1
|
l-Amino Acid Production by a Immobilized Double-Racemase Hydantoinase Process: Improvement and Comparison with a Free Protein System. Catalysts 2017. [DOI: 10.3390/catal7060192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
2
|
Rodríguez-Alonso MJ, Clemente-Jiménez JM, Rodríguez-Vico F, Las Heras- Vázquez FJ. Rational re-design of the “double-racemase hydantoinase process” for optically pure production of natural and non-natural l-amino acids. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Lewin R, Goodall M, Thompson ML, Leigh J, Breuer M, Baldenius K, Micklefield J. Enzymatic enantioselective decarboxylative protonation of heteroaryl malonates. Chemistry 2015; 21:6557-63. [PMID: 25766433 PMCID: PMC4517146 DOI: 10.1002/chem.201406014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 12/28/2022]
Abstract
The enzyme aryl/alkenyl malonate decarboxylase (AMDase) catalyses the enantioselective decarboxylative protonation (EDP) of a range of disubstituted malonic acids to give homochiral carboxylic acids that are valuable synthetic intermediates. AMDase exhibits a number of advantages over the non-enzymatic EDP methods developed to date including higher enantioselectivity and more environmentally benign reaction conditions. In this report, AMDase and engineered variants have been used to produce a range of enantioenriched heteroaromatic α-hydroxycarboxylic acids, including pharmaceutical precursors, from readily accessible α-hydroxymalonates. The enzymatic method described here represents an improvement upon existing synthetic chemistry methods that have been used to produce similar compounds. The relationship between the structural features of these new substrates and the kinetics associated with their enzymatic decarboxylation is explored, which offers further insight into the mechanism of AMDase.
Collapse
Affiliation(s)
- Ross Lewin
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester131 Princess Street, Manchester M1 7ND (UK) E-mail:
| | - Mark Goodall
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester131 Princess Street, Manchester M1 7ND (UK) E-mail:
| | - Mark L Thompson
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester131 Princess Street, Manchester M1 7ND (UK) E-mail:
| | - James Leigh
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester131 Princess Street, Manchester M1 7ND (UK) E-mail:
| | | | | | - Jason Micklefield
- School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester131 Princess Street, Manchester M1 7ND (UK) E-mail:
| |
Collapse
|
4
|
Zhu L, Zhou L, Huang N, Cui W, Liu Z, Xiao K, Zhou Z. Efficient preparation of enantiopure D-phenylalanine through asymmetric resolution using immobilized phenylalanine ammonia-lyase from Rhodotorula glutinis JN-1 in a recirculating packed-bed reactor. PLoS One 2014; 9:e108586. [PMID: 25268937 PMCID: PMC4182499 DOI: 10.1371/journal.pone.0108586] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA). The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR) was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD) of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99%) in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.
Collapse
Affiliation(s)
- Longbao Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- School of Biochemical Engineering, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Nan Huang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ke Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Suzuki S, Onishi N, Yokozeki K. Purification and Characterization of Hydantoin Racemase fromMicrobacterium liquefaciensAJ 3912. Biosci Biotechnol Biochem 2014; 69:530-6. [PMID: 15784981 DOI: 10.1271/bbb.69.530] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A hydantoin racemase that catalyzed the racemization of 5-benzyl-hydantoin was detected in a cell-free extract of Microbacterium liquefaciens AJ 3912, a bacterial strain known to produce L-amino acids from their corresponding DL-5-substituted-hydantoins. This hydantoin racemase was purified 658-fold to electrophoretic homogeneity by serial chromatography. The N-terminal amino acid sequence of the enzyme showed homology with known hydantoin racemases from other microorganisms. The apparent molecular mass of the purified enzyme was 27 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 117 kDa on gel-filtration in the purification conditions, indicating a homotetrameric structure. The purified enzyme exhibited optimal activity at pH 8.2 and 55 degrees C, and showed a chiral preference for L-5-benzyl- rather than D-5-benzyl-hydantoin.
Collapse
Affiliation(s)
- Shun'ichi Suzuki
- AminoScience Laboratories, Ajinomoto Co., Inc., Kawasaki, Kanagawa, Japan.
| | | | | |
Collapse
|
6
|
Heras-Vázquez FJL, Clemente-Jiménez JM, Martínez-Rodríguez S, Rodríguez-Vico F. Engineering cyclic amidases for non-natural amino acid synthesis. Methods Mol Biol 2012; 794:87-104. [PMID: 21956558 DOI: 10.1007/978-1-61779-331-8_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Hydantoinases/dihydropyrimidinases are important biotechnological enzymes involved in the production of α- and β-amino acids. Their isolation from new sources with different substrate specificities, improved activity, enantioselectivity, or higher stability continues to be of great industrial interest. Here, we provide a detailed description of how to produce high quantities of the recombinant hydantoinase/dihydropyrimidinase enzyme from Sinorhizobium meliloti CECT4114 (SmeDhp). Several techniques are combined to obtain this goal, from cloning to activity measurement by HPLC.
