation(s)
- Min-Young Lee
- Department of Biochemistry, College of Medicine, Dong-A University, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Philonenko ES, Volchkov PY, Mufazalov IA, Kiselev SL, Lagarkova MA. Protein kinases predominately expressed in human ES cell lines during differentiation. CELL AND TISSUE BIOLOGY 2007. [DOI: 10.1134/s1990519x07050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
17
|
O'Regan L, Blot J, Fry AM. Mitotic regulation by NIMA-related kinases. Cell Div 2007; 2:25. [PMID: 17727698 PMCID: PMC2018689 DOI: 10.1186/1747-1028-2-25] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 08/29/2007] [Indexed: 11/22/2022] Open
Abstract
The NIMA-related kinases represent a family of serine/threonine kinases implicated in cell cycle control. The founding member of this family, the NIMA kinase of Aspergillus nidulans, as well as the fission yeast homologue Fin1, contribute to multiple aspects of mitotic progression including the timing of mitotic entry, chromatin condensation, spindle organization and cytokinesis. Mammals contain a large family of eleven NIMA-related kinases, named Nek1 to Nek11. Of these, there is now substantial evidence that Nek2, Nek6, Nek7 and Nek9 also regulate mitotic events. At least three of these kinases, as well as NIMA and Fin1, have been localized to the microtubule organizing centre of their respective species, namely the centrosome or spindle pole body. Here, they have important functions in microtubule organization and mitotic spindle assembly. Other Nek kinases have been proposed to play microtubule-dependent roles in non-dividing cells, most notably in regulating the axonemal microtubules of cilia and flagella. In this review, we discuss the evidence that NIMA-related kinases make a significant contribution to the orchestration of mitotic progression and thereby protect cells from chromosome instability. Furthermore, we highlight their potential as novel chemotherapeutic targets.
Collapse
Affiliation(s)
- Laura O'Regan
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Joelle Blot
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Andrew M Fry
- Department of Biochemistry, University of Leicester, Leicester, UK
| |
Collapse
|
18
|
Lee EJ, Hyun SH, Chun J, Kang SS. Human NIMA-related kinase 6 is one of the Fe65 WW domain binding proteins. Biochem Biophys Res Commun 2007; 358:783-8. [PMID: 17512906 DOI: 10.1016/j.bbrc.2007.04.203] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 04/27/2007] [Indexed: 01/30/2023]
Abstract
The Aspergillus nidulans protein NIMA (never in mitosis, gene A) is a protein kinase required for initiation of mitosis, whereas its inactivation is necessary for mitotic exit. Here, we present evidence that human Nek6 is associated with Fe65. Based on the presence of Fe65 WW domain binding motifs ((267)PPLP(270)) in the Nek6 catalytic domain, we observed that Nek6 interacts physically with Fe65 both in vivo and in vitro, using a pull-down approach. Additionally, we detected co-localization of Nek6 and Fe65 via confocal microscopy. Co-localization of Nek6 and Fe65 was disrupted by mutation of the WW domain binding motifs ((267)PPLP(270)). Finally, when transient transfection assays were performed, interaction of Nek6 (wt) with Fe65 induced substantial cell apoptosis, whereas interaction using the Nek6 pplp mutant ((267)PPLP(270) changes (267)APVA(270)) did not. Thus, our observations indicated that Nek6 binds to Fe65 through its (267)PPLP(270) motif and that the protein-protein interaction between Nek6 and Fe65 regulates their subcellular localization and cell apoptosis.
Collapse
Affiliation(s)
- Eun Jeoung Lee
- School of Science Education, Chungbuk National University, Gaeshin-dong, Heungdok-gu, Chongju, Chungbuk 361-763, Republic of Korea
| | | | | | | |
Collapse
|
19
|
Yissachar N, Salem H, Tennenbaum T, Motro B. Nek7 kinase is enriched at the centrosome, and is required for proper spindle assembly and mitotic progression. FEBS Lett 2006; 580:6489-95. [PMID: 17101132 DOI: 10.1016/j.febslet.2006.10.069] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 11/23/2022]
Abstract
Members of the NIMA-related kinases (NRK) family are recently emerging as central regulators of various aspects of the cell cycle. However, the cellular roles of the mammalian NRK, Nek7, remain obscure. We show here that the endogenous Nek7 protein is enriched at the centrosome in a microtubule-independent manner. Overexpression of wt or kinase-defective Nek7 resulted in cells of rounder appearance, and higher proportions of multinuclear and apoptotic cells. Down-regulation of Nek7 using a small interfering RNA approach resulted in a significant increase in mitotic cells presenting multipolar spindle phenotype. These results suggest a role for Nek7 in regulating proper spindle assembly and mitotic progression.
