1
|
An SY, Kim KS, Lee YC, Kim SH. Transcription of human β-galactoside α2,6-sialyltransferase (hST6Gal I) is downregulated by curcumin through AMPK signaling in human colon carcinoma HCT116 cells. Genes Genomics 2023; 45:901-909. [PMID: 37231294 DOI: 10.1007/s13258-023-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND In this study, we observed that in human colon carcinoma HCT116 cells mRNA level of the human β-galactoside α2,6-sialyltransferase (hST6Gal I) was decreased by curcumin. FACS analysis using the α2,6-sialyl-specific lectin (SNA) also showed a noticeable decrease in binding to SNA by curcumin. OBJECTIVE To investigate the mechanism for curcumin-triggered downregulation of hST6Gal I transcription. METHODS The mRNA levels of nine kinds of hST genes were assessed by RT-PCR after curcumin was treated in HCT116 cells. The level of hST6Gal I product on cell surface was examined by flow cytometry analysis. Luciferase reporter plasmids with 5'-deleted constructs and mutants of the hST6Gal I promoter were transiently transfected into HCT116 cells, and the luciferase activity was measured after treatment with curcumin. RESULTS Curcumin led to significant transcriptional repression of the hST6Gal I promoter. Promoter analysis using deletion mutants proved that the - 303 to - 189 region of the hST6Gal I promoter is required for transcriptional repression in response to curcumin. Among putative binding sites for transcription factors IK2, GATA1, TCF12, TAL1/E2A, SPT, and SL1 in this region, by site-directed mutagenesis analysis the TAL/E2A binding site (nucleotides - 266/- 246) was proved to be crucial for curcumin-triggered downregulation of hST6Gal I transcription in HCT116 cells. The transcription activity of hST6Gal I gene in HCT116 cells was markedly suppressed by compound C, an AMP-activated protein kinase (AMPK) inhibitor. CONCLUSION These indicate that gene expression of hST6Gal I in HCT116 cells is controlled through AMPK/TAL/E2A signal pathway.
Collapse
Affiliation(s)
- So-Young An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea.
| | - Seok-Ho Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea.
| |
Collapse
|
2
|
GC S, Bellis SL, Hjelmeland AB. ST6Gal1: Oncogenic signaling pathways and targets. Front Mol Biosci 2022; 9:962908. [PMID: 36106023 PMCID: PMC9465715 DOI: 10.3389/fmolb.2022.962908] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Golgi-sialyltransferase ST6Gal1 (βgalactosidase α2,6 sialyltransferase 1), adds the negatively charged sugar, sialic acid, to the terminal galactose of N-glycosylated proteins. Upregulation of ST6Gal1 is observed in many malignancies, and a large body of research has determined that ST6Gal1-mediated α2,6 sialylation impacts cancer hallmarks. ST6Gal1 affects oncogenic behaviors including sustained proliferation, enhanced self-renewal, epithelial-to-mesenchymal transition, invasion, and chemoresistance. However, there are relatively few ST6GaL1 related signaling pathways that are well-established to mediate these biologies: greater delineation of specific targets and signaling mechanisms that are orchestrated by ST6Gal1 is needed. The aim of this review is to provide a summary of our current understanding of select oncogenic signaling pathways and targets affected by ST6Gal1.
