1
|
Pei J, Kinch LN, Cong Q. Computational analysis of propeptide-containing proteins and prediction of their post-cleavage conformation changes. Proteins 2024; 92:1206-1219. [PMID: 38775337 DOI: 10.1002/prot.26702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/29/2024] [Indexed: 10/26/2024]
Abstract
A propeptide is removed from a precursor protein to generate its active or mature form. Propeptides play essential roles in protein folding, transportation, and activation and are present in about 2.3% of reviewed proteins in the UniProt database. They are often found in secreted or membrane-bound proteins including proteolytic enzymes, hormones, and toxins. We identified a variety of globular and nonglobular Pfam domains in protein sequences designated as propeptides, some of which form intramolecular interactions with other domains in the mature proteins. Propeptide-containing enzymes mostly function as proteases, as they are depleted in other enzyme classes such as hydrolases acting on DNA and RNA, isomerases, and lyases. We applied AlphaFold to generate structural models for over 7000 proteins with propeptides having no less than 20 residues. Analysis of residue contacts in these models revealed conformational changes for over 300 proteins before and after the cleavage of the propeptide. Examples of conformation change occur in several classes of proteolytic enzymes in the families of subtilisins, trypsins, aspartyl proteases, and thermolysin-like metalloproteases. In most of the observed cases, cleavage of the propeptide releases the constraints imposed by the covalent bond between the propeptide and the mature protein, and cleavage enables stronger interactions between the propeptide and the mature protein. These findings suggest that post-cleavage propeptides could play critical roles in regulating the activity of mature proteins.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N Kinch
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Nwankwo C, Hou J, Cui HL. Extracellular proteases from halophiles: diversity and application challenges. Appl Microbiol Biotechnol 2023; 107:5923-5934. [PMID: 37566160 DOI: 10.1007/s00253-023-12721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Halophilic extracellular proteases offer promising application in various fields. Information on these prominent proteins including the synthesizing organisms, biochemical properties, domain organisation, purification, and application challenges has never been covered in recent reviews. Although extracellular proteases from bacteria pioneered the study of proteases in halophiles, progress is being made in proteases from halophilic archaea. Recent advances in extracellular proteases from archaea revealed that archaeal proteases are more robust and applicable. Extracellular proteases are composed of domains that determine their mechanisms of action. The intriguing domain structure of halophilic extracellular proteases consists of N-terminal domain, catalytic domain, and C-terminal extension. The role of C-terminal domains varies among different organisms. A high diversity of C-terminal domains would endow the proteases with diverse functions. With the development of genomics, culture-independent methods involving heterologous expression, affinity chromatography, and in vitro refolding are deployed with few challenges on purification and presenting novel research opportunities. Halophilic extracellular proteases have demonstrated remarkable potentials in industries such as detergent, leather, peptide synthesis, and biodegradation, with desirable properties and ability to withstand harsh industrial processes. KEY POINTS: • Halophilic extracellular proteases have robust properties suitable for applications. • A high diversity of C-terminal domains may endow proteases with diverse properties. • Novel protease extraction methods present novel application opportunities.
Collapse
Affiliation(s)
- Chidiebele Nwankwo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China
- Natural Sciences Unit, School of General Studies, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, 410002, Enugu State, Nigeria
| | - Jing Hou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Wysocka A, Jagielska E, Łężniak Ł, Sabała I. Two New M23 Peptidoglycan Hydrolases With Distinct Net Charge. Front Microbiol 2021; 12:719689. [PMID: 34630350 PMCID: PMC8498115 DOI: 10.3389/fmicb.2021.719689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial peptidoglycan hydrolases play an essential role in cell wall metabolism during bacterial growth, division, and elongation (autolysins) or in the elimination of closely related species from the same ecological niche (bacteriocins). Most studies concerning the peptidoglycan hydrolases present in Gram-positive bacteria have focused on clinically relevant Staphylococcus aureus or the model organism Bacillus subtilis, while knowledge relating to other species remains limited. Here, we report two new peptidoglycan hydrolases from the M23 family of metallopeptidases derived from the same staphylococcal species, Staphylococcus pettenkoferi. They share modular architecture, significant sequence identity (60%), catalytic and binding residue conservation, and similar modes of activation, but differ in gene distribution, putative biological role, and, strikingly, in their isoelectric points (pIs). One of the peptides has a high pI, similar to that reported for all M23 peptidases evaluated to date, whereas the other displays a low pI, a unique feature among M23 peptidases. Consequently, we named them SpM23_B (Staphylococcus pettenkoferi M23 "Basic") and SpM23_A (Staphylococcus pettenkoferi M23 "Acidic"). Using genetic and biochemical approaches, we have characterized these two novel lytic enzymes, both in vitro and in their physiological context. Our study presents a detailed characterization of two novel and clearly distinct peptidoglycan hydrolases to understand their role in bacterial physiology.
Collapse
Affiliation(s)
- Alicja Wysocka
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Łukasz Łężniak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Cheng JH, Wang Y, Zhang XY, Sun ML, Zhang X, Song XY, Zhang YZ, Zhang Y, Chen XL. Characterization and Diversity Analysis of the Extracellular Proteases of Thermophilic Anoxybacillus caldiproteolyticus 1A02591 From Deep-Sea Hydrothermal Vent Sediment. Front Microbiol 2021; 12:643508. [PMID: 33796092 PMCID: PMC8007923 DOI: 10.3389/fmicb.2021.643508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Protease-producing bacteria play key roles in the degradation of marine organic nitrogen. Although some deep-sea bacteria are found to produce proteases, there has been no report on protease-secreting Anoxybacillus from marine hydrothermal vent regions. Here, we analyzed the diversity and functions of the proteases, especially the extracellular proteases, of Anoxybacillus caldiproteolyticus 1A02591, a protease-secreting strain isolated from a deep-sea hydrothermal vent sediment of the East Pacific Ocean. Strain 1A02591 is a thermophilic bacterium with a strong protease-secreting ability, which displayed the maximum growth rate (0.139 h–1) and extracellular protease production (307.99 U/mL) at 55°C. Strain 1A02591 contains 75 putative proteases, including 65 intracellular proteases and 10 extracellular proteases according to signal peptide prediction. When strain 1A02591 was cultured with casein, 12 proteases were identified in the secretome, in which metalloproteases (6/12) and serine proteases (4/12) accounted for the majority, and a thermolysin-like protease of the M4 family was the most abundant, suggesting that strain 1A02591 mainly secreted a thermophilic metalloprotease. Correspondingly, the secreted proteases of strain 1A02591 showed the highest activity at the temperature as high as 70°C, and was inhibited 70% by metalloprotease inhibitor o-phenanthroline and 50% by serine protease inhibitor phenylmethylsulfonyl fluoride. The secreted proteases could degrade different proteins, suggesting the role of strain 1A02591 in organic nitrogen degradation in deep-sea hydrothermal ecosystem. These results provide the first insight into the proteases of an Anoxybacillus strain from deep-sea hydrothermal ecosystem, which is helpful in understanding the function of Anoxybacillus in the marine biogeochemical cycle.
