1
|
Flickinger KM, Wilson KM, Rossiter NJ, Hunger AL, Vishwasrao PV, Lee TD, Mellado Fritz CA, Richards RM, Hall MD, Cantor JR. Conditional lethality profiling reveals anticancer mechanisms of action and drug-nutrient interactions. SCIENCE ADVANCES 2024; 10:eadq3591. [PMID: 39365851 PMCID: PMC11451515 DOI: 10.1126/sciadv.adq3591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/29/2024] [Indexed: 10/06/2024]
Abstract
Chemical screens across hundreds of cell lines have shown that the drug sensitivities of human cancers can vary by genotype or lineage. However, most drug discovery studies have relied on culture media that poorly reflect metabolite levels in human blood. Here, we perform drug screens in traditional and Human Plasma-Like Medium (HPLM). Sets of compounds that show conditional anticancer activity span different phases of global development and include non-oncology drugs. Comparisons of the synthetic and serum-derived components that comprise typical media trace sets of conditional phenotypes to nucleotide synthesis substrates. We also characterize a unique dual mechanism for brivudine, a compound approved for antiviral use. Brivudine selectively impairs cell growth in low folate conditions by targeting two enzymes involved in one-carbon metabolism. Cataloged gene essentiality data further suggest that conditional phenotypes for other compounds are linked to off-target effects. Our findings establish general strategies for identifying drug-nutrient interactions and mechanisms of action by exploiting conditional lethality in cancer cells.
Collapse
Affiliation(s)
- Kyle M. Flickinger
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Kelli M. Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Nicholas J. Rossiter
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrea L. Hunger
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Paresh V. Vishwasrao
- Division of Hematology, Oncology, and Bone Marrow Transplant, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Tobie D. Lee
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Carlos A. Mellado Fritz
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Rebecca M. Richards
- Division of Hematology, Oncology, and Bone Marrow Transplant, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Matthew D. Hall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Jason R. Cantor
- Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53792, USA
| |
Collapse
|
2
|
Khalil A, Adam MSS. Nucleoside Scaffolds and Carborane Clusters for Boron Neutron Capture Therapy: Developments and Future Perspective. Curr Med Chem 2024; 31:5739-5754. [PMID: 37818562 DOI: 10.2174/0109298673245020230929152030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
Nucleosides containing carboranes are one of the most important boron delivery agents for boron neutron capture therapy, BNCT, which are good substrates of hTK1. The development of several nucleosides containing carboranes at early stages led to the discovery of the first generation of 3CTAs by incorporating a hydrocarbon spacer between the thymidine scaffold and carborane cluster and attaching dihydroxylpropyl group on the second carbon (C2) atom of the carborane cluster (e.g., N5 and N5-2OH). Phosphorylation rate, tumor cellular uptake, and retention have been evaluated in parallel to change the length of the tether arm of spacers in these compounds. Many attempts were reported and discussed to overcome the disadvantage of the first generation of 3CTAs by a) incorporating modified spacers between thymidine and carborane clusters, such as ethyleneoxide, polyhydroxyl, triazole, and tetrazole units, b) attaching hydrophilic groups at C2 of the carborane cluster, c) transforming lipophilic closo-carboranes to hydrophilic nidocarborane. The previous modifications represented the second generation of 3CTAs to improve the hydrogen bond formation with the hTK1 active site. Moreover, amino acid prodrugs were developed to enhance biological and physicochemical properties. The structure-activity relationship (SAR) of carboranyl thymidine analogues led to the roadmap for the development of the 3rd generation of the 3CTAs for BNCT.
Collapse
Affiliation(s)
- Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed Shaker S Adam
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
| |
Collapse
|
3
|
Flickinger KM, Wilson KM, Rossiter NJ, Hunger AL, Lee TD, Hall MD, Cantor JR. Conditional lethality profiling reveals anticancer mechanisms of action and drug-nutrient interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.04.543621. [PMID: 37333068 PMCID: PMC10274668 DOI: 10.1101/2023.06.04.543621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemical screening studies have identified drug sensitivities across hundreds of cancer cell lines but most putative therapeutics fail to translate. Discovery and development of drug candidates in models that more accurately reflect nutrient availability in human biofluids may help in addressing this major challenge. Here we performed high-throughput screens in conventional versus Human Plasma-Like Medium (HPLM). Sets of conditional anticancer compounds span phases of clinical development and include non-oncology drugs. Among these, we characterize a unique dual-mechanism of action for brivudine, an agent otherwise approved for antiviral treatment. Using an integrative approach, we find that brivudine affects two independent targets in folate metabolism. We also traced conditional phenotypes for several drugs to the availability of nucleotide salvage pathway substrates and verified others for compounds that seemingly elicit off-target anticancer effects. Our findings establish generalizable strategies for exploiting conditional lethality in HPLM to reveal therapeutic candidates and mechanisms of action.
Collapse
|
4
|
Ito T, Kubo Y, Akanuma SI, Hosoya KI. Functional characteristics of 3'-azido-3'-deoxythymidine transport at the blood-testis barrier. Int J Pharm 2022; 625:122044. [PMID: 35902057 DOI: 10.1016/j.ijpharm.2022.122044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 11/18/2022]
Abstract
3'-Azido-3'-deoxythymidine (AZT), an antiretroviral drug, is often adopted in the therapy for human immunodeficiency virus (HIV) infection, and the characteristics of AZT transport at the blood-testis barrier (BTB) were investigated in this study. In the integration plot analysis that evaluates the transport activity in vivo, the apparent influx clearance of [3H]AZT was significantly greater than that of [14C]D-mannitol, a non-permeable paracellular transport marker. In the uptake study in vitro with TM4 cells derived from mouse Sertoli cells, [3H]AZT uptake exhibited a time- and concentration-dependent manner, of which Km and Vmax values being 20.3 µM and 102 pmol/(min·mg protein), respectively. In the inhibition analysis, [3H]AZT uptake was not affected by extracellular inorganics and some substrates of transporters putatively involved in AZT transport. In the further inhibition analyses to elucidate the characteristics of AZT transport, [3H]AZT uptake was strongly reduced in the presence of several nucleosides, that are categorized as 2'-deoxynucleosides with pyrimidine, whereas little effect on [3H]AZT uptake was exhibited in the presence of other nucleosides, nucleobases, and antiretrovirals. These results suggest the influx transport of AZT from the circulating blood to the testis, and the involvement of carrier-mediated process at the BTB, which selectively recognizes 2'-deoxynucleosides with a pyrimidine base.
Collapse
Affiliation(s)
- Takeru Ito
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshiyuki Kubo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan; Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Kaga 2-11-1, Tokyo 173-8605, Japan.