Collapse
|
7
|
French JB, Neau DB, Ealick SE. Characterization of the structure and function of Klebsiella pneumoniae allantoin racemase. J Mol Biol 2011; 410:447-60. [PMID: 21616082 DOI: 10.1016/j.jmb.2011.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 11/16/2022]
Abstract
The oxidative catabolism of uric acid produces 5-hydroxyisourate (HIU), which is further degraded to (S)-allantoin by two enzymes, HIU hydrolase and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. The intermediates of the latter two reactions, HIU and 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline, are unstable in solution and decay nonstereospecifically to allantoin. In addition, nonenzymatic racemization of allantoin has been shown to occur at physiological pH. Since the further breakdown of allantoin is catalyzed by allantoinase, an enzyme that is specific for (S)-allantoin, an allantoin racemase is necessary for complete and efficient catabolism of uric acid. In this work, we characterize the structure and activity of allantoin racemase from Klebsiella pneumoniae (KpHpxA). In addition to an unliganded structure solved using selenomethionyl single-wavelength anomalous dispersion, structures of C79S/C184S KpHpxA in complex with allantoin and with 5-acetylhydantoin are presented. These structures reveal several important features of the active site including an oxyanion hole and a polar binding pocket that interacts with the ureido tail of allantoin and serves to control the orientation of the hydantoin ring. The ability of KpHpxA to interconvert the (R)- and (S)-enantiomers of allantoin is demonstrated, and analysis of the steady-state kinetics of KpHpxA yielded a k(cat)/K(m) of 6.0 × 10(5) M(-1) s(-1). Mutation of either of the active-site cysteines, Cys79 or Cys184, to serine inactivates this enzyme. The data presented provide new insights into the activity and substrate specificity of this enzyme and enable us to propose a mechanism for catalysis that is consistent with the two-base mechanism observed in other members of the aspartate/glutamate family.
Collapse
Affiliation(s)
- Jarrod B French
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
8
|
Yu H, Yang S, Jiang W, Yang Y. Efficient biocatalytic production of d-4-hydroxyphenylglycine by whole cells of recombinant Ralstonia pickettii. Folia Microbiol (Praha) 2010; 54:509-15. [DOI: 10.1007/s12223-009-0073-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 05/07/2009] [Indexed: 11/29/2022]
|
9
|
Martínez-Rodríguez S, Martínez-Gómez AI, Clemente-Jiménez JM, Rodríguez-Vico F, García-Ruíz JM, Las Heras-Vázquez FJ, Gavira JA. Structure of dihydropyrimidinase from Sinorhizobium meliloti CECT4114: New features in an amidohydrolase family member. J Struct Biol 2010; 169:200-8. [DOI: 10.1016/j.jsb.2009.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/01/2009] [Accepted: 10/24/2009] [Indexed: 11/29/2022]
|
10
|
Carbamoylases: characteristics and applications in biotechnological processes. Appl Microbiol Biotechnol 2009; 85:441-58. [DOI: 10.1007/s00253-009-2250-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 09/07/2009] [Accepted: 09/07/2009] [Indexed: 11/26/2022]
|
11
|
Martínez-Rodríguez S, Andújar-Sánchez M, Neira JL, Clemente-Jiménez JM, Jara-Pérez V, Rodríguez-Vico F, Las Heras-Vázquez FJ. Site-directed mutagenesis indicates an important role of cysteines 76 and 181 in the catalysis of hydantoin racemase from Sinorhizobium meliloti. Protein Sci 2007; 15:2729-38. [PMID: 17132860 PMCID: PMC2242435 DOI: 10.1110/ps.062452106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hydantoin racemase enzyme plays a crucial role in the reaction cascade known as "hydantoinase process." In conjunction with a stereoselective hydantoinase and a stereospecific carbamoylase, it allows the total conversion from D,L-5-monosubstituted hydantoins, with a low rate of racemization, to optically pure D- or L-amino acids. Residues Cys76 and Cys181 belonging to hydantoin racemase from Sinorhizobium meliloti (SmeHyuA) have been proved to be involved in catalysis. Here, we report biophysical data of SmeHyuA Cys76 and Cys181 to alanine mutants, which point toward a two-base mechanism for the racemization of 5-monosubstituted hydantoins. The secondary and the tertiary structure of the mutants were not significantly affected, as shown by circular dichroism. Calorimetric and fluorescence experiments have shown that Cys76 is responsible for recognition and proton retrieval of D-isomers, while Cys181 is responsible for L-isomer recognition and racemization. This recognition process is further supported by measurements of protein stability followed by chemical denaturation in the presence of the corresponding compound.