Collapse
Affiliation(s)
- Nissan Yissachar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | |
Collapse
|
20
|
Barash I. Stat5 in the mammary gland: controlling normal development and cancer. J Cell Physiol 2006; 209:305-13. [PMID: 16883580 DOI: 10.1002/jcp.20771] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The signal transducer and activator of transcription (Stat5) funnels extracellular signals of cytokines, hormones, and growth factors into transcriptional activity in the mammary gland. Postnatal development and functionality of this tissue is synchronized with the reproductive cycle. Consequently, Stat5 involvement in lobuloalveolar development, milk-protein synthesis, or tissue remodeling is dictated by the particular reproductive stage. Latent deregulation of Stat5 activity during the reproductive cycle predisposes the tissue to tumorigenesis at a later stage, when the female is no longer fertile. Accumulating data from studies with mouse models and breast-cancer specimens demonstrate a dual role for Stat5 in this context. It causes tumorigenesis, but delays metastasis progression. Consequently, Stat5 activity in breast-cancer specimens marks a better prognosis for survival.
Collapse
Affiliation(s)
- Itamar Barash
- Institute of Animal Science, ARO, The Volcani Center, Bet-Dagan, Israel.
| |
Collapse
|
21
|
Abstract
The Nek family of cell-cycle kinases is widely represented in eukaryotes and includes numerous proteins that were described only recently and remain poorly characterized. Comparing Neks in the context of clades allows us to examine the question of whether microbial eukaryotic Neks, although not strictly orthologs of their vertebrate counterparts, can provide clues to ancestral functions that might be retained in the vertebrate Neks. Relatives of the Nek2/NIMA proteins play important roles at the G2-M transition in nuclear envelope breakdown and centromere separation. Nek6, Nek7 and Nek9 also seem to regulate mitosis. By contrast, Nek1 and Nek8 have been linked with polycystic kidney disease. Results of statistical analysis indicate that the family coevolved with centrioles that function as both microtubule-organizing centers and the basal bodies of cilia. This evolutionary perspective, taken together with functional studies of microbial Neks, provides new insights into the cellular roles of the proteins and disease with which some of them have been linked.
Collapse
Affiliation(s)
- Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| | | |
Collapse
|
22
|
Matsui SI, LaDuca J, Rossi MR, Nowak NJ, Cowell JK. Molecular characterization of a consistent 4.5-megabase deletion at 4q28 in prostate cancer cells. ACTA ACUST UNITED AC 2005; 159:18-26. [PMID: 15860352 DOI: 10.1016/j.cancergencyto.2004.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 09/14/2004] [Accepted: 09/15/2004] [Indexed: 11/21/2022]
Abstract
Spectral karyotyping of prostate cell lines LNCaP, DU145, PC3, and 22RV demonstrated structural chromosome rearrangements involving the distal long arm of chromosome 4. In all but 22RV, these are nonreciprocal translocations between chromosomes 4 and 10. In 22RV, an apparently reciprocal t(2q;4q) is seen. Fluorescence in situ hybridization analysis of the chromosome 4 translocation breakpoints demonstrated that deletions were associated with all of the translocations, resulting in a net loss of chromosome material. Overlapping deletions in 4q28 approximately 34 were seen in LNCap, DU145, and 22RV, which defined an approximately 4.5-megabase pair common region of deletion. The deletion in PC3 was more proximal on 4q, involving the 4q21 approximately q26 region. A meta analysis of high-resolution definition of losses of chromosome material from published studies demonstrates that loss of 4q material may occur in at least 50% of primary tumors. This analysis defines a series of genes in the critical 4q region, which is potentially associated with prostate tumor development.