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
5
|
Passow KT, Caldwell HS, Ngo KA, Arnold JJ, Antczak NM, Narayanan A, Jose J, Sturla SJ, Cameron CE, Ciota AT, Harki DA. A Chemical Strategy for Intracellular Arming of an Endogenous Broad-Spectrum Antiviral Nucleotide. J Med Chem 2021; 64:15429-15439. [PMID: 34661397 DOI: 10.1021/acs.jmedchem.1c01481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The naturally occurring nucleotide 3'-deoxy-3',4'-didehydro-cytidine-5'-triphosphate (ddhCTP) was recently found to exert potent and broad-spectrum antiviral activity. However, nucleoside 5'-triphosphates in general are not cell-permeable, which precludes the direct use of ddhCTP as a therapeutic. To harness the therapeutic potential of this endogenous antiviral nucleotide, we synthesized phosphoramidate prodrug HLB-0532247 (1) and found it to result in dramatically elevated levels of ddhCTP in cells. We compared 1 and 3'-deoxy-3',4'-didehydro-cytidine (ddhC) and found that 1 more effectively reduces titers of Zika and West Nile viruses in cell culture with minimal nonspecific toxicity to host cells. We conclude that 1 is a promising antiviral agent based on a novel strategy of facilitating elevated levels of the endogenous ddhCTP antiviral nucleotide.
Collapse
Affiliation(s)
- Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haley S Caldwell
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York 12144, United States.,The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12201, United States
| | - Kiet A Ngo
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12201, United States
| | - Jamie J Arnold
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicole M Antczak
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alexander T Ciota
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York 12144, United States.,The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York 12201, United States
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Hellendahl KF, Fehlau M, Hans S, Neubauer P, Kurreck A. Semi-Automated High-Throughput Substrate Screening Assay for Nucleoside Kinases. Int J Mol Sci 2021; 22:11558. [PMID: 34768989 PMCID: PMC8584170 DOI: 10.3390/ijms222111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/21/2022] Open
Abstract
Nucleoside kinases (NKs) are key enzymes involved in the in vivo phosphorylation of nucleoside analogues used as drugs to treat cancer or viral infections. Having different specificities, the characterization of NKs is essential for drug design and nucleotide analogue production in an in vitro enzymatic process. Therefore, a fast and reliable substrate screening method for NKs is of great importance. Here, we report on the validation of a well-known luciferase-based assay for the detection of NK activity in a 96-well plate format. The assay was semi-automated using a liquid handling robot. Good linearity was demonstrated (r² > 0.98) in the range of 0-500 µM ATP, and it was shown that alternative phosphate donors like dATP or CTP were also accepted by the luciferase. The developed high-throughput assay revealed comparable results to HPLC analysis. The assay was exemplarily used for the comparison of the substrate spectra of four NKs using 20 (8 natural, 12 modified) substrates. The screening results correlated well with literature data, and additionally, previously unknown substrates were identified for three of the NKs studied. Our results demonstrate that the developed semi-automated high-throughput assay is suitable to identify best performing NKs for a wide range of substrates.
Collapse
Affiliation(s)
- Katja F. Hellendahl
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Maryke Fehlau
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany
| | - Sebastian Hans
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
| | - Anke Kurreck
- Chair of Bioprocess Engineering, Faculty III Process Sciences, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, 13355 Berlin, Germany; (K.F.H.); (M.F.); (S.H.); (P.N.)
- BioNukleo GmbH, Ackerstraße 76, 13355 Berlin, Germany
| |
Collapse
|
7
|
Sevim H, Çelik H, Düşünceli L, Ceyhan CS, Molotkova A, Nakazawa K, Graham GT, Petro JR, Toretsky JA, Üren A. Clofarabine induces ERK/MSK/CREB activation through inhibiting CD99 on Ewing sarcoma cells. PLoS One 2021; 16:e0253170. [PMID: 34133426 PMCID: PMC8208565 DOI: 10.1371/journal.pone.0253170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/29/2021] [Indexed: 01/17/2023] Open
Abstract
Clofarabine, an FDA approved purine analog, is used in the treatment of relapsed or refractory acute lymphoblastic leukemia. Clofarabine acts by inhibiting DNA synthesis. We demonstrated that clofarabine may have a novel function though inhibiting CD99, a transmembrane protein highly expressed on Ewing Sarcoma (ES) cells. CD99 is a validated target in ES whose inhibition may lead to a high therapeutic index for patients. Here we present additional data to support the hypothesis that clofarabine acts on CD99 and regulates key signaling pathways in ES. Cellular thermal shift assay indicated a direct interaction between clofarabine and CD99 in ES cell lysates. Clofarabine induced ES cell death does not require clofarabine's conversion to its active form by deoxycytidine kinase. A phosphokinase array screen with clofarabine and a CD99 blocking antibody identified alterations in signaling pathways. CD99 inhibition with clofarabine in ES cells caused rapid and sustained phosphorylation of ERK, MSK, and CREB. However, activation of this pathway did not correlate with clofarabine induced ES cell death. In summary, we demonstrated that clofarabine may activate ERK, MSK, and CREB phosphorylation through CD99 within minutes, however this paradoxical activation and subsequent ES cell death requires additional investigation.
Collapse
Affiliation(s)
- Handan Sevim
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Haydar Çelik
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Levent Düşünceli
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Ceyda S. Ceyhan
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Anna Molotkova
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Kay Nakazawa
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Garrett T. Graham
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Jeffrey R. Petro
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Jeffrey A. Toretsky
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| | - Aykut Üren
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States of America
| |
Collapse
|
8
|
Engineering and Preclinical Evaluation of Western Reserve Oncolytic Vaccinia Virus Expressing A167Y Mutant Herpes Simplex Virus Thymidine Kinase. Biomedicines 2020; 8:biomedicines8100426. [PMID: 33081279 PMCID: PMC7650665 DOI: 10.3390/biomedicines8100426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Viral replication of thymidine kinase deleted (tk-) vaccinia virus (VV) is attenuated in resting normal cells, enabling cancer selectivity, however, replication potency of VV-tk- appears to be diminished in cancer cells. Previously, we found that wild-type herpes simplex virus (HSV)-tk (HSV-tk) disappeared in most of the recombinant VV after multiple screenings, and only a few recombinant VV containing naturally mutated HSV-tk remained stable. In this study, VV-tk of western reserve (WR) VV was replaced by A167Y mutated HSV-tk (HSV-tk418m), to alter nucleoside selectivity from broad spectrum to purine exclusive selectivity. WOTS-418 remained stable after numerous passages. WOTS-418 replication was significantly attenuated in normal cells, but cytotoxicity was almost similar to that of wild type WR VV in cancer cells. WOTS-418 showed no lethality following a 5 × 108 PFU intranasal injection, contrasting WR VV, which showed 100% lethality at 1 × 105 PFU. Additionally, ganciclovir (GCV) but not BvdU inhibited WOTS-418 replication, confirming specificity to purine nucleoside analogs. The potency of WOTS-418 replication inhibition by GCV was > 10-fold higher than that of our previous truncated HSV-tk recombinant OTS-412. Overall, WOTS-418 demonstrated robust oncolytic efficacy and pharmacological safety which may delegate it as a candidate for future clinical use in OV therapy.