Collapse
Affiliation(s)
- Jun-Hui Cheng
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yan Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiao-Yu Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Mei-Ling Sun
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xia Zhang
- Department of Molecular Biology, Qingdao Vland Biotech Inc., Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Hasan R, Rony MNH, Ahmed R. In silico characterization and structural modeling of bacterial metalloprotease of family M4. J Genet Eng Biotechnol 2021; 19:25. [PMID: 33528696 PMCID: PMC7851659 DOI: 10.1186/s43141-020-00105-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 12/15/2020] [Indexed: 01/20/2023]
Abstract
BACKGROUND The M4 family of metalloproteases is comprised of a large number of zinc-containing metalloproteases. A large number of these enzymes are important virulence factors of pathogenic bacteria and therefore potential drug targets. Whereas some enzymes have potential for biotechnological applications, the M4 family of metalloproteases is known almost exclusively from bacteria. The aim of the study was to identify the structure and properties of M4 metalloprotease proteins. RESULTS A total of 31 protein sequences of M4 metalloprotease retrieved from UniProt representing different species of bacteria have been characterized for various physiochemical properties. They were thermostable, hydrophillic protein of a molecular mass ranging from 38 to 66 KDa. Correlation on the basis of both enzymes and respective genes has also been studied by phylogenetic tree. B. cereus M4 metalloprotease (PDB ID: 1NPC) was selected as a representative species for secondary and tertiary structures among the M4 metalloprotease proteins. The secondary structure displaying 11 helices (H1-H11) is involved in 15 helix-helix interactions, while 4 β-sheet motifs composed of 15 β-strands in PDBsum. Possible disulfide bridges were absent in most of the cases. The tertiary structure of B. cereus M4 metalloprotease was validated by QMEAN4 and SAVES server (Ramachandran plot, verify 3D, and ERRAT) which proved the stability, reliability, and consistency of the tertiary structure of the protein. Functional analysis was done in terms of membrane protein topology, disease-causing region prediction, proteolytic cleavage sites prediction, and network generation. Transmembrane helix prediction showed absence of transmembrane helix in protein. Protein-protein interaction networks demonstrated that bacillolysin of B. cereus interacted with ten other proteins in a high confidence score. Five disorder regions were identified. Active sites analysis showed the zinc-binding residues-His-143, His-147, and Glu-167, with Glu-144 acting as the catalytic residues. CONCLUSION Moreover, this theoretical overview will help researchers to get a details idea about the protein structure and it may also help to design enzymes with desirable characteristics for exploiting them at industrial level or potential drug targets.
Collapse
Affiliation(s)
- Rajnee Hasan
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207 Bangladesh
| | - Md. Nazmul Haq Rony
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207 Bangladesh
| | - Rasel Ahmed
- Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka, 1207 Bangladesh
| |
Collapse
|
6
|
Okai M, Onoue C, Tsuda R, Ishigami C, Yoshida-Mishima C, Urano N, Kato C, Ishida M. Q301P mutant of Vibrio PR protease affects activities under low-temperature and high-pressure conditions. J Biosci Bioeng 2020; 130:341-346. [PMID: 32611521 DOI: 10.1016/j.jbiosc.2020.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
We characterized a protease of the M4 family from the cold-adapted Vibrio sp. Pr21 that was isolated from seawater at 320-m deep in Sagami Bay, Japan, and named it as PR protease based on the strain name Pr21. The PR protease had activities at 10-60 °C and 0.1-350 MPa, with the optimal temperature and pressure at 40 °C and 250 MPa. The mutant 10C9 (Q301P) obtained by error-prone PCR had higher activities than the wild-type enzyme at 10-60 °C, and the Q301P mutation contributed to the increase of the activity. The specific activity value of 10C9 was also higher than that of the wild-type enzyme at 0.1-200 MPa, but the specific activity ratios (1.28-1.59) of 10C9/wild-type enzyme at 50-200 MPa at 30 °C were smaller than those at 10-60 °C (1.73-4.39) at 0.1 MPa. The catalytic efficiency value of 10C9 was lower than that of the wild-type enzyme at 200 MPa. The homology models of PR protease suggested that the side chain of Q301 was hydrogen-bonded with the carbonyl oxygen atom of the main chain of N234 in the wild-type enzyme, and P301 had no contact with N234 in 10C9. The break of the hydrogen bond in 10C9 might strengthen the increase of the flexibility of the β-sheet near the substrate binding pocket under high-temperature conditions, whereas the flexibility of the β-sheet in 10C9 might be moderately increased compared to that in the wild-type enzyme under high-pressure conditions.
Collapse
Affiliation(s)
- Masahiko Okai
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Chiori Onoue
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Ryo Tsuda
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Chihiro Ishigami
- School of Marine Science, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Chie Yoshida-Mishima
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Naoto Urano
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Chiaki Kato
- Department of Marine Biodiversity Research, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
| | - Masami Ishida
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
7
|
Galdino ACM, de Oliveira MP, Ramalho TC, de Castro AA, Branquinha MH, Santos ALS. Anti-Virulence Strategy against the Multidrug-Resistant Bacterial Pathogen Pseudomonas aeruginosa: Pseudolysin (Elastase B) as a Potential Druggable Target. Curr Protein Pept Sci 2019; 20:471-487. [PMID: 30727891 DOI: 10.2174/1389203720666190207100415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is a non-fermentative, gram-negative bacterium that is one of the most common pathogens responsible for hospital-acquired infections worldwide. The management of the infections caused by P. aeruginosa represents a huge challenge in the healthcare settings due to the increased emergence of resistant isolates, some of them resistant to all the currently available antimicrobials, which results in elevated morbimortality rates. Consequently, the development of new therapeutic strategies against multidrug-resistant P. aeruginosa is urgent and needful. P. aeruginosa is wellrecognized for its extreme genetic versatility and its ability to produce a lush variety of virulence factors. In this context, pseudolysin (or elastase B) outstands as a pivotal virulence attribute during the infectious process, playing multifunctional roles in different aspects of the pathogen-host interaction. This protein is a 33-kDa neutral zinc-dependent metallopeptidase that is the most abundant peptidase found in pseudomonal secretions, which contributes to the invasiveness of P. aeruginosa due to its ability to cleave several extracellular matrix proteins and to disrupt the basolateral intercellular junctions present in the host tissues. Moreover, pseudolysin makes P. aeruginosa able to overcome host defenses by the hydrolysis of many immunologically relevant molecules, including antibodies and complement components. The attenuation of this striking peptidase therefore emerges as an alternative and promising antivirulence strategy to combat antibiotic-refractory infections caused by P. aeruginosa. The anti-virulence approach aims to disarm the P. aeruginosa infective arsenal by inhibiting the expression/activity of bacterial virulence factors in order to reduce the invasiveness of P. aeruginosa, avoiding the emergence of resistance since the proliferation is not affected. This review summarizes the most relevant features of pseudolysin and highlights this enzyme as a promising target for the development of new anti-virulence compounds.