Collapse
Affiliation(s)
| | | | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Dorsett KA, Marciel MP, Hwang J, Ankenbauer KE, Bhalerao N, Bellis SL. Regulation of ST6GAL1 sialyltransferase expression in cancer cells. Glycobiology 2020; 31:530-539. [PMID: 33320246 DOI: 10.1093/glycob/cwaa110] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The ST6GAL1 sialyltransferase, which adds α2-6 linked sialic acids to N-glycosylated proteins, is overexpressed in a wide range of human malignancies. Recent studies have established the importance of ST6GAL1 in promoting tumor cell behaviors such as invasion, resistance to cell stress and chemoresistance. Furthermore, ST6GAL1 activity has been implicated in imparting cancer stem cell characteristics. However, despite the burgeoning interest in the role of ST6GAL1 in the phenotypic features of tumor cells, insufficient attention has been paid to the molecular mechanisms responsible for ST6GAL1 upregulation during neoplastic transformation. Evidence suggests that these mechanisms are multifactorial, encompassing genetic, epigenetic, transcriptional and posttranslational regulation. The purpose of this review is to summarize current knowledge regarding the molecular events that drive enriched ST6GAL1 expression in cancer cells.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
4
|
An SY, Lee M, Yoon HK, Abekura F, Kim KS, Kim DH, Kim HJ, Lee K, Kim CH, Lee YC. Regulation of human β-galactoside α2,6-sialyltransferase (hST6Gal I) gene expression during differentiation of human osteoblastic MG-63 cells. Glycoconj J 2020; 37:681-690. [PMID: 33108606 DOI: 10.1007/s10719-020-09959-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/27/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
In this study, we found that gene expression of the human β-galactoside α2,6-sialyltransferase (hST6Gal I) was specifically increased during differentiation of human MG-63 osteoblastic cells by serum starvation (SS). In parallel, a distinct increase in binding to SNA, the α2,6-sialyl-specific lectin, was observed in serum-starved cells, as demonstrated by FACS analysis. 5'-Rapid amplification of cDNA ends analysis demonstrated that the increase of hST6Gal I transcript by SS is mediated by P1 promoter. To elucidate transcriptional regulation of hST6Gal I in SS-induced MG-63 cells, we functionally characterized the P1 promoter region of the hST6Gal I gene. The 5'-deletion analysis of P1 promoter region revealed that the 189 bp upstream region of transcription start site is critical for transcriptional activity of hST6Gal I gene in SS-induced MG-63 cells. This region contains the predicted binding sites for several transcription factors, including AREB6, FOXP1, SIX3, HNF1, YY2, and MOK2. The mutagenesis analysis for these sites and chromatin immunoprecipitation assay demonstrated that the YY2 binding site at -98 to -77 was essential for the SS-induced hST6Gal I gene expression during differentiation of MG-63 cells.
Collapse
Affiliation(s)
- So-Young An
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea
| | - Miri Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea
| | - Hyun-Kyoung Yoon
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea
| | - Fukushi Abekura
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, 16419, South Korea
| | - Kyoung-Sook Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea
| | - Dong-Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea
| | - Hyeon-Jun Kim
- Department of Orthopaedic Surgery, College of Medicine, Dong-A University, Busan, 49201, South Korea
| | - Kichoon Lee
- Functional Genomics Laboratory, Department of Animal Sciences, the Ohio State University, 2029 Fyffe Court, Columbus, OH, 43210, USA
| | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Kyunggi-Do, 16419, South Korea.
| | - Young-Choon Lee
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, 49315, South Korea.
| |
Collapse
|
5
|
Dorsett KA, Jones RB, Ankenbauer KE, Hjelmeland AB, Bellis SL. Sox2 promotes expression of the ST6Gal-I glycosyltransferase in ovarian cancer cells. J Ovarian Res 2019; 12:93. [PMID: 31610800 PMCID: PMC6792265 DOI: 10.1186/s13048-019-0574-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background The ST6Gal-I glycosyltransferase, which adds α2–6-linked sialic acids to N-glycosylated proteins is upregulated in a wide range of malignancies including ovarian cancer. Prior studies have shown that ST6Gal-I-mediated sialylation of select surface receptors remodels intracellular signaling to impart cancer stem cell (CSC) characteristics. However, the mechanisms that contribute to ST6Gal-I expression in stem-like cancer cells are poorly understood. Results Herein, we identify the master stem cell transcription factor, Sox2, as a novel regulator of ST6Gal-I expression. Interestingly, SOX2 and ST6GAL1 are located within the same tumor-associated amplicon, 3q26, and these two genes exhibit coordinate gains in copy number across multiple cancers