Collapse
|
9
|
Jaramillo AC, Bergman AM, Comijn EM, Jansen G, Kaspers GJL, Cloos J, Peters GJ. Effect of dexamethasone on the antileukemic effect of cytarabine: role of deoxycytidine kinase. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1346. [PMID: 32727269 DOI: 10.1080/15257770.2020.1780441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dexamethasone (DEX) is often used in the initial treatment of leukemia. Earlier we demonstrated that DEX decreased the activity of deoxycytidine kinase (dCK) which is essential for the activation of cytarabine (ara-C). Therefore we investigated the effect of DEX on the in vivo sensitivity of acute myeloid leukemia (AML) to ara-C and another deoxycytidine analog, gemcitabine, in the Brown Norway Myeloid Leukemia (BNML) rat model for AML, and its ara-C resistant variant B-araC, in relation to the effects on dCK activity.The antileukemic effect was evaluated as survival of the rats, while dCK activity was measured in leukemic spleen (completely consisting of BNML cells) with liver as representative normal tissue, 24 hr after treatment with ara-C or DEX with radioactive deoxycytidine (CdR) as a substrate.Treatment with ara-C increased life-span of BNML by 200%, which was not affected by DEX. Gemcitabine was ineffective. In the liver of BNML bearing rats DEX decreased dCK activity 33%, while ara-C increased dCK activity slightly (to 129%), but in the combination of ara-C/DEX dCK activity was also decreased. In the livers of Bara-C bearing rats dCK was 2.7-fold higher compared to BNML rats, which was increased 179% in the gemcitabine-DEX treated rats. In BNML leukemic spleens DEX decreased dCK activity 41% and gem/dex 46%, but ara-C increased dCK activity to 123%, but in the combination this effect was neutralized. In Bara-C spleens only ara-C/dex decreased dCK activity (32%).In conclusion; in an AML rat model DEX did not affect the antileukemic effect of ara-C, nor the dCK activity.
Collapse
Affiliation(s)
- Adrian C Jaramillo
- Laboratory of Hematology, Amsterdam UMC, location VU University Medical Center, Amsterdam, the Netherlands
| | | | - Elizabeth M Comijn
- Laboratory Medical Oncology, Amsterdam UMC, location VU University Medical Center, Amsterdam, the Netherlands
| | - Gerrit Jansen
- Reumatology, Amsterdam UMC, location VU University Medical Center, Amsterdam, the Netherlands
| | - Gertjan J L Kaspers
- Emma Children's Hospital, Amsterdam UMC, location VUMC, Pediatric Oncology, Amsterdam, The Netherlands.,Princess Maxima Center, Utrecht, the Netherlands
| | - Jacqueline Cloos
- Laboratory of Hematology, Amsterdam UMC, location VU University Medical Center, Amsterdam, the Netherlands
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC, location VU University Medical Center, Amsterdam, the Netherlands.,Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
10
|
Lau MT, Ghazanfar S, Parkin A, Chou A, Rouaen JR, Littleboy JB, Nessem D, Khuong TM, Nevoltris D, Schofield P, Langley D, Christ D, Yang J, Pajic M, Neely GG. Systematic functional identification of cancer multi-drug resistance genes. Genome Biol 2020; 21:27. [PMID: 32028983 PMCID: PMC7006212 DOI: 10.1186/s13059-020-1940-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Drug resistance is a major obstacle in cancer therapy. To elucidate the genetic factors that regulate sensitivity to anti-cancer drugs, we performed CRISPR-Cas9 knockout screens for resistance to a spectrum of drugs. RESULTS In addition to known drug targets and resistance mechanisms, this study revealed novel insights into drug mechanisms of action, including cellular transporters, drug target effectors, and genes involved in target-relevant pathways. Importantly, we identified ten multi-drug resistance genes, including an uncharacterized gene C1orf115, which we named Required for Drug-induced Death 1 (RDD1). Loss of RDD1 resulted in resistance to five anti-cancer drugs. Finally, targeting RDD1 leads to chemotherapy resistance in mice and low RDD1 expression is associated with poor prognosis in multiple cancers. CONCLUSIONS Together, we provide a functional landscape of resistance mechanisms to a broad range of chemotherapeutic drugs and highlight RDD1 as a new factor controlling multi-drug resistance. This information can guide personalized therapies or instruct rational drug combinations to minimize acquisition of resistance.
Collapse
Affiliation(s)
- Man-Tat Lau
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Genome Editing Initiative, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shila Ghazanfar
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
- The Judith and David Coffey Life Lab, Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ashleigh Parkin
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Angela Chou
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jourdin R Rouaen
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jamie B Littleboy
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Danielle Nessem
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Thang M Khuong
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Damien Nevoltris
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Peter Schofield
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, Sydney, NSW, 2010, Australia
| | - David Langley
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, Sydney, NSW, 2010, Australia
| | - Jean Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Marina Pajic
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, Sydney, NSW, 2010, Australia.
| | - G Gregory Neely
- The Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- Genome Editing Initiative, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
11
|
Cytotoxicity of trifluridine correlates with the thymidine kinase 1 expression level. Sci Rep 2019; 9:7964. [PMID: 31138881 PMCID: PMC6538667 DOI: 10.1038/s41598-019-44399-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/16/2019] [Indexed: 02/03/2023] Open
Abstract
Trifluridine (FTD), a tri-fluorinated thymidine analogue, is a key component of the oral antitumor drug FTD/TPI (also known as TAS-102), which is used to treat refractory metastatic colorectal cancer. Thymidine kinase 1 (TK1) is thought to be important for the incorporation of FTD into DNA, resulting in DNA dysfunction and cytotoxicity. However, it remains unknown whether TK1 is essential for FTD incorporation into DNA and whether this event is affected by the expression level of TK1 because TK1-specific-deficient human cancer cell lines have not been established. Here, we generated TK1-knock-out human colorectal cancer cells using the CRISPR/Cas9 genome editing system and validated the specificity of TK1 knock-out by measuring expression of AFMID, which is encoded on the same locus as TK1. Using TK1-knock-out cells, we confirmed that TK1 is essential for cellular sensitivity to FTD. Furthermore, we demonstrated a correlation between the TK1 expression level and cytotoxicity of FTD using cells with inducible TK1 expression, which were generated from TK1-knock-out cells. Based on our finding that the TK1 expression level correlates with sensitivity to FTD, we suggest that FTD/TPI might efficiently treat cancers with high TK1 expression.
Collapse
|
12
|
Han Z, Li Y, Zhang J, Liu J, Chen C, van Zijl PC, Liu G. Molecular Imaging of Deoxycytidine Kinase Activity Using Deoxycytidine-Enhanced CEST MRI. Cancer Res 2019; 79:2775-2783. [PMID: 30940660 DOI: 10.1158/0008-5472.can-18-3565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/26/2019] [Accepted: 03/27/2019] [Indexed: 11/16/2022]
Abstract
Deoxycytidine kinase (DCK) is a key enzyme for the activation of a broad spectrum of nucleoside-based chemotherapy drugs (e.g., gemcitabine); low DCK activity is one of the most important causes of cancer drug-resistance. Noninvasive imaging methods that can quantify DCK activity are invaluable for assessing tumor resistance and predicting treatment efficacy. Here we developed a "natural" MRI approach to detect DCK activity using its natural substrate deoxycytidine (dC) as the imaging probe, which can be detected directly by chemical exchange saturation transfer (CEST) MRI without any synthetic labeling. CEST MRI contrast of dC and its phosphorylated form, dCTP, successfully discriminated DCK activity in two mouse leukemia cell lines with different DCK expression. This dC-enhanced CEST MRI in xenograft leukemic cancer mouse models demonstrated that DCK(+) tumors have a distinctive dynamic CEST contrast enhancement and a significantly higher CEST contrast than DCK(-) tumors (AUC0-60 min = 0.47 ± 0.25 and 0.20 ± 0.13, respectively; P = 0.026, paired Student t test, n = 4) at 1 hour after the injection of dC. dC-enhanced CEST contrast also correlated well with tumor responses to gemcitabine treatment. This study demonstrates a novel MR molecular imaging approach for predicting cancer resistance using natural, nonradioactive, nonmetallic, and clinically available agents. This method has great potential for pursuing personalized chemotherapy by stratifying patients with different DCK activity. SIGNIFICANCE: A new molecular MRI method that detects deoxycytidine kinase activity using its natural substrate deoxycytidine has great translational potential for clinical assessment of tumor resistance and prediction of treatment efficacy.