Collapse
Affiliation(s)
- Anna Clara M Galdino
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus P de Oliveira
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, United States
| | - Teodorico C Ramalho
- Departamento de Quimica, Universidade Federal de Lavras, Minas Gerais, Brazil
| | | | - Marta H Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André L S Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Na Pombejra S, Jamklang M, Uhrig JP, Vu K, Gelli A. The structure-function analysis of the Mpr1 metalloprotease determinants of activity during migration of fungal cells across the blood-brain barrier. PLoS One 2018; 13:e0203020. [PMID: 30161190 PMCID: PMC6117016 DOI: 10.1371/journal.pone.0203020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Cryptococcal meningoencephalitis, the most common form of cryptococcosis, is caused by the opportunistic fungal pathogen, Cryptococcus neoformans. Molecular strategies used by C. neoformans to invade the central nervous system (CNS) have been the focus of several studies. Recently, the role of a novel secreted metalloprotease (Mpr1) in the pathogenicity of C. neoformans was confirmed by studies demonstrating that Mpr1 mediated the migration of fungal cells into the CNS. Given this central function, the aim here was to identify the molecular determinants of Mpr1 activity and resolve their role in the migration of cryptococci across the blood-brain barrier (BBB). The Mpr1 protein belongs to an understudied group of metalloproteases of the M36 class of fungalysins unique to fungi. They are generally synthesized as propeptides with fairly long prodomains and highly conserved regions within their catalytic core. Through structure-function analysis of Mpr1, our study identified the prodomain cleavage sites of Mpr1 and demonstrated that when mutated, the prodomain appears to remain attached to the catalytic C-terminus of Mpr1 rendering a nonfunctional Mpr1 protein and an inability for cryptococci to cross the BBB. We found that proteolytic activity of Mpr1 was dependent on the coordination of zinc with two histidine residues in the active site of Mpr1, since amino acid substitutions in the HExxH motif abolished Mpr1 proteolytic activity and prevented the migration of cryptococci across the BBB. A phylogenetic analysis of Mpr1 revealed a distinct pattern likely reflecting the neurotropic nature of C. neoformans and the specific function of Mpr1 in breaching the BBB. This study contributes to a deeper understanding of the molecular regulation of Mpr1 activity and may lead to the development of specific inhibitors that could be used to restrict fungal penetration of the CNS and thus prevent cryptococcal meningoencephalitis-related deaths.
Collapse
Affiliation(s)
- Sarisa Na Pombejra
- Department of Pharmacology, School of Medicine, University of California, Davis, California, United States of America
| | - Mantana Jamklang
- Department of Pharmacology, School of Medicine, University of California, Davis, California, United States of America
| | - John P. Uhrig
- Department of Pharmacology, School of Medicine, University of California, Davis, California, United States of America
| | - Kiem Vu
- Department of Pharmacology, School of Medicine, University of California, Davis, California, United States of America
| | - Angie Gelli
- Department of Pharmacology, School of Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
9
|
Graf A, Lewis RJ, Fuchs S, Pagels M, Engelmann S, Riedel K, Pané-Farré J. The hidden lipoproteome of Staphylococcus aureus. Int J Med Microbiol 2018; 308:569-581. [PMID: 29454809 DOI: 10.1016/j.ijmm.2018.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 01/27/2018] [Indexed: 01/11/2023] Open
Abstract
Lipoproteins are attached to the outer leaflet of the membrane by a di- or tri-acylglyceryl moiety and are thus positioned in the membrane-cell wall interface. Consequently, lipoproteins are involved in many surface associated functions, including cell wall synthesis, electron transport, uptake of nutrients, surface stress response, signal transduction, and they represent a reservoir of bacterial virulence factors. Inspection of 123 annotated Staphylococcus aureus genome sequences in the public domain revealed that this organism devotes about 2-3% of its coding capacity to lipoproteins, corresponding to about 70 lipoproteins per genome. 60 of these lipoproteins were identified in 95% of the genomes analyzed, which thus constitute the core lipoproteome of S. aureus. 30% of the conserved staphylococcal lipoproteins are substrate-binding proteins of ABC transporters with roles in nutrient transport. With a few exceptions, much less is known about the function of the remaining lipoproteins, representing a large gap in our knowledge of this functionally important group of proteins. Here, we summarize current knowledge, and integrate information from genetic context analysis, expression and regulatory data, domain architecture, sequence and structural information, and phylogenetic distribution to provide potential starting points for experimental evaluation of the biological function of the poorly or uncharacterized lipoproteome of S. aureus.
Collapse
Affiliation(s)
- Anica Graf
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institut (RKI), Burgstr. 37, 38855 Wernigerode, Germany
| | - Martin Pagels
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Susanne Engelmann
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Inhoffenstraße 7, 38124 Braunschweig, Germany; Institute for Microbiology, Department of Microbial Proteomics, Technical University Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Jan Pané-Farré
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany.