including ~ 25% of ovarian serious adenocarcinomas. In conjunction with genetic co-amplification, our studies suggest that Sox2 directly binds the ST6GAL1 promoter to drive transcription. ST6Gal-I expression is directed by at least four distinct promoters, and we identified the P3 promoter as the predominant promoter utilized by ovarian cancer cells. Chromatin Immunoprecipitation (ChIP) assays revealed that Sox2 binds regions proximal to the P3 promoter. To confirm that Sox2 regulates ST6Gal-I expression, Sox2 was either overexpressed or knocked-down in various ovarian cancer cell lines. Sox2 overexpression induced an increase in ST6Gal-I mRNA and protein, as well as surface α2–6 sialylation, whereas Sox2 knock-down suppressed levels of ST6Gal-I mRNA, protein and surface α2–6 sialylation. Conclusions These data suggest a process whereby SOX2 and ST6GAL1 are coordinately amplified in cancer cells, with the Sox2 protein then binding the ST6GAL1 promoter to further augment ST6Gal-I expression. Our collective results provide new insight into mechanisms that upregulate ST6Gal-I expression in ovarian cancer cells, and also point to the possibility that some of the CSC characteristics commonly attributed to Sox2 may, in part, be mediated through the sialyltransferase activity of ST6Gal-I.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Robert B Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
6
|
Tange R, Tomatsu T, Sato T. Transcription of human β4-galactosyltransferase 3 is regulated by differential DNA binding of Sp1/Sp3 in SH-SY5Y human neuroblastoma and A549 human lung cancer cell lines. Glycobiology 2019; 29:211-221. [PMID: 30561605 DOI: 10.1093/glycob/cwy109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/02/2018] [Accepted: 12/17/2018] [Indexed: 12/28/2022] Open
Abstract
Poor prognosis of neuroblastoma patients has been shown to be associated with increased expression of β4-galactosyltransferase (β4GalT) 3. To address the underlying mechanism of the increased expression of β4GalT3, the transcriptional regulation of the human β4GalT3 gene was investigated in SH-SY5Y human neuroblastoma cell line comparing with A549 human lung cancer cell line, in which the β4GalT3 gene expression was the lowest among four cancer cell lines examined. The core promoter region was identified between nucleotides -69 and -6 relative to the transcriptional start site, and the same region was utilized in both cell lines. The promoter region contained two Specificity protein (Sp)1/3-binding sites at nucleotide positions -39/-30 and -19/-10, and the sites were crucial for the promoter activity. Although the gene expression of Sp family transcription factors Sp1 and Sp3 was comparable in each cell line, Sp3 bound to the promoter region in SH-SY5Y cells whereas Sp1 bound to the region in A549 cells. The promoter activities were enhanced by Sp1 and Sp3 in SH-SY5Y cells. In contrast, the promoter activities were enhanced by Sp1 but reduced by Sp3 in A549 cells. Furthermore, the function of each Sp1/3-binding site differed between SH-SY5Y and A549 cells due to the differential binding of Sp1/Sp3. These findings suggest that the transcription of the β4GalT3 gene is regulated by differential DNA binding of Sp3 and Sp1 in neuroblastoma and lung cancer. The increased expression of β4GalT3 in neuroblastoma may be ascribed to the enhanced expression of Sp3, which is observed for various cancers.
Collapse
Affiliation(s)
- Riho Tange
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takuya Tomatsu
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
7
|
Alginate oligosaccharide attenuates α2,6-sialylation modification to inhibit prostate cancer cell growth via the Hippo/YAP pathway. Cell Death Dis 2019; 10:374. [PMID: 31076566 PMCID: PMC6510775 DOI: 10.1038/s41419-019-1560-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022]
Abstract
Chitosan oligosaccharides have been reported to inhibit various tumors. However, the water-soluble marine plant oligosaccharide alginate oligosaccharide (AOS) has only rarely been reported to have anti-cancer effects. Moreover, the inhibitory effect of AOS on prostate cancer and the underlying molecular mechanism remain unknown. This study shows that AOS inhibited cell growth, which was consistent with the attenuation of α2,6-sialylation modification. Furthermore, AOS inhibited ST6Gal-1 promoter activity and thus affected transcriptional processes. In addition, AOS could activate the Hippo/YAP pathway and block the recruitment of both the coactivator YAP and c-Jun. Furthermore, YAP interacted with the transcription factor c-Jun and regulated the transcriptional activity of the downstream target ST6Gal-1 gene. Consistent with in vitro data, AOS suppressed the tumorigenicity of prostate cancer cells via the Hippo/YAP pathway in vivo. In summary, these data indicate that AOS slows the proliferation of prostate cancer and provides a basis for the healthy function of kelp in traditional cognition.