Collapse
Affiliation(s)
- Zheng Han
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Yuguo Li
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jia Zhang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Jing Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland.,Radiology College, Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Chuheng Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Peter C van Zijl
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Guanshu Liu
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland. .,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
13
|
Synthesis, susceptibility to enzymatic phosphorylation, cytotoxicity and in vitro antiviral activity of lipophilic pyrimidine nucleoside/carborane conjugates. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Lutz S, Williams E, Muthu P. Engineering Therapeutic Enzymes. DIRECTED ENZYME EVOLUTION: ADVANCES AND APPLICATIONS 2017:17-67. [DOI: 10.1007/978-3-319-50413-1_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
15
|
Persson T, Hörnfeldt AB, Gronowitz S, Johansson NG. Thienyl-Substituted Nucleosides and Their Triphosphates. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029400500607] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of thienyl-substituted nucleosides and their triphosphates has been prepared and the compounds evaluated as antiviral agents. The compounds investigated were 1-(5′-triphosphate-β-D-arabinofuranosyl)-5-(2″-thienyl)uracil (6), 1-(5′-triphosphate-β-D-arabinofuranosyl)-5-(2″-thienyl)cytosin (13) and 1-(5′-triphosphate-2′, 3′-dideoxynbofuranosyl)-5-(2″-thienyl)uracil (19). The activities of (6), (13) and (19) was shown to be inferior to that of the previously prepared compound 5-(2″-thienyl)-β-2′-deoxyuridine triphosphate (20).
Collapse
Affiliation(s)
- T. Persson
- Organic Chemistry 1, Chemical Center, Box 124, S-221 00 Lund, Sweden
| | - A.-B. Hörnfeldt
- Organic Chemistry 1, Chemical Center, Box 124, S-221 00 Lund, Sweden
| | - S. Gronowitz
- Organic Chemistry 1, Chemical Center, Box 124, S-221 00 Lund, Sweden
| | | |
Collapse
|
16
|
Sjuvarsson E, Marquez VE, Eriksson S. Selective Phosphorylation of South and North-Cytidine and Adenosine Methanocarba-Nucleosides by Human Nucleoside and Nucleotide Kinases Correlates with Their Growth Inhibitory Effects on Cultured Cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:544-64. [PMID: 26167664 DOI: 10.1080/15257770.2015.1031248] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here bicyclo[3.1.0]hexane locked deoxycytidine (S-MCdC, N-MCdC), and deoxyadenosine analogs (S-MCdA and N-MCdA) were examined as substrates for purified preparations of human deoxynucleoside kinases: dCK, dGK, TK2, TK1, the ribonucleoside kinase UCK2, two NMP kinases (CMPK1, TMPK) and a NDP kinase. dCK can be important for the first step of phosphorylation of S-MCdC in cells, but S-MCdCMP was not a substrate for CMPK1, TMPK, or NDPK. dCK and dGK had a preference for the S-MCdA whereas N-MCdA was not a substrate for dCK, TK1, UCK2, TK2, dGK nucleoside kinases. The cell growth experiments suggested that N-MCdC and S-MCdA could be activated in cells by cellular kinases so that a triphosphate metabolite was formed. List of abbreviations: ddC, 2', 3'-didioxycytosine, Zalcitabine; 3TC, β-L-(-)-2',3'-dideoxy-3'-thiacytidine, Lamivudine; CdA, 2-cloro-2'-deoxyadenosine, Cladribine; AraA, 9-β-D-arabinofuranosyladenine; hCNT 1-3, human Concentrative Nucleoside Transporter type 1, 2 and 3; hENT 1-4, human Equilibrative Nucleoside Transporter type 1, 2, 3, and 4.
Collapse
Affiliation(s)
- Elena Sjuvarsson
- a Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences , VHC , Uppsala , Sweden
| | | | | |
Collapse
|
17
|
Lamarca A, Asselin MC, Manoharan P, McNamara MG, Trigonis I, Hubner R, Saleem A, Valle JW. 18F-FLT PET imaging of cellular proliferation in pancreatic cancer. Crit Rev Oncol Hematol 2016; 99:158-69. [PMID: 26778585 DOI: 10.1016/j.critrevonc.2015.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/19/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma is known for its poor prognosis. Since the development of computerized tomography, magnetic resonance and endoscopic ultrasound, novel imaging techniques have struggled to get established in the management of patients diagnosed with pancreatic adenocarcinoma for several reasons. Thus, imaging assessment of pancreatic cancer remains a field with scope for further improvement. In contrast to cross-sectional anatomical imaging methods, molecular imaging modalities such as positron emission tomography (PET) can provide information on tumour function. Particularly, tumour proliferation may be assessed by measurement of intracellular thymidine kinase 1 (TK1) activity level using thymidine analogues radiolabelled with a positron emitter for use with PET. This approach, has been widely explored with [(18)F]-fluoro-3'-deoxy-3'-L-fluorothymidine ((18)F-FLT) PET. This manuscript reviews the rationale and physiology behind (18)F-FLT PET imaging, with special focus on pancreatic cancer and other gastrointestinal malignancies. Potential benefit and challenges of this imaging technique for diagnosis, staging and assessment of treatment response in abdominal malignancies are discussed.
Collapse
Affiliation(s)
- Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| | - Marie-Claude Asselin
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom
| | - Prakash Manoharan
- Department of Radiology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Mairéad G McNamara
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Manchester, Institute of Cancer Sciences, Manchester Academic Health Science Centre, Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Ioannis Trigonis
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom
| | - Richard Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Azeem Saleem
- University of Manchester Wolfson Molecular Imaging Centre (WMIC), Manchester, United Kingdom; Imanova Centre for Imaging Sciences, Imperial College Hammersmith Hospital, Du Cane Road, London W12 0NN, United Kingdom
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom; University of Manchester, Institute of Cancer Sciences, Manchester Academic Health Science Centre, Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom.
| |
Collapse
|
18
|
Wojtczak BA, Olejniczak AB, Wang L, Eriksson S, Lesnikowski ZJ. Phosphorylation of nucleoside-metallacarborane and carborane conjugates by nucleoside kinases. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 32:571-88. [PMID: 24124690 DOI: 10.1080/15257770.2013.838259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A library of purine and pyrimidine nucleosides modified with carborane or metallacarborane boron clusters at different locations, consisting of new molecules as well as already described compounds, was prepared. The compounds were tested as substrates for human deoxynucleoside kinases. Some conjugates, with modification attached to N3 of thymidine via a linker containing the triazole moiety, were efficiently phosphorylated by cytosolic thymidine kinase 1 and mitochondrial thymidine kinase 2. Higher phosphorylation levels were observed with thymidine kinase 1, the phosphorylation of nucleosides modified with metallacarboranes was observed for the first time.