| |
Collapse
|
10
|
Liu R, Qiu L, Cheng Q, Zhang H, Wang L, Song L. Evidence for Cleavage of the Metalloprotease Vsm from Vibrio splendidus Strain JZ6 by an M20 Peptidase (PepT-like Protein) at Low Temperature. Front Microbiol 2016; 7:1684. [PMID: 27826294 PMCID: PMC5078317 DOI: 10.3389/fmicb.2016.01684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
Metalloprotease Vsm is a major extracellular virulence factor of Vibrio splendidus. The toxicity of Vsm from V. splendidus strain JZ6 has been characterized, and production of this virulence factor proved to be temperature-regulated. The present study provides evidence that two forms (JZE1 and JZE2) of Vsm protein exist in extracellular products (ECPs) of strain JZ6, and a significant conversion of these two forms was detected by SDS-PAGE and immunoblotting analyses of samples obtained from cells grown at 4, 10, 16, 20, 24, and 28°C. Mass spectroscopy confirmed that JZE1 was composed only of the peptidase_M4 domain of Vsm, and JZE2 contained both the PepSY domain and the peptidase_M4 domain. An M20 peptidase T-like protein (PepTL) was screened from the transcriptome data of strain JZ6, which was considered as a crucial molecule to produce the active Vsm (JZE1) by cleavage of the propeptide. Similar to that of Vsm, PepTL mRNA accumulation was highest at 4°C (836.82-fold of that at 28°C), decreased with increasing of temperature and reached its lowest level at 28°C. Deletion of the gene encoding the PepTL resulted in a mutant strain that did not produce the JZE1 cleavage product. The peptidase activity of PepTL recombinant protein (rPepTL) was confirmed by cleaving the Vsm in ECPs with an in vitro degradation reaction. These results demonstrate that PepTL participates in activating Vsm in strain JZ6 by proteolytic cleavage at low temperature.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences Qingdao, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences Qingdao, China
| | - Qi Cheng
- School of Food Science and Technology, Dalian Polytechnic University Dalian, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences Qingdao, China
| | - Lingling Wang
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University Dalian, China
| | - Linsheng Song
- Key Laboratory of Mariculture and Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University Dalian, China
| |
Collapse
|
11
|
Mao R, Zhou K, Han Z, Wang Y. Subtilisin QK-2: secretory expression in Lactococcus lactis and surface display onto gram-positive enhancer matrix (GEM) particles. Microb Cell Fact 2016; 15:80. [PMID: 27176475 PMCID: PMC4866291 DOI: 10.1186/s12934-016-0478-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/03/2016] [Indexed: 12/02/2022] Open
Abstract
Background Purified from the supernatant of Bacillus subtilis QK02 culture broth, Subtilisin QK-2 is a type of effective thrombolytic reagent that has great exploitable potential. However, the unbearable flavor that occurs with fermentation and the complicated methods that are required to obtain pure products limit the application of this enzyme. Lactic acid bacteria (LAB)-based delivery vehicles are promising as cheap and safe options for medicinal compounds. The secretory expression and surface display using LAB may popularize Subtilisin QK-2 more easily and conveniently with minimal adverse effects. Results Subtilisin QK-2 was expressed successfully in two forms using lactic acid bacteria. For the secretory expression in Lactococcus lactis, Subtilisin QK-2 was efficiently secreted into the culture using the promoter PnisA and signal peptide SPUsp. The expression levels were not different in L. lactis NZ9000 and NZ3900 without the effect of different selection markers. However, leaky expression was only detected in L. lactis NZ3900. The biological activity of this secreted Subtilisin QK-2 was enhanced by modulating the pH of medium to slightly alkaline during induction and by codon optimization of either the entire gene sequence (qk′) or only the propeptide gene sequence (qkpro′). For surface display onto gram-positive enhancer matrix (GEM) particles, n LysM repeats from the C-terminal region of the major autolysin AcmA of L. lactis were fused to either the C-terminus (n = 1, 3, 5) or the N-terminus (n = 1) of the Subtilisin QK-2. These fusion proteins were secreted into the culture medium, and the QK-3LysM was able to bind to the surface of various LAB GEM particles without a loss of fibrinolytic activity. Furthermore, the binding capacity significantly increased with a higher concentration of QK-3LysM. Compared to the free-form Subtilisin QK-2, the QK-3LysM displayed on the surface of GEM particles was more stable in the simulated gastric juice. Conclusions Combined with the safety and popularity of LAB, Subtilisin QK-2 may be easily applied worldwide to prevent and control thrombosis diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0478-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruifeng Mao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Kangping Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhenwei Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
12
|
Demidyuk IV, Shubin AV, Gasanov EV, Kostrov SV. Propeptides as modulators of functional activity of proteases. Biomol Concepts 2015; 1:305-22. [PMID: 25962005 DOI: 10.1515/bmc.2010.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Most proteases are synthesized in the cell as precursor-containing propeptides. These structural elements can determine the folding of the cognate protein, function as an inhibitor/activator peptide, mediate enzyme sorting, and mediate the protease interaction with other molecules and supramolecular structures. The data presented in this review demonstrate modulatory activity of propeptides irrespective of the specific mechanism of action. Changes in propeptide structure, sometimes minor, can crucially alter protein function in the living organism. Modulatory activity coupled with high variation allows us to consider propeptides as specific evolutionary modules that can transform biological properties of proteases without significant changes in the highly conserved catalytic domains. As the considered properties of propeptides are not unique to proteases, propeptide-mediated evolution seems to be a universal biological mechanism.
Collapse
|
13
|
Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 2015; 14:41. [PMID: 25889252 PMCID: PMC4379949 DOI: 10.1186/s12934-015-0222-8] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/06/2015] [Indexed: 11/13/2022] Open
Abstract
Formation of inclusion bodies in bacterial hosts poses a major challenge for large scale recovery of bioactive proteins. The process of obtaining bioactive protein from inclusion bodies is labor intensive and the yields of recombinant protein are often low. Here we review the developments in the field that are targeted at improving the yield, as well as quality of the recombinant protein by optimizing the individual steps of the process, especially solubilization of the inclusion bodies and refolding of the solubilized protein. Mild solubilization methods have been discussed which are based on the understanding of the fact that protein molecules in inclusion body aggregates have native-like structure. These methods solubilize the inclusion body aggregates while preserving the native-like protein structure. Subsequent protein refolding and purification results in high recovery of bioactive protein. Other parameters which influence the overall recovery of bioactive protein from inclusion bodies have also been discussed. A schematic model describing the utility of mild solubilization methods for high throughput recovery of bioactive protein has also been presented.
Collapse
Affiliation(s)
- Anupam Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Vaibhav Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Arun Kumar Upadhyay
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Surinder Mohan Singh
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Amulya Kumar Panda
- Product Development Cell, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
14
|
Uyguner ZO, Kocaoğlu M, Toksoy G, Basaran S, Kayserili H. Novel indel Mutation in the GDF5 Gene Is Associated with Brachydactyly Type C in a Four-Generation Turkish Family. Mol Syndromol 2014; 5:81-6. [PMID: 24715855 DOI: 10.1159/000357264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2013] [Indexed: 12/24/2022] Open
Abstract
Heterozygous loss-of-function mutations of GDF5 are reported to cause hypoplasia/aplasia of certain skeletal elements (brachydactyly), and heterozygous gain-of-function mutations, occurring either on the gene itself or through the loss of its inhibitor noggin, result in joint fusion (symphalangism). We present here the clinical and molecular investigation of a family with disproportionate shortness of the second and third fingers which comprises 9 variably affected members spanning 4 generations. In this study, we performed clinical and radiographical examinations of 2 patients of this family, sequencing of GDF5 and 3D protein modeling of the wildtype and mutated polypeptide to predict the structural alteration. Diagnoses were compatible with familial brachydactyly type C. GDF5 analysis revealed a novel heterozygous in-frame indel mutation (c.803_ 827del25ins25), involving the propeptide domain of GDF5 that alters the number of random coil and beta-strand structures, creating a 1-turn-helix at the mutated site. The mutation described here is the second indel reported in GDF5. The previously published homozygous indel mutation affected the TGF-beta like domain and was associated with Du Pan syndrome. The novel mutation reported here presents further allelic heterogeneity and a probable intrafamilial variable clinical expressivity of GDF5.