Collapse
|
8
|
Shan Y, Liu Y, Zhao L, Liu B, Li Y, Jia L. MicroRNA-33a and let-7e inhibit human colorectal cancer progression by targeting ST8SIA1. Int J Biochem Cell Biol 2017; 90:48-58. [PMID: 28751193 DOI: 10.1016/j.biocel.2017.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/12/2017] [Accepted: 07/23/2017] [Indexed: 01/27/2023]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer mortality worldwide. Aberrant sialylation is crucially involved in the progression of various types of cancer. MicroRNAs (miRNAs) have been broadly studied in cancer. MicroRNA-33a (miR-33a) and Has-let-7e (let-7e) are non-coding RNA that can reduce cell motility and viability in cancer. In this study, miR-33a and let-7e levels were confirmed to be significantly down-regulated in CRC samples (n=32) and drug resistant cell line (HCT-8/5-FU) compared with those in the matched adjacent tissues and drug sensitivity cell line (HCT-8). ST8SIA1 was highly expressed in CRC tissues and HCT-8/5-FU cells, which was negatively correlated with miR-33a/let-7e expression. Luciferase reporter assays confirmed that both miR-33a and let-7e bound to the 3'-untranslated (3'-UTR) region of ST8SIA1. Inhibiting miR-33a/let-7e expression in CRC cells increased endogenous ST8SIA1 mRNA and protein levels. MiR-33a/let-7e knockdown promoted chemoresistance, proliferation, invasion, angiogenesis in vitro, and tumor growth in vivo. Whereas, ectopic expression of miR-33a/let-7e suppressed chemoresistance, proliferation, invasion and angiogenesis in CRC cell lines. ST8SIA1 knockdown mimicked the tumor suppressive effect of miR-33a/let-7e on CRC cells, while restoration of ST8SIA1 abolished the tumor suppressive effect of miR-33a/let-7e on CRC cells. Taken together, altered expression of miR-33a/let-7e was correlated with ST8SIA1 level, which might contribute to CRC progression. The miR-33a/let-7e-ST8SIA1 axis could be a therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yuejian Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, Liaoning Province, China.
| |
Collapse
|
9
|
Sugiyama A, Fukushima N, Sato T. Transcriptional Mechanism of the β4-Galactosyltransferase 4 Gene in SW480 Human Colon Cancer Cell Line. Biol Pharm Bull 2017; 40:733-737. [PMID: 28228616 DOI: 10.1248/bpb.b17-00064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased expression of β4-galactosyltransferase (β4GalT) 4 has been shown to be associated with metastatic ability and poor prognosis of colon cancer cells. To solve the up-regulation of β4GalT4 in colon cancer cells at transcriptional level, we examined the transcriptional mechanism of the β4GalT4 gene in SW480 human colon cancer cell line. Luciferase assay using the deletion constructs revealed that the promoter activity of the β4GalT4 gene is associated with the region between nucleotides -122 and -55 relative to the transcriptional start site, which contained one Specificity protein 1 (Sp1)-binding site. The mutation into the Sp1-binding site resulted in dramatic decreased promoter activity. Meanwhile, ectopic Sp1 expression stimulated the promoter activity significantly. The present study suggests that the expression of the β4GalT4 gene is controlled by Sp1, and Sp1 plays a key role in the activation of the β4GalT4 gene in colon cancer cells.
Collapse
Affiliation(s)
- Atena Sugiyama
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Naomichi Fukushima
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| | - Takeshi Sato
- Laboratory of Glycobiology, Department of Bioengineering, Nagaoka University of Technology
| |
Collapse
|
10
|
Milflores-Flores L, Millán-Pérez L, Santos-López G, Reyes-Leyva J, Vallejo-Ruiz V. Characterization of P1 promoter activity of the beta-galactoside alpha2,6-sialyltransferase I gene (siat 1) in cervical and hepatic cancer cell lines. J Biosci 2012; 37:259-67. [PMID: 22581331 DOI: 10.1007/s12038-012-9194-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The level of beta-galactoside alpha2,6-sialyltransferase I (ST6Gal I) mRNA, encoded by the gene siat1, is increased in malignant tissues. Expression is regulated by different promoters - P1, P2 and P3 - generating three mRNA isoforms H, X and YZ. In cervical cancer tissue the mRNA isoform H, which results from P1 promoter activity, is increased. To study the regulation of P1 promoter, different constructs from P1 promoter were evaluated by luciferase assays in cervical and hepatic cell lines. Deletion of a fragment of 1048 bp (-89 to +24 bp) increased 5- and 3-fold the promoter activity in C33A and HepG2 cell lines, respectively. The minimal region with promoter activity was a 37 bp fragment in C33A cells. The activity of this region does not require the presence of an initiator sequence. In HepG2 cells the minimal promoter activity was detected in the 66 bp fragment. Sp1 (-32) mutation increased the promoter activity only in HepG2 cells. HNF1 mutation decreased promoter activity in HepG2 cell line but not in C33A cells. We identified a large region that plays a negative regulation role. The regulation of promoter activity is cell type specific. Our study provides new insights into the complex transcriptional regulation of siat1 gene.