Collapse
Affiliation(s)
- Blazej A Wojtczak
- a Laboratory of Molecular Virology and Biological Chemistry, Institute of Medical Biology, Polish Academy of Sciences , Lodz , Poland
| | | | | | | | | |
Collapse
|
19
|
Kore AR, Yang B, Srinivasan B. Concise and efficient synthesis of 3′-O-triphosphates of 2′-deoxyadenosine and 2′-deoxycytidine. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Fandy TE, Jiemjit A, Thakar M, Rhoden P, Suarez L, Gore SD. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes. Clin Cancer Res 2014; 20:1249-58. [PMID: 24423613 DOI: 10.1158/1078-0432.ccr-13-1453] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Azanucleoside DNA methyltransferase (DNMT) inhibitors are currently approved by the U.S. Food and Drug Administration for treatment of myelodysplastic syndrome. The relative contributions of DNMT inhibition and other off-target effects to their clinical efficacy remain unclear. Data correlating DNA methylation reversal and clinical response have been conflicting. Consequently, it is necessary to investigate so-called off-target effects and their impact on cell survival and differentiation. EXPERIMENTAL DESIGN Flow cytometry was used for cell cycle, apoptosis, and reactive oxygen species (ROS) accumulation analysis. Gene expression analysis was performed using real-time PCR. DNA methylation was detected by methylation-specific PCR. Mitochondrial membrane potential was analyzed using JC-1 dye staining. Western blotting was used for quantitative protein expression analysis. RESULTS 5-Aza-2'-deoxycytidine (DAC) induced cell-cycle arrest and apoptosis in leukemia cells. p53 expression was dispensable for DAC-induced apoptosis. DAC induced delayed ROS accumulation in leukemia cells but not in solid tumor cells and p53 expression was dispensable for ROS increase. ROS increase was deoxycytidine kinase dependent, indicating that incorporation of DAC into nuclear DNA is required for ROS generation. ROS accumulation by DAC was caspase-independent and mediated the dissipation of the mitochondrial membrane potential. Concordantly, ROS scavengers diminished DAC-induced apoptosis. DAC induced the expression of different NADPH oxidase isoforms and upregulated Nox4 protein expression in an ATM-dependent manner, indicating the involvement of DNA damage signaling in Nox4 upregulation. CONCLUSION These data highlight the importance of mechanisms other than DNA cytosine demethylation in modulating gene expression and suggest investigating the relevance of ROS accumulation to the clinical activity of DAC.
Collapse
Affiliation(s)
- Tamer E Fandy
- Authors' Affiliations: Department of Pharmaceutical Sciences, Albany College of Pharmacy, Colchester, Vermont; and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
21
|
Valdez BC, Zander AR, Song G, Murray D, Nieto Y, Li Y, Champlin RE, Andersson BS. Synergistic cytotoxicity of gemcitabine, clofarabine and edelfosine in lymphoma cell lines. Blood Cancer J 2014; 4:e171. [PMID: 24413065 PMCID: PMC3913938 DOI: 10.1038/bcj.2013.69] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/11/2013] [Accepted: 11/22/2013] [Indexed: 01/04/2023] Open
Abstract
Treatments for lymphomas include gemcitabine (Gem) and clofarabine (Clo) which inhibit DNA synthesis. To improve their cytotoxicity, we studied their synergism with the alkyl phospholipid edelfosine (Ed). Exposure of the J45.01 and SUP-T1 (T-cell) and the OCI-LY10 (B-cell) lymphoma cell lines to IC10–IC20 levels of the drugs resulted in strong synergistic cytotoxicity for the 3-drug combination based on various assays of cell proliferation and apoptosis. Cell death correlated with increased phosphorylation of histone 2AX and KAP1, decreased mitochondrial transmembrane potential, increased production of reactive oxygen species and release of pro-apoptotic factors. Caspase 8-negative I9.2 cells were considerably more resistant to [Gem+Clo+Ed] than caspase 8-positive cells. In all three cell lines [Gem+Clo+Ed] decreased the level of phosphorylation of the pro-survival protein AKT and activated the stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) stress signaling pathway, which in J45.01 cells resulted in the phosphorylation and heterodimerization of the transcription factors ATF2 and c-Jun. The observed rational mechanism-based efficacy of [Gem+Clo+Ed] based on the synergistic convergence of several pro-death and anti-apoptotic signaling pathways in three very different cell backgrounds provides a powerful foundation for undertaking clinical trials of this drug combination for the treatment of lymphomas.
Collapse
Affiliation(s)
- B C Valdez
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A R Zander
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - G Song
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - D Murray
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Y Nieto
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Li
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - B S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Iyidogan P, Sullivan TJ, Chordia MD, Frey KM, Anderson KS. Design, Synthesis, and Antiviral Evaluation of Chimeric Inhibitors of HIV Reverse Transcriptase. ACS Med Chem Lett 2013; 4:1183-8. [PMID: 24900627 DOI: 10.1021/ml4002979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/04/2013] [Indexed: 02/02/2023] Open
Abstract
In a continuing study of potent bifunctional anti-HIV agents, we rationally designed a novel chimeric inhibitor utilizing thymidine (THY) and a TMC derivative (a diarylpyrimidine NNRTI) linked via a polymethylene linker (ALK). The nucleoside, 5'-hydrogen-phosphonate (H-phosphonate), and 5'-triphosphate forms of this chimeric inhibitor (THY-ALK-TMC) were synthesized and the antiviral activity profiles were evaluated at the enzyme and cellular level. The nucleoside triphosphate (11) and the H-phosphonate (10) derivatives inhibited RT polymerization with an IC50 value of 6.0 and 4.3 nM, respectively. Additionally, chimeric nucleoside (9) and H-phosphonate (10) derivatives reduced HIV replication in a cell-based assay with low nanomolar antiviral potencies.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department
of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, United States
| | - Todd J. Sullivan
- Department
of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, United States
| | | | - Kathleen M. Frey
- Department
of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, United States
| | - Karen S. Anderson
- Department
of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
23
|
Abstract
The compound class of 3-carboranyl thymidine analogues (3CTAs) are boron delivery agents for boron neutron capture therapy (BNCT), a binary treatment modality for cancer. Presumably, these compounds accumulate selectively in tumor cells via intracellular trapping, which is mediated by hTK1. Favorable in vivo biodistribution profiles of 3CTAs led to promising results in preclinical BNCT of rats with intracerebral brain tumors. This review presents an overview on the design, synthesis, and biological evaluation of first- and second-generation 3CTAs. Boronated nucleosides developed prior to 3CTAs for BNCT and non-boronated N3-substituted thymidine conjugates for other areas of cancer therapy and imaging are also described. In addition, basic features of carborane clusters, which are used as boron moieties in the design and synthesis of 3CTAs, and the biological and structural features of TK1-like enzymes, which are the molecular targets of 3CTAs, are discussed.