Collapse
Affiliation(s)
- Z O Uyguner
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - M Kocaoğlu
- Department of Orthopedics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - G Toksoy
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - S Basaran
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - H Kayserili
- Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
15
|
Brinkman DL, Konstantakopoulos N, McInerney BV, Mulvenna J, Seymour JE, Isbister GK, Hodgson WC. Chironex fleckeri (box jellyfish) venom proteins: expansion of a cnidarian toxin family that elicits variable cytolytic and cardiovascular effects. J Biol Chem 2014; 289:4798-812. [PMID: 24403082 DOI: 10.1074/jbc.m113.534149] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The box jellyfish Chironex fleckeri produces extremely potent and rapid-acting venom that is harmful to humans and lethal to prey. Here, we describe the characterization of two C. fleckeri venom proteins, CfTX-A (∼40 kDa) and CfTX-B (∼42 kDa), which were isolated from C. fleckeri venom using size exclusion chromatography and cation exchange chromatography. Full-length cDNA sequences encoding CfTX-A and -B and a third putative toxin, CfTX-Bt, were subsequently retrieved from a C. fleckeri tentacle cDNA library. Bioinformatic analyses revealed that the new toxins belong to a small family of potent cnidarian pore-forming toxins that includes two other C. fleckeri toxins, CfTX-1 and CfTX-2. Phylogenetic inferences from amino acid sequences of the toxin family grouped CfTX-A, -B, and -Bt in a separate clade from CfTX-1 and -2, suggesting that the C. fleckeri toxins have diversified structurally and functionally during evolution. Comparative bioactivity assays revealed that CfTX-1/2 (25 μg kg(-1)) caused profound effects on the cardiovascular system of anesthetized rats, whereas CfTX-A/B elicited only minor effects at the same dose. Conversely, the hemolytic activity of CfTX-A/B (HU50 = 5 ng ml(-1)) was at least 30 times greater than that of CfTX-1/2. Structural homology between the cubozoan toxins and insecticidal three-domain Cry toxins (δ-endotoxins) suggests that the toxins have a similar pore-forming mechanism of action involving α-helices of the N-terminal domain, whereas structural diversification among toxin members may modulate target specificity. Expansion of the cnidarian toxin family therefore provides new insights into the evolutionary diversification of box jellyfish toxins from a structural and functional perspective.
Collapse
Affiliation(s)
- Diane L Brinkman
- From the Australian Institute of Marine Science, P.M.B. No 3, Townsville Mail Centre, Townsville, Queensland 4810, Australia
| | | | | | | | | | | | | |
Collapse
|
16
|
Tzanis A, Dalton KA, Hesketh A, den Hengst CD, Buttner MJ, Thibessard A, Kelemen GH. A sporulation-specific, sigF-dependent protein, SspA, affects septum positioning in Streptomyces coelicolor. Mol Microbiol 2013; 91:363-80. [PMID: 24261854 PMCID: PMC4282423 DOI: 10.1111/mmi.12466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2013] [Indexed: 01/17/2023]
Abstract
The RNA polymerase sigma factor SigF controls late development during sporulation in the filamentous bacterium Streptomyces coelicolor. The only known SigF-dependent gene identified so far, SCO5321, is found in the biosynthetic cluster encoding spore pigment synthesis. Here we identify the first direct target for SigF, the gene sspA, encoding a sporulation-specific protein. Bioinformatic analysis suggests that SspA is a secreted lipoprotein with two PepSY signature domains. The sspA deletion mutant exhibits irregular sporulation septation and altered spore shape, suggesting that SspA plays a role in septum formation and spore maturation. The fluorescent translational fusion protein SspA–mCherry localized first to septum sites, then subsequently around the surface of the spores. Both SspA protein and sspA transcription are absent from the sigF null mutant. Moreover, in vitro transcription assay confirmed that RNA polymerase holoenzyme containing SigF is sufficient for initiation of transcription from a single sspA promoter. In addition, in vivo and in vitro experiments showed that sspA is a direct target of BldD, which functions to repress sporulation genes, including whiG, ftsZ and ssgB, during vegetative growth, co-ordinating their expression during sporulation septation.
Collapse
Affiliation(s)
- Angelos Tzanis
- University of East Anglia, Norwich Research Park, Norwich, UK
| | | | | | | | | | | | | |
Collapse
|
17
|
Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor. Appl Environ Microbiol 2012; 79:460-8. [PMID: 23124228 DOI: 10.1128/aem.02551-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some Bacillus thuringiensis strains have high toxicity to nematodes. Nematicidal activity has been found in several families of crystal proteins, such as Cry5, Cry6, and Cry55. The B. thuringiensis strain YBT-1518 has three cry genes that have high nematicidal activity. The whole genome sequence of this strain contains multiple potential virulence factors. To evaluate the pathogenic potential of virulence factors, we focused on a metalloproteinase called Bmp1. It encompasses a consecutive N-terminal signal peptide, an FTP superfamily domain, an M4 neutral protease GluZincin superfamily, two Big-3 superfamily motifs, and a Gram-positive anchor superfamily motif as a C-terminal domain. Here, we showed that purified Bmp1 protein showed metalloproteinase activity and toxicity against Caenorhabditis elegans (the 50% lethal concentration is 610 ± 9.37 μg/ml). In addition, mixing Cry5Ba with Bmp1 protein enhanced the toxicity 7.9-fold (the expected toxicity of the two proteins calculated from their separate toxicities) against C. elegans. Confocal microscopic observation revealed that Bmp1 protein was detected from around the mouth and esophagus to the intestine. Striking microscopic images revealed that Bmp1 degrades intestine tissues, and the Cry5Ba causes intestinal shrinkage from the body wall. Thus, the B. thuringiensis Bmp1 metalloproteinase is a nematicidal virulence factor. These findings give a new insight into the relationship between B. thuringiensis and its host nematodes.