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Departamento Química Física, Bioquímica y Química Inorgánica, Universidad de Almería, 04120 Almería, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Martínez-Gómez AI, Martínez-Rodríguez S, Clemente-Jiménez JM, Pozo-Dengra J, Rodríguez-Vico F, Las Heras-Vázquez FJ. Recombinant polycistronic structure of hydantoinase process genes in Escherichia coli for the production of optically pure D-amino acids. Appl Environ Microbiol 2007; 73:1525-31. [PMID: 17220246 PMCID: PMC1828775 DOI: 10.1128/aem.02365-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two recombinant reaction systems for the production of optically pure D-amino acids from different D,L-5-monosubstituted hydantoins were constructed. Each system contained three enzymes, two of which were D-hydantoinase and D-carbamoylase from Agrobacterium tumefaciens BQL9. The third enzyme was hydantoin racemase 1 for the first system and hydantoin racemase 2 for the second system, both from A. tumefaciens C58. Each system was formed by using a recombinant Escherichia coli strain with one plasmid harboring three genes coexpressed with one promoter in a polycistronic structure. The D-carbamoylase gene was cloned closest to the promoter in order to obtain the highest level of synthesis of the enzyme, thus avoiding intermediate accumulation, which decreases the reaction rate. Both systems were able to produce 100% conversion and 100% optically pure D-methionine, D-leucine, D-norleucine, D-norvaline, D-aminobutyric acid, D-valine, D-phenylalanine, D-tyrosine, and D-tryptophan from the corresponding hydantoin racemic mixture. For the production of almost all D-amino acids studied in this work, system 1 hydrolyzed the 5-monosubstituted hydantoins faster than system 2.
Collapse
Affiliation(s)
- Ana Isabel Martínez-Gómez
- Departamento de Química-Física, Bioquímica y Química Inorgánica, Edificio C.I.T.E.I., Universidad de Almería, La Cañada de San Urbano, Almería E-04120, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
The gene hyuP from Microbacterium liquefaciens AJ 3912 with an added His6 tag was cloned into the expression plasmid pTTQ18 in an Escherichia coli host strain. The transformed E. coli showed transport of radioisotope-labeled 5-substituted hydantoins with apparent K(m) values in the micromolar range. This activity exhibited a pH optimum of 6.6 and was inhibited by dinitrophenol, indicating the requirement of energy for the transport system. 5-Indolyl methyl hydantoin and 5-benzyl hydantoin were the preferred substrates, with selectivity for a hydrophobic substituent in position 5 of hydantoin and for the l isomer over the d isomer. Hydantoins with less hydrophobic substituents, cytosine, thiamine, uracil, allantoin, adenine, and guanine, were not effective ligands. The His-tagged hydantoin transport protein was located in the inner membrane fraction, from which it was solubilized and purified and its identity was authenticated.
Collapse
Affiliation(s)
- Shun'ichi Suzuki
- Astbury Centre for Structural Molecular Biology, University of Leeds, West Yorkshire, United Kingdom.
| | | |
Collapse
|
14
|
Andújar-Sánchez M, Martínez-Rodríguez S, Heras-Vázquez FJL, Clemente-Jiménez JM, Rodríguez-Vico F, Jara-Pérez V. Binding studies of hydantoin racemase from Sinorhizobium meliloti by calorimetric and fluorescence analysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1764:292-8. [PMID: 16406752 DOI: 10.1016/j.bbapap.2005.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 11/02/2005] [Accepted: 11/30/2005] [Indexed: 11/29/2022]
Abstract
Hydantoin racemase enzyme together with a stereoselective hydantoinase and a stereospecific d-carbamoylase guarantee the total conversion from d,l-5-monosubstituted hydantoins with a low velocity of racemization, to optically pure d-amino acids. Hydantoin racemase from Sinorhizobium meliloti was expressed in Escherichia coli. Calorimetric and fluorescence experiments were then carried out to obtain the thermodynamic binding parameters, deltaG, deltaH and DeltaS for the inhibitors L- and D-5-methylthioethyl-hydantoin. The number of active sites is four per enzyme molecule (one per monomer), and the binding of the inhibitor is entropically and enthalpically favoured under the experimental conditions studied. In order to obtain information about amino acids involved in the active site, four different mutants were developed in which cysteines 76 and 181 were mutated to Alanine and Serine. Their behaviour shows that these cysteines are essential for enzyme activity, but only cysteine 76 affects the binding to these inhibitors.