Collapse
|
24
|
Valdez BC, Wang G, Murray D, Nieto Y, Li Y, Shah J, Turturro F, Wang M, Weber DM, Champlin RE, Qazilbash MH, Andersson BS. Mechanistic studies on the synergistic cytotoxicity of the nucleoside analogs gemcitabine and clofarabine in multiple myeloma: relevance of p53 and its clinical implications. Exp Hematol 2013; 41:719-30. [PMID: 23648290 DOI: 10.1016/j.exphem.2013.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 01/30/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is an established treatment for multiple myeloma (MM), a plasma cell malignancy. To identify an improved pretransplant conditioning regimen, we investigated the cytotoxicity of gemcitabine (Gem) and clofarabine (Clo) combinations toward MM cell lines and patient cell samples. A strong synergism of the two nucleoside analogs, when combined at their approximate IC10 concentrations, was observed. This synergism could be partly due to the observed Gem-mediated phosphorylation and activation of deoxycytidine kinase, resulting in enhanced phosphorylation of Gem and Clo. Their cytotoxicity correlated with a robust activation of the DNA damage response pathway. [Gem+Clo] decreased the mitochondrial membrane potential with a concomitant release of proapoptotic factors into the cytoplasm and nucleus and the activation of apoptosis. Exposure of MM cells to [Gem+Clo] also decreased the level of ribosomal RNA (rRNA), which might have resulted in nucleolar stress, as reported previously, and caused a p53-dependent cell death. A reduction by approximately 50% in the cytotoxicity of Gem and Clo was observed in the presence of pifithrin α, a p53 inhibitor. Furthermore, MM cell lines with mutant p53 exhibited greater resistance to Gem and Clo, supporting a role for the p53 protein in these cytotoxic responses. Our results provide a rationale for clinical trials incorporating [Gem+Clo] combinations as part of conditioning therapy for high-risk patients with MM undergoing HSCT.
Collapse
Affiliation(s)
- Benigno C Valdez
- Departments of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Thymidine kinase 1 (TK 1-fetal) is a cell cycle-dependent marker that increases dramatically during the S-phase of the cell cycle. In this review, the authors discuss serum levels of thymidine kinase in a variety of neoplasias. Determination of thymidine kinase helps to monitor the follow-up of solid tumours and haematological malignancies as well as indicating the efficacy of adjuvant and palliative chemotherapy. Elevated levels of thymidine kinase must always be interpreted together with a detailed knowledge of the patient's condition because nonspecific elevations of serum levels (inflammatory and autoimmune diseases) must be excluded.
Collapse
Affiliation(s)
- Ondrej Topolcan
- Charles University Prague, Medical Faculty in Pilsen, Department of Nuclear Medicine, Faculty Hospital Pilsen, 13 Edwarda Benese, 305 99 Pilsen, Czech Republic +420 377402948 ; +420 377402454 ;
| | | |
Collapse
|
26
|
Chen K, Li Z, Conti PS. Microwave-assisted one-pot radiosynthesis of 2′-deoxy-2′-[18F]fluoro-5-methyl-1-β-d-arabinofuranosyluracil ([18F]-FMAU). Nucl Med Biol 2012; 39:1019-25. [DOI: 10.1016/j.nucmedbio.2012.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 01/05/2023]
|
27
|
Faria M, Halquist MS, Kindt E, Li W, Karnes HT, O'Brien PJ. Liquid chromatography-tandem mass spectrometry method for quantification of thymidine kinase activity in human serum by monitoring the conversion of 3'-deoxy-3'-fluorothymidine to 3'-deoxy-3'-fluorothymidine monophosphate. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 907:13-20. [PMID: 22995377 DOI: 10.1016/j.jchromb.2012.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/16/2012] [Accepted: 08/19/2012] [Indexed: 10/28/2022]
Abstract
Thymidine kinase 1 (TK1) is an enzyme involved in DNA synthesis whose activity in serum is indicative of tumor proliferation and the severity of blood malignancies. 3'-deoxy-3'-fluorothymidine (FLT), a specific exogenous substrate for TK1, is phosphorylated by TK1 in the presence of a phosphorylating buffer, therefore the conversion of FLT to 3'-deoxy-3'-fluorothymidine monophosphate (FLT-MP) can be measured to assess serum TK1 activity. Here we describe a liquid chromatography-MS/MS (LC-MS/MS) method for quantification of FLT and FLT-MP from serum using protein precipitation and column switching followed by detection on an Applied Biosystems SCIEX API 4000 QTrap mass spectrometer. The method was linear over the range of 0.5-500 ng/mL for FLT and 2.5-2000 ng/mL for FLT-MP with a mean correlation coefficient of 0.9964 and 0.9935 for FLT and FLT-MP, respectively. The lower limit of quantification was 0.5 ng/mL for FLT and 2.5 ng/mL for FLT-MP. Intra-assay accuracy and inter-assay accuracy was within ±12% for both FLT and FLT-MP. Intra-assay precision was 2.8% to 7.7% for FLT and 3.3% to 5.8% for FLT-MP. Inter-assay precision was 4.6% to 14.9% for FLT and 4.9% to 14.6% for FLT-MP. Serum TK1 activity was measured in serum from hepatocellular carcinoma patients and age-matched controls under standardized conditions. Elevated TK1 activity was detected in 26.3% of hepatocellular carcinoma samples compared to controls. This method provides a robust alternative to radiometric and immunochemical assays of serum TK1 activity.
Collapse
Affiliation(s)
- Morse Faria
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
28
|
McCann KA, Williams DW, McKee EE. Metabolism of deoxypyrimidines and deoxypyrimidine antiviral analogs in isolated brain mitochondria. J Neurochem 2012; 122:126-37. [PMID: 22530558 DOI: 10.1111/j.1471-4159.2012.07765.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The goal of this project was to characterize deoxypyrimidine salvage pathways used to maintain deoxynucleoside triphosphate pools in isolated brain mitochondria and to determine the extent that antiviral pyrimidine analogs utilize or affect these pathways. Mitochondria from rat brains were incubated in media with labeled and unlabeled deoxynucleosides and deoxynucleoside analogs. Products were analyzed by HPLC coupled to an inline UV monitor and liquid scintillation counter. Isolated mitochondria transported thymidine and deoxycytidine into the matrix, and readily phosphorylated both of these to mono-, di-, and tri-phosphate nucleotides. Rates of phosphorylation were much higher than rates observed in mitochondria from heart and liver. Deoxyuridine was phosphorylated much more slowly than thymidine and only to dUMP. 3'-azido-3'-deoxythymidine, zidovudine (AZT), an antiviral thymidine analog, was phosphorylated to AZT-MP as readily as thymidine was phosphorylated to TMP, but little if any AZT-DP or AZT-TP was observed. AZT at 5.5 ± 1.7 μM was shown to inhibit thymidine phosphorylation by 50%, but was not observed to inhibit deoxycytidine phosphorylation except at levels > 100 μM. Stavudine and lamivudine were inert when incubated with isolated brain mitochondria. The kinetics of phosphorylation of thymidine, dC, and AZT were significantly different in brain mitochondria compared to mitochondria from liver and heart.