Collapse
|
18
|
Shinde U, Thomas G. Insights from bacterial subtilases into the mechanisms of intramolecular chaperone-mediated activation of furin. Methods Mol Biol 2011; 768:59-106. [PMID: 21805238 DOI: 10.1007/978-1-61779-204-5_4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prokaryotic subtilisins and eukaryotic proprotein convertases (PCs) are two homologous protease subfamilies that belong to the larger ubiquitous super-family called subtilases. Members of the subtilase super-family are produced as zymogens wherein their propeptide domains function as dedicated intramolecular chaperones (IMCs) that facilitate correct folding and regulate precise activation of their cognate catalytic domains. The molecular and cellular determinants that modulate IMC-dependent folding and activation of PCs are poorly understood. In this chapter we review what we have learned from the folding and activation of prokaryotic subtilisin, discuss how this has molded our understanding of furin maturation, and foray into the concept of pH sensors, which may represent a paradigm that PCs (and possibly other IMC-dependent eukaryotic proteins) follow for regulating their biological functions using the pH gradient in the secretory pathway.
Collapse
Affiliation(s)
- Ujwal Shinde
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97229, USA.
| | | |
Collapse
|
19
|
Demidyuk IV, Gromova TY, Polyakov KM, Melik-Adamyan WR, Kuranova IP, Kostrov SV. Crystal structure of the protealysin precursor: insights into propeptide function. J Biol Chem 2009; 285:2003-13. [PMID: 19915005 DOI: 10.1074/jbc.m109.015396] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protealysin (PLN) belongs to the M4 family of peptidases that are commonly known as thermolysin-like proteases (TLPs). All TLPs are synthesized as precursors containing N-terminal propeptides. According to the primary structure of the N-terminal propeptides, the family is divided into two distinct groups. Representatives of the first group including thermolysin and all TLPs with known three-dimensional structures have long prosequences ( approximately 200 amino acids). Enzymes of the second group, whose prototype is protealysin, have short ( approximately 50 amino acids) propeptides. Here, we present the 1.8 A crystal structure of PLN precursor (proPLN), which is the first three-dimensional structure of a TLP precursor. Whereas the structure of the catalytic domain of proPLN is similar overall to previously reported structures of mature TLPs, it has specific features, including the absence of calcium-binding sites, and different structures of the N-terminal region and substrate-binding site. PLN propeptide forms a separate domain in the precursor and likely acts as an inhibitor that blocks the substrate-binding site and fixes the "open" conformation of the active site, which is unfavorable for catalysis. Furthermore the conserved PPL motif identified in our previous studies directly interacts with the S' subsites of the active center being a critical element of the propeptide-catalytic domain interface. Comparison of the primary structures of TLPs with short propeptides suggests that the specific features revealed in the proPLN crystal structure are typical for all protealysin-like enzymes. Thus, such proteins can be considered as a separate subfamily of TLPs.
Collapse
Affiliation(s)
- Ilya V Demidyuk
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow 123182, Russia.
| | | | | | | | | | | |
Collapse
|
20
|
Bjornsdottir B, Fridjonsson OH, Magnusdottir S, Andresdottir V, Hreggvidsson GO, Gudmundsdottir BK. Characterisation of an extracellular vibriolysin of the fish pathogen Moritella viscosa. Vet Microbiol 2009; 136:326-34. [DOI: 10.1016/j.vetmic.2008.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 11/25/2008] [Accepted: 11/28/2008] [Indexed: 01/22/2023]
|
21
|
Gromova TY, Demidyuk IV, Kozlovskiy VI, Kuranova IP, Kostrov SV. Processing of protealysin precursor. Biochimie 2009; 91:639-45. [DOI: 10.1016/j.biochi.2009.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 03/16/2009] [Indexed: 11/24/2022]
|
22
|
Isolation and characterization of metalloproteases with a novel domain structure by construction and screening of metagenomic libraries. Appl Environ Microbiol 2009; 75:2506-16. [PMID: 19218412 DOI: 10.1128/aem.02136-08] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small-insert metagenomic libraries from four samples were constructed by a topoisomerase-based and a T4 DNA ligase-based approach. Direct comparison of both approaches revealed that application of the topoisomerase-based method resulted in a higher number of insert-containing clones per microg of environmental DNA used for cloning and a larger average insert size. Subsequently, the constructed libraries were partially screened for the presence of genes conferring proteolytic activity. The function-driven screen was based on the ability of the library-containing Escherichia coli clones to form halos on skim milk-containing agar plates. The screening of 80,000 E. coli clones yielded four positive clones. Two of the plasmids (pTW2 and pTW3) recovered from positive clones conferred strong proteolytic activity and were studied further. Analysis of the entire insert sequences of pTW2 (28,113 bp) and pTW3 (19,956 bp) suggested that the DNA fragments were derived from members of the genus Xanthomonas. Each of the plasmids harbored one gene (2,589 bp) encoding a metalloprotease (mprA, pTW2; mprB, pTW3). Sequence and biochemical analyses revealed that MprA and MprB are similar extracellular proteases belonging to the M4 family of metallopeptidases (thermolysin-like family). Both enzymes possessed a unique modular structure and consisted of four regions: the signal sequence, the N-terminal proregion, the protease region, and the C-terminal extension. The architecture of the latter region, which was characterized by the presence of two prepeptidase C-terminal domains and one proprotein convertase P domain, is novel for bacterial metalloproteases. Studies with derivatives of MprA and MprB revealed that the C-terminal extension is not essential for protease activity. The optimum pH and temperature of both proteases were 8.0 and 65 degrees C, respectively, when casein was used as substrate.