Collapse
Affiliation(s)
- Montserrat Andújar-Sánchez
- Dpto. Química Física, Bioquímica y Química Inorgánica, Universidad de Almería, Carretera Sacramento s/n Almería, 04120, España
| | | | | | | | | | | |
Collapse
|
15
|
Suzuki S, Takenaka Y, Onishi N, Yokozeki K. Molecular cloning and expression of the hyu genes from Microbacterium liquefaciens AJ 3912, responsible for the conversion of 5-substituted hydantoins to alpha-amino acids, in Escherichia coli. Biosci Biotechnol Biochem 2005; 69:1473-82. [PMID: 16116274 DOI: 10.1271/bbb.69.1473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to alpha-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl alpha-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.
Collapse
Affiliation(s)
- Shun'ichi Suzuki
- AminoScience Laboratories, Ajinomoto Co., Inc., Kanagawa, Japan.
| | | | | | | |
Collapse
|
16
|
Nozaki H, Takenaka Y, Kira I, Watanabe K, Yokozeki K. d-Amino acid production by E. coli co-expressed three genes encoding hydantoin racemase, d-hydantoinase and N-carbamoyl-d-amino acid amidohydrolase. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.molcatb.2004.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Enzymatic production of d-p-hydroxyphenylglycine from dl-5-p-hydroxyphenylhydantoin by Sinorhizobium morelens S-5. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Burton SG, Dorrington RA. Hydantoin-hydrolysing enzymes for the enantioselective production of amino acids: new insights and applications. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.tetasy.2004.07.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Martínez-Rodríguez S, Las Heras-Vázquez FJ, Mingorance-Cazorla L, Clemente-Jiménez JM, Rodríguez-Vico F. Molecular cloning, purification, and biochemical characterization of hydantoin racemase from the legume symbiont Sinorhizobium meliloti CECT 4114. Appl Environ Microbiol 2004; 70:625-30. [PMID: 14711700 PMCID: PMC321266 DOI: 10.1128/aem.70.1.625-630.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydantoin racemase from Sinorhizobium meliloti was functionally expressed in Escherichia coli. The native form of the enzyme was a homotetramer with a molecular mass of 100 kDa. The optimum temperature and pH for the enzyme were 40 degrees C and 8.5, respectively. The enzyme showed a slight preference for hydantoins with short rather than long aliphatic side chains or those with aromatic rings. Substrates, which showed no detectable activity toward the enzyme, were found to exhibit competitive inhibition.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Departamento de Química-Física, Bioquímica y Química Inorgánica, Universidad de Almería, La Cañada de San Urbano, E-04120 Almería, Spain
| | | | | | | | | |
Collapse
|
20
|
Martínez-Rodríguez S, Las Heras-Vázquez FJ, Clemente-Jiménez JM, Rodríguez-Vico F. Biochemical characterization of a novel hydantoin racemase from Agrobacterium tumefaciens C58. Biochimie 2004; 86:77-81. [PMID: 15016445 DOI: 10.1016/j.biochi.2004.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/22/2003] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
A novel hydantoin racemase gene of Agrobacterium tumefaciens C58 (AthyuA2) has been cloned and expressed in Escherichia coli BL21. The recombinant protein was purified in a one-step procedure and showed an apparent molecular mass of 27000 Da in SDS-gel electrophoresis. Size exclusion chromatography analysis determined a molecular mass of approximately 100000 Da, suggesting that the native enzyme is a tetramer. The optimum pH and temperature for hydantoin racemase activity were 7.5 and 55 degrees C, respectively, with L-5-ethylhydantoin as substrate. Enzyme activity was strongly inhibited by Cu(2+) and Hg(2+). No effect on enzyme activity was detected with any other divalent cations, EDTA or DTT, suggesting that it is not a metalloenzyme. Kinetic studies showed the preference of the enzyme for hydantoins with short rather than long aliphatic side chains or hydantoins with aromatic rings.
Collapse
Affiliation(s)
- Sergio Martínez-Rodríguez
- Departamento de Química-Física, Bioquímica y Química Inorgánica. Edificio CITEI Universidad de Almería, La Cañada de San Urbano, 04120 Almeria, Spain
| | | | | | | |
Collapse
|