Collapse
Affiliation(s)
- Kathleen A McCann
- Indiana University School of Medicine - South Bend, South Bend, IN, USA.
| | | | | |
Collapse
|
29
|
Li W, Araya M, Elliott M, Kang X, Gerk PM, Halquist MS, Karnes HT, Zhang C, O’Brien PJ. Monitoring cellular accumulation of 3′-deoxy-3′-fluorothymidine (FLT) and its monophosphate metabolite (FLT-MP) by LC–MS/MS as a measure of cell proliferation in vitro. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2963-70. [DOI: 10.1016/j.jchromb.2011.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 07/27/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
|
30
|
Affiliation(s)
- Shashidhar N. Rao
- a Searle Research and Development , 4901 Searle Parkway, Skokie , IL , 60077
| |
Collapse
|
31
|
Morris GW, Laclair DD, McKee EE. Pyrimidine deoxynucleoside and nucleoside reverse transcriptase inhibitor metabolism in the perfused heart and isolated mitochondria. Antivir Ther 2010; 15:587-97. [PMID: 20587852 DOI: 10.3851/imp1567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND The metabolism of pyrimidine deoxynucleosides and nucleoside reverse transcriptase inhibitors has been studied in growing cells. However, many of these drugs are associated with mitochondrial toxicities observed in non-replicating tissues, such as in the heart, where their metabolism has not been investigated. METHODS The aims of this study were twofold. The first was to investigate the metabolism of the thymidine analogues 3'-azido-3'deoxythymidine (AZT) and 2',3'-didehydrodideoxy-thymidine (d4T), and the deoxycytidine (dCyd) analogues 2'-deoxy-3'-thiacytidine (3TC) and 2',3'-dideoxycytidine (ddC) with regard to phosphorylation and breakdown. The second was to investigate their potential effects, singly or in combination with AZT, on metabolism of the naturally occurring deoxynucleosides in the perfused rat heart and in isolated heart mitochondria. RESULTS The analogue d4T was not metabolized in perfused heart or in isolated mitochondria, and had no effect on either thymidine or dCyd metabolism. The dCyd analogues were both phosphorylated in perfused heart to the triphosphate, but only at the limit of detection and they were not phosphorylated in isolated mitochondria. Neither ddC nor 3TC had any effect on thymidine or dCyd metabolism in either perfused heart or in isolated mitochondria. AZT has been previously shown to inhibit thymidine phosphorylation. When d4T, 3TC or ddC were given with AZT, only ddC caused a significant further decrease in thymidine phosphorylation. CONCLUSIONS These results indicate that with the exception of the competition between AZT and thymidine, there was little competition for phosphorylation among and between these other nucleoside reverse transcriptase inhibitors and the naturally occurring deoxynucleosides in cardiac tissue and isolated heart mitochondria.
Collapse
|
32
|
Koczor CA, Lewis W. Nucleoside reverse transcriptase inhibitor toxicity and mitochondrial DNA. Expert Opin Drug Metab Toxicol 2010; 6:1493-504. [PMID: 20929279 DOI: 10.1517/17425255.2010.526602] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD HIV/AIDS is a worldwide epidemic. While there remains no cure for the HIV-1 infection, nucleoside reverse transcriptase inhibitors (NRTIs) have helped transform the HIV-1 infection from a lethal disease into a chronic illness. Though NRTIs inhibit HIV-1 replication, they exhibit side effects in human tissues that appear to result from NRTI inhibition of human mitochondrial polymerase γ (pol γ). AREAS COVERED IN THIS REVIEW this review discusses the current knowledge of NRTI-induced toxicity, specifically the inhibition of pol γ and the mitochondrial toxicity from incorporation of NRTIs into mitochondrial DNA. Details are discussed about general mechanisms of NRTI toxicity and how specific tissue toxicities in mitochondria relate to clinical manifestation. WHAT THE READER WILL GAIN a detailed knowledge of the mitochondrial toxicity resulting from NRTI-inclusive therapies and related tissue toxicities are provided. This review presents both the molecular effects of NRTI usage on mitochondrial genetic homeostasis and energy metabolism as well as the clinical manifestations associated with NRTI toxicities. TAKE HOME MESSAGE NRTIs remain a critical component of current HIV-1 treatment regimens. Future NRTIs should provide higher specificity for HIV-RT and lower incorporation by pol γ to minimize mitochondrial toxicity. Alternatively, therapeutic interventions to prevent or alleviate mitochondrial toxicity should be addressed.
Collapse
|
33
|
Munch-Petersen B. Enzymatic regulation of cytosolic thymidine kinase 1 and mitochondrial thymidine kinase 2: a mini review. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:363-9. [PMID: 20544521 DOI: 10.1080/15257771003729591] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The central enzyme on the de novo pathway for synthesis of DNA precursors, the deoxyribonucleoside triphosphates, is ribonucleotide reductase (RNR). Deoxythymidine triphosphate (dTTP) has a key role in control of RNR activity shifting the specificity from pyrimidine to purine nucleotide reduction. Apart from the complex de novo synthesis of dTTP through UDP reduction, dTTP is provided through salvage of thymidine catalyzed by the thymidine kinases, the cytosolic and cell cycle regulated TK1 and the mitochondrial and constitutively expressed TK2. The complex enzymatic regulation of TK1 and TK2 and the possible physiological significance of this regulation will be discussed.
Collapse
Affiliation(s)
- B Munch-Petersen
- Department of Science, Systems and Models NSM, Roskilde, Denmark.
| |
Collapse
|
34
|
Hazra S, Ort S, Konrad M, Lavie A. Structural and kinetic characterization of human deoxycytidine kinase variants able to phosphorylate 5-substituted deoxycytidine and thymidine analogues . Biochemistry 2010; 49:6784-90. [PMID: 20614893 DOI: 10.1021/bi100839e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The physiological role of human deoxycytidine kinase (dCK) is to phosphorylate deoxynucleosides required for DNA synthesis, with the exception of thymidine. Previous structural analysis of dCK implicated steric factors, specifically the thymine methyl group at the 5-position, that prevent thymidine phosphorylation by dCK. This hypothesis is supported by the observation that mutations that enlarge the active site cavity in proximity to the nucleoside 5-position endow dCK with the ability to phosphorylate thymidine. However, in conflict with this hypothesis was our discovery that the cytidine analogue 5-methyldeoxycytidine (5-Me-dC), an isostere of thymidine, can indeed be phosphorylated by wild-type (WT) dCK. To reconcile this seemingly contradicting observation, and to better understand the determinants preventing thymidine phosphorylation by WT dCK, we solved the crystal structure of dCK in complex with 5-Me-dC. The structure reveals the active site adjustments required to accommodate the methyl group at the 5-position. Combination of kinetic, mutagenesis, and structural data suggested that it is in fact residue Asp133 of dCK that is most responsible for discriminating against the thymine base. dCK variants in which Asp133 is replaced by an alanine and Arg104 by select hydrophobic residues attain significantly improved activity with 5-substituted deoxycytidine and thymidine analogues. Importantly, the ability of the designer enzymes to activate 5-substitued pyrimidines makes it possible to utilize such nucleoside analogues in suicide gene therapy or protein therapy applications that target cancer cells.