Collapse
|
23
|
Sonoda H, Sugimura A. Extracellular production of active vibriolysin engineered by random mutagenesis in Escherichia coli. Protein Expr Purif 2008; 62:153-9. [DOI: 10.1016/j.pep.2008.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/04/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
|
24
|
Gromova TY, Demidyuk IV, Kostrov SV, Sosfenov NI, Melik-Adamyan VR, Kuranova IP. Crystallization and preliminary X-ray diffraction study of the protealysin precursor belonging to the peptidase family M4. CRYSTALLOGR REP+ 2008. [DOI: 10.1134/s1063774508050118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Nickerson NN, Joag V, McGavin MJ. Rapid autocatalytic activation of the M4 metalloprotease aureolysin is controlled by a conserved N-terminal fungalysin-thermolysin-propeptide domain. Mol Microbiol 2008; 69:1530-43. [DOI: 10.1111/j.1365-2958.2008.06384.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
|
27
|
Nemoto TK, Ohara-Nemoto Y, Ono T, Kobayakawa T, Shimoyama Y, Kimura S, Takagi T. Characterization of the glutamyl endopeptidase from Staphylococcus aureus expressed in Escherichia coli. FEBS J 2008; 275:573-87. [PMID: 18199287 DOI: 10.1111/j.1742-4658.2007.06224.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
V8 protease, a member of the glutamyl endopeptidase I family, of Staphylococcus aureus V8 strain (GluV8) is widely used for proteome analysis because of its unique substrate specificity and resistance to detergents. In this study, an Escherichia coli expression system for GluV8, as well as its homologue from Staphylococcus epidermidis (GluSE), was developed, and the roles of the prosegments and two specific amino acid residues, Val69 and Ser237, were investigated. C-terminal His(6)-tagged proGluSE was successfully expressed from the full-length sequence as a soluble form. By contrast, GluV8 was poorly expressed by the system as a result of autodegradation; however, it was efficiently obtained by swapping its preprosegment with that of GluSE, or by the substitution of four residues in the GluV8 prosequence with those of GluSE. The purified proGluV8 was converted to the mature form in vitro by thermolysin treatment. The prosegment was essential for the suppression of proteolytic activity, as well as for the correct folding of GluV8, indicating its role as an intramolecular chaperone. Furthermore, the four amino acid residues at the C-terminus of the prosegment were sufficient for both of these roles. In vitro mutagenesis revealed that Ser237 was essential for proteolytic activity, and that Val69 was indispensable for the precise cleavage by thermolysin and was involved in the proteolytic reaction itself. This is the first study to express quantitatively GluV8 in E. coli, and to demonstrate explicitly the intramolecular chaperone activity of the prosegment of glutamyl endopeptidase I.
Collapse
Affiliation(s)
- Takayuki K Nemoto
- Department of Oral Molecular Biology, Course of Medical and Dental Sciences, Nagasaki University Graduate School of Biomedical Sciences, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Korde R, Bhardwaj A, Singh R, Srivastava A, Chauhan VS, Bhatnagar RK, Malhotra P. A prodomain peptide of Plasmodium falciparum cysteine protease (falcipain-2) inhibits malaria parasite development. J Med Chem 2008; 51:3116-23. [PMID: 18461922 DOI: 10.1021/jm070735f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Falcipain-2 (FP-2), a papain family cysteine protease of Plasmodium falciparum, is a promising target for antimalarial chemotherapy. Designing inhibitors that are highly selective for falcipain-2 has been difficult because of broad specificity of different cysteine proteinases. Because propeptide regions of cysteine proteases have been shown to inhibit their cognate enzymes specifically and selectively, in the present study, we evaluated the inhibitory potential of few falcipain-2 proregion peptides. A 15 residue peptide (PP1) inhibited falcipain-2 enzyme activity in vitro. Studies on the uptake of PP1 into the parasitized erythrocytes showed access of peptide into the infected RBCs. PP1 fused with Antennapedia homeoprotein internalization domain blocked hemoglobin hydrolysis, merozoite release and markedly inhibited Plasmodium falciparum growth and maturation. Together, our results identify a peptide derived from the proregion of falcipain-2 that blocks late-stage malaria parasite development in RBCs, suggesting the development of peptide and peptidometric drugs against the human malaria parasite.
Collapse
Affiliation(s)
- Reshma Korde
- International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
29
|
Lilly WW, Stajich JE, Pukkila PJ, Wilke SK, Inoguchi N, Gathman AC. An expanded family of fungalysin extracellular metallopeptidases of Coprinopsis cinerea. ACTA ACUST UNITED AC 2007; 112:389-98. [PMID: 18313909 DOI: 10.1016/j.mycres.2007.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 11/14/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
Proteolytic enzymes, particularly secreted proteases of fungal origin, are among the most important of industrial enzymes, yet the biochemical properties and substrate specificities of these proteins have been difficult to characterize. Genomic sequencing offers a powerful tool to identify potentially novel proteases. The genome of the model basidiomycete Coprinopsis cinereus was found to have an unusually high number of metalloproteases that closely match the M36 peptidase family known as fungalysins. The eight predicted C. cinereus fungalysins divide into two groups upon comparison with fungalysins from other fungi. One member, CcMEP1, is most similar to the single representative fungalysins from the basidiomycetes Phanerochaete chrysosporium, Cryptococcus neoformans, and Ustilago maydis, and to the fungalysin type-protein from Aspergillus fumigatus. The remaining seven C. cinereus predicted fungalysins form a group with similarity to three predicted M36 peptidases of Laccaria bicolor. All eight of the C. cinereus enzymes contain both the signature M36 Pfam domain and the FTP propeptide domain. All contain large propeptides with considerable sequence conservation near a proposed cleavage site. The predicted mature enzymes range in size from 37-46 kDa and have isoelectric points that are mildly acidic to neutral. The proximity of these genes to telomeres and/or to transposable elements may have contributed to the expansion of this gene family in C. cinereus.
Collapse
Affiliation(s)
- Walt W Lilly
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701, USA.
| | | | | | | | | | | |
Collapse
|
30
|
A metalloprotease secreted by the insect pathogen Photorhabdus luminescens induces melanization. Appl Environ Microbiol 2007; 73:7622-8. [PMID: 17933944 DOI: 10.1128/aem.01000-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photorhabdus luminescens is a gram-negative insect pathogen that enters the hemocoel of infected hosts and produces a number of secreted proteins that promote colonization and subsequent death of the insect. In initial studies to determine the exact role of individual secreted proteins in insect pathogenesis, concentrated culture supernatants from various P. luminescens strains were injected into the tobacco hornworm Manduca sexta. Culture supernatants from P. luminescens TT01, the genome-sequenced strain, stimulated a rapid melanization reaction in M. sexta. Comparison of the profiles of secreted proteins from the various Photorhabdus strains revealed a single protein of approximately 37 kDa that was significantly overrepresented in the TT01 culture supernatant. This protein was purified by DEAE ion-exchange and Superdex 75 gel filtration chromatography and identified by matrix-assisted laser desorption ionization-time of flight analysis as the product of the TT01 gene plu1382 (NCBI accession number NC_005126); we refer to it here as PrtS. PrtS is a member of the M4 metalloprotease family. Injection of PrtS into larvae of M. sexta and Galleria mellonella and into adult Drosophila melanogaster and D. melanogaster melanization mutants (Bc) confirmed that the purified protein induced the melanization reaction. The prtS gene was transcribed by P. luminescens injected into M. sexta before death of the insect, suggesting that the protein was produced during infection. The exact function of this protease during infection is not clear. The bacteria might survive inside the insect despite the melanization process, or it might be that the bacterium is specifically activating melanization in an attempt to circumvent this innate immune response.