Collapse
Affiliation(s)
- Sei-Ichi Matsui
- Roswell Park Cancer Institute, Department of Cancer Genetics, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
23
|
Bowers AJ, Boylan JF. Nek8, a NIMA family kinase member, is overexpressed in primary human breast tumors. Gene 2004; 328:135-42. [PMID: 15019993 DOI: 10.1016/j.gene.2003.12.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 10/16/2003] [Accepted: 12/02/2003] [Indexed: 10/26/2022]
Abstract
The family of human Nek (NIMA Related Kinase) kinases currently contains 11 members. We have identified Nek8 as a new member of the Nek kinase family. For many of the Nek family members, primary tumor expression data and function have been limited. However, all of the Nek family proteins share considerable homology with the Never In Mitosis, gene A (NIMA) kinase from the filamentous fungus Aspergillus nidulans. NIMA, as well as its most closely related human ortholog, Nek2, are required for G(2)/M progression and promote centrosome maturation during mitosis. We isolated Nek8 from a primary human colon cDNA library, and found it to be highly homologous to murine Nek8. Recently, a previously named Nek8 sequence was renamed Nek9/Nercc1 in Genbank due to its lack of homology to murine Nek8 and its high homology to murine Nek9. Interestingly, in our study, phylogenetic analysis suggests that human Nek8 and Nek9 form a subfamily within the Nek family. Nek8 has high homology to the Nek family kinase domain as well as to a regulator of chromosome condensation domain (RCC1), which is also present in Nek9. The open reading frame of human Nek8 encodes a 692 amino-acid protein with a calculated molecular weight of 75 kDa. Nek8 is differently expressed between normal human breast tissue and breast tumors. Overexpression of a mutated kinase domain Nek8 in U2-0S cells led to a decrease in actin protein, and a small increase in the level of cdk1/cyclinB1. Our data demonstrate for the first time that Nek8 is a novel tumor associated gene, and shares considerable sequence homology with the Nek family of protein kinases and may be involved in G(2)/M progression.
Collapse
Affiliation(s)
- Alex J Bowers
- Department of Cancer Biology, Amgen Inc, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | |
Collapse
|
24
|
Hidalgo A, Monroy A, Arana RM, Taja L, Vázquez G, Salcedo M. Chromosomal imbalances in four new uterine cervix carcinoma derived cell lines. BMC Cancer 2003; 3:8. [PMID: 12659655 PMCID: PMC153511 DOI: 10.1186/1471-2407-3-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2003] [Accepted: 03/20/2003] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Uterine cervix carcinoma is the second most common female malignancy worldwide and a major health problem in Mexico, representing the primary cause of death among the Mexican female population. High risk human papillomavirus (HPV) infection is considered to be the most important risk factor for the development of this tumor and cervical carcinoma derived cell lines are very useful models for the study of viral carcinogenesis. Comparative Genomic Hybridization (CGH) experiments have detected a specific pattern of chromosomal imbalances during cervical cancer progression, indicating chromosomal regions that might contain genes that are important for cervical transformation. METHODS We performed HPV detection and CGH analysis in order to initiate the genomic characterization of four recently established cervical carcinoma derived cell lines from Mexican patients. RESULTS All the cell lines were HPV18 positive. The most prevalent imbalances in the cell lines were gains in chromosomes 1q23-q32, 3q11.2-q13.1, 3q22-q26.1, 5p15.1-p11.2, this alteration present as a high copy number amplification in three of the cell lines, 7p15-p13, 7q21, 7q31, 11q21, and 12q12, and losses in 2q35-qter, 4p16, 6q26-qter, 9q34 and 19q13.2-qter. CONCLUSIONS Analysis of our present findings and previously reported data suggest that gains at 1q31-q32 and 7p13-p14, as well as losses at 6q26-q27 are alterations that might be unique for HPV18 positive cases. These chromosomal regions, as well as regions with high copy number amplifications, coincide with known fragile sites and known HPV integration sites. The general pattern of chromosomal imbalances detected in the cells resembled that found in invasive cervical tumors, suggesting that the cells represent good models for the study of cervical carcinoma.
Collapse
Affiliation(s)
- Alfredo Hidalgo
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI-IMSS, Mexico
| | - Alberto Monroy
- Laboratorio de Diferenciación Celular y Cáncer, FES Zaragoza, UNAM, Mexico
| | - Rosa Ma Arana
- Servicio de Genética, Hospital General de México, SS, Mexico
| | - Lucía Taja
- División de Investigación Básica, Instituto Nacional de Cancerología, SS, Mexico
| | - Guelaguetza Vázquez
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI-IMSS, Mexico
| | - Mauricio Salcedo
- Laboratorio de Oncología Genómica, Unidad de Investigación Médica en Enfermedades Oncológicas, Hospital de Oncología, Centro Médico Nacional Siglo XXI-IMSS, Mexico
| |
Collapse
|