Collapse
Affiliation(s)
- Saugata Hazra
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
35
|
Struthers H, Viertl D, Kosinski M, Spingler B, Buchegger F, Schibli R. Charge dependent substrate activity of C3' and N3 functionalized, organometallic technetium and rhenium-labeled thymidine derivatives toward human thymidine kinase 1. Bioconjug Chem 2010; 21:622-34. [PMID: 20359195 DOI: 10.1021/bc900380n] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Human cytosolic thymidine kinase (hTK1) has proven to be a suitable target for the noninvasive imaging of cancer cell proliferation using radiolabeled thymidine analogues such as [(18)F]3'-fluoro-3'-deoxythymidine ([(18)F]FLT). A thymidine analogue for single photon emission computed tomography (SPECT), which incorporates the readily available and inexpensive nuclide technetium-99m, would be of considerable practical interest. hTK1 is known to accommodate modification of the structure of the natural substrate thymidine at the positions N3 and C3' and, to a lesser extent, C5. In this work, we used the copper-catalyzed azide-alkyne cycloaddition to synthesize two series of derivatives in which thymidine is functionalized at either the C3' or N3 position with chelating systems suitable for the M(CO)(3) core (M = (99m)Tc, Re). The click chemistry approach enabled complexes with different structures and overall charges to be synthesized from a common precursor. Using this strategy, the first organometallic hTK1 substrates in which thymidine is modified at the C3' position were identified. Phosphorylation of the organometallic derivatives was measured relative to thymidine. We have shown that the influence of the overall charge of the derivatives is dependent on the position of functionalization. In the case of the C3'-functionalized derivatives, neutral and anionic substrates were most readily phosphorylated (20-28% of the value for the parent ligand thymidine), whereas for the N3-functionalized derivatives, cationic and neutral complexes were apparently better substrates for the enzyme (14-18%) than anionic derivatives (9%).
Collapse
Affiliation(s)
- Harriet Struthers
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
36
|
Bartholomä M, Vortherms A, Hillier S, Ploier B, Joyal J, Babich J, Doyle R, Zubieta J. Synthesis, Cytotoxicity, and Insight into the Mode of Action of Re(CO)3 Thymidine Complexes. ChemMedChem 2010; 5:1513-29. [DOI: 10.1002/cmdc.201000196] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Staurosporine increases toxicity of gemcitabine in non-small cell lung cancer cells: role of protein kinase C, deoxycytidine kinase and ribonucleotide reductase. Anticancer Drugs 2010; 21:591-9. [PMID: 20436341 DOI: 10.1097/cad.0b013e32833a3543] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gemcitabine, a deoxycytidine analog, active against non-small cell lung cancer, is phosphorylated by deoxycytidine kinase (dCK) to active nucleotides. Earlier, we found increased sensitivity to gemcitabine in P-glycoprotein (SW-2R160) and multidrug resistance-associated protein (SW-2R120), overexpressing variants of the human SW1573 non-small cell lung cancer cells. This was related to increased dCK activity. As protein kinase C (PKC) is higher in 2R120 and 2R160 cells and may control the dCK activity, we investigated whether gemcitabine sensitivity was affected by the protein kinase C inhibitor, staurosporine, which also modulates the cell cycle. Ten nmol/l staurosporine enhanced the sensitivity of SW1573, 2R120 and 2R160 cells 10-fold, 50-fold and 270-fold, respectively. Staurosporine increased dCK activity about two-fold and the activity of thymidine kinase 2, which may also activate gemcitabine. Staurosporine also directly increased dCK in cell free extracts. Staurosporine decreased expression of the free transcription factor E2F and of ribonucleotide reductase (RNR), a target for gemcitabine inhibition. In conclusion, staurosporine may potentiate gemcitabine by increasing dCK and decreasing E2F and RNR, which will lead to a more pronounced RNR inhibition.
Collapse
|
38
|
Damaraju S, Damaraju VL, Mowles D, Sawyer MB, Damaraju S, Cass CE. Cytotoxic activity of gemcitabine in cultured cell lines derived from histologically different types of bladder cancer: Role of thymidine kinase 2. Biochem Pharmacol 2010; 79:21-9. [DOI: 10.1016/j.bcp.2009.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 07/23/2009] [Accepted: 07/27/2009] [Indexed: 11/26/2022]
|
39
|
Mirzaee S, Eriksson S, Albertioni F. Differences in cytosolic and mitochondrial 5'-nucleotidase and deoxynucleoside kinase activities in Sprague-Dawley rat and CD-1 mouse tissues: implication for the toxicity of nucleoside analogs in animal models. Toxicology 2009; 267:159-64. [PMID: 19913594 DOI: 10.1016/j.tox.2009.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 11/17/2022]
Abstract
Cytosolic and mitochondrial deoxynucleoside kinases (dNKs), as well as 5'deoxynucleotidases (5'-dNTs), control intracellular and intramitochondrial phosphorylation of natural nucleotides and nucleoside analogs used in antiviral and cancer chemotherapy. The balance in the activities of these two groups of enzymes to a large extent determines both the efficacy and side effects of these drugs. Because of the broad and overlapping substrate specificities of the nucleoside kinases and 5'-NTs, their tissue distribution and roles in the metabolism of both natural nucleosides and their analogs are still not fully elucidated. Here, the activity of dNKs: dCK and TK (TK1 and TK2) as well as 5'-dNTs: CN1, CN2 and dNT (dNT1 and dNT2) were determined in 14 different adult mouse and rat tissues. In most cases tissue activities of TK1, TK2 and dCK were 2-3-fold higher in the mouse, a similar pattern was found with CN1 and dNTs although with several exceptions, e.g., TK2 activities in muscle extracts from rats were 2-10-fold higher than in the mouse. Furthermore CN1 activities in hepatic, renal and adipose extracts were 2-3-fold higher in the rat. CN2 had higher levels in the testis, spleen, pancreas and diaphragm and lower level in the lung of mouse compared to rat tissues. The result suggests that a major difference in these activity profiles between mouse and rat may account for discrepancies in pharmacological response of the two animals to certain nucleoside compounds, and may help to improve the usefulness of animal models in future efforts of drug discovery.
Collapse
Affiliation(s)
- Saeedeh Mirzaee
- Cancer Center Karolinska Department of Oncology and Pathology, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Reischl G, Blocher A, Wei R, Ehrlichmann W, Kuntzsch M, Solbach C, Dohmen BM, Machulla HJ. Simplified, automated synthesis of 3′[18F]fluoro-3′-deoxy-thymidine ([18F]FLT) and simple method for metabolite analysis in plasma. RADIOCHIM ACTA 2009. [DOI: 10.1524/ract.2006.94.8.447] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Summary3′[18F]Fluoro-3′-deoxy-thymidine ([18F]FLT) (III) has