Collapse
|
31
|
Chang AK, Park JW, Lee EH, Lee JS. The N-terminal propeptide of Vibrio vulnificus extracellular metalloprotease is both an inhibitor of and a substrate for the enzyme. J Bacteriol 2007; 189:6832-8. [PMID: 17644589 PMCID: PMC2045228 DOI: 10.1128/jb.00396-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio vulnificus, a marine bacterium capable of causing wound infection and septicemia, secretes a 45-kDa metalloprotease (vEP) with many biological activities. The precursor of vEP consists of four regions: a signal peptide, an N-terminal propeptide (nPP), a C-terminal propeptide, and the mature protease. Two forms of vEP-vEP-45, which contains the mature protease plus the C-terminal propeptide, and vEP-34, which contains only the mature protease-were expressed in Escherichia coli and purified. vEP-45 and vEP-34 had similar activities with azocasein as a substrate, but vEP-34 had reduced activity toward insoluble proteins. The nPP of vEP was expressed as a His tag fusion protein, and its effect on vEP activity was investigated. nPP inhibited the activities of both vEP-45 and vEP-34 but not that of thermolysin, a different but related zinc-dependent protease. The inhibition of vEP by nPP was further examined using vEP-34 as a representative enzyme. The inhibition could be completely reversed under conditions of low enzyme and propeptide concentrations and with prolonged incubation, which resulted from the degradation of nPP by vEP. However, even at high nPP and vEP concentrations, inhibition of vEP by nPP at high temperatures was not effective, resulting in the degradation of both nPP and vEP. These results demonstrate that the nPP of vEP could bind to vEP and inhibit its activity, resulting in the degradation of the propeptide.
Collapse
Affiliation(s)
- Alan K Chang
- Research Center for Proteineous Materials, Chosun University, 375 Seosuk-dong Dong-gu, Gwangju 501-759, Republic of Korea
| | | | | | | |
Collapse
|
32
|
Liang X, Zhang L, Zhong J, Huan L. Secretory expression of a heterologous nattokinase in Lactococcus lactis. Appl Microbiol Biotechnol 2007; 75:95-101. [PMID: 17225095 DOI: 10.1007/s00253-006-0809-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 12/04/2006] [Accepted: 12/11/2006] [Indexed: 11/24/2022]
Abstract
Nattokinase has been reported as an oral health product for the prevention of atherosclerosis. We developed a novel strategy to express a nattokinase from Bacillus subtilis in a live delivery vehicle, Lactococcus lactis. Promoter P( nisZ) and signal peptide SP(Usp) were used for inducible and secretory expression of nattokinase in L. lactis. Western blotting analysis demonstrated that nattokinase was successfully expressed, and about 94% of the enzyme was secreted to the culture. The recombinant nattokinase showed potent fibrinolytic activity, equivalent to 41.7 urokinase units per milliliter culture. Expression and delivery of such a fibrinolytic enzyme in the food-grade vehicle L. lactis would facilitate the widespread application of nattokinase in the control and prevention of thrombosis diseases.
Collapse
Affiliation(s)
- Xiaobo Liang
- Center for Metabolic Engineering of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | | | | | | |
Collapse
|
33
|
Demidyuk IV, Kalashnikov AE, Gromova TY, Gasanov EV, Safina DR, Zabolotskaya MV, Rudenskaya GN, Kostrov SV. Cloning, sequencing, expression, and characterization of protealysin, a novel neutral proteinase from Serratia proteamaculans representing a new group of thermolysin-like proteases with short N-terminal region of precursor. Protein Expr Purif 2006; 47:551-61. [PMID: 16442309 DOI: 10.1016/j.pep.2005.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/06/2005] [Accepted: 12/12/2005] [Indexed: 11/26/2022]
Abstract
The gene of Serratia proteamaculans proteinase, protealysin, was cloned, sequenced, and expressed in Escherichia coli. The gene encoded a precursor of 341 amino acids (AAs) with a significant homology to thermolysin-like proteinases (TLPs). The molecular weight of the purified mature active recombinant protein was 32 kDa, the N-terminal amino acid sequence was AKTSTGGEVI. The optimum pH for azocasein hydrolysis by protealysin was seven and it was completely inhibited by o-phenanthroline. The enzyme hydrolyzed 3-(2-furyl)acryloyl-glycyl-L-leucine amide, the standard substrate for TLPs, with k(cat)/K(m) ratio of (2.52 +/- 0.02) x 10(2) M(-1) s(-1). Protealysin maturation removes 50 AA from the N-terminus of the precursor. The removed region had no similarity with the preprosequence of thermolysin (232 AA) but was homologous to some other TLPs. These proteins shared a conserved 7-AA motif near the initial methionine. Such motif was also found in some nonproteolytic putative proteins; two of them were eukaryotic.
Collapse
Affiliation(s)
- Ilya V Demidyuk
- Laboratory of Protein Engineering, Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Vallejo LF, Rinas U. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 2004; 3:11. [PMID: 15345063 PMCID: PMC517725 DOI: 10.1186/1475-2859-3-11] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 09/02/2004] [Indexed: 11/21/2022] Open
Abstract
Recent advances in generating active proteins through refolding of bacterial inclusion body proteins are summarized in conjunction with a short overview on inclusion body isolation and solubilization procedures. In particular, the pros and cons of well-established robust refolding techniques such as direct dilution as well as less common ones such as diafiltration or chromatographic processes including size exclusion chromatography, matrix- or affinity-based techniques and hydrophobic interaction chromatography are discussed. Moreover, the effect of physical variables (temperature and pressure) as well as the presence of buffer additives on the refolding process is elucidated. In particular, the impact of protein stabilizing or destabilizing low- and high-molecular weight additives as well as micellar and liposomal systems on protein refolding is illustrated. Also, techniques mimicking the principles encountered during in vivo folding such as processes based on natural and artificial chaperones and propeptide-assisted protein refolding are presented. Moreover, the special requirements for the generation of disulfide bonded proteins and the specific problems and solutions, which arise during process integration are discussed. Finally, the different strategies are examined regarding their applicability for large-scale production processes or high-throughput screening procedures.
Collapse
Affiliation(s)
- Luis Felipe Vallejo
- Biochemical Engineering Division, GBF German Research Center for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| | - Ursula Rinas
- Biochemical Engineering Division, GBF German Research Center for Biotechnology, Mascheroder Weg 1, 38124 Braunschweig, Germany
| |
Collapse
|
35
|
Yeats C, Rawlings ND, Bateman A. The PepSY domain: a regulator of peptidase activity in the microbial environment? Trends Biochem Sci 2004; 29:169-72. [PMID: 15124630 DOI: 10.1016/j.tibs.2004.02.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Corin Yeats
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK.
| | | | | |
Collapse
|