Collapse
Affiliation(s)
- Lorena Milflores-Flores
- Laboratorio de Biologia Molecular y Virologia, Centro de Investigacion Biomedica de Oriente, Instituto Mexicano del Seguro Social, Hospital General de Zona No. 5, Km 4.5 Carretera Federal Atlixco-Metepec, 74360 Metepec, Puebla, Mexico
| | | | | | | | | |
Collapse
|
11
|
López-Morales D, Reyes-Leyva J, Santos-López G, Zenteno E, Vallejo-Ruiz V. Increased expression of sialic acid in cervical biopsies with squamous intraepithelial lesions. Diagn Pathol 2010; 5:74. [PMID: 21092209 PMCID: PMC2997087 DOI: 10.1186/1746-1596-5-74] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 11/22/2010] [Indexed: 11/21/2022] Open
Abstract
Background Altered sialylation has been observed during oncogenic transformation. Sialylated oligosaccharides of glycoproteins and glycolipids have been implicated in tumor progression and metastases. In the cervical cancer high levels of sialic acid have been reported in the patients serum, and an increased of total sialic acid concentration has been reported for the cervical neoplasia and cervical cancer. This study investigates the changes in expression and distribution of α2,3-linked sialic acid and α2,6- linked sialic acid in low and high squamous intraepithelial lesions and in normal tissue. Methods Lectin histochemistry was used to examine the expression and distribution of sialic acid in different grades of cervical neoplasia. We applied Maackia amurensis lectin, which interacts with α2,3-linked sialic acid and Sambucus nigra lectin specific for α2,6-linked sialic acid. Results The histochemical analysis showed that α2,3-linked sialic acid and α2,6- linked sialic acid increased in intensity and distribution in concordance with the grade of squamous intraepithelial lesion (SIL). These results are in concordance with a previous study that reports increased RNAm levels of three sialyltransferases. Conclusions These results show that the change in sialylation occurs before cancer development and may play an important role in cellular transformation. These findings provide the basis for more detailed studies of the possible role of cell surface glycoconjugates bearing sialic acid in the cellular cervix transformation.
Collapse
Affiliation(s)
- Dolores López-Morales
- Laboratorio de Biología Molecular y Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km 4,5 Carretera Federal Atlixco-Metepec, C,P, 74360 Metepec, Puebla, México
| | | | | | | | | |
Collapse
|
12
|
Xu L, Harada H, Yokohama-Tamaki T, Matsumoto S, Tanaka J, Taniguchi A. Reuptake of extracellular amelogenin by dental epithelial cells results in increased levels of amelogenin mRNA through enhanced mRNA stabilization. J Biol Chem 2005; 281:2257-62. [PMID: 16293627 DOI: 10.1074/jbc.m507695200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amelogenin is an extracellular matrix protein secreted by ameloblasts and is a major component of enamel matrix. Recently, in addition to their role in enamel formation, the biological activity of enamel proteins in the process of cell differentiation has recently become widely appreciated. In this study, we examined the biological activity of amelogenin on ameloblast differentiation. Recombinant mouse amelogenin (rm-amelogenin) enhanced the expression of endogenous amelogenin mRNA in a cultured dental epithelial cell line (HAT-7), despite a lack of increased amelogenin promoter activity. To solve this discrepancy, we analyzed the effects of rm-amelogenin on the stability of amelogenin mRNA. The half-life of amelogenin mRNA is extremely short, but in the presence of rm-amelogenin its half-life was extended three times longer than the control. Furthermore, we showed the entry of exogenous fluorescein isothiocyanate-conjugated rm-amelogenin into the cytoplasm of HAT-7 cells. It follows from our results that exogenous amelogenin increases amelogenin mRNA levels through stabilization of mRNA in the cytoplasm of HAT-7 cells. Here we speculated that during differentiation, dental epithelial cells utilize a unique mechanism for increasing the production of amelogenin, the reuptake of secreted amelogenin.
Collapse
Affiliation(s)
- Liming Xu
- Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Wang PH. Altered Sialylation and Sialyltransferase Expression in Gynecologic Cancers. Taiwan J Obstet Gynecol 2004. [DOI: 10.1016/s1028-4559(09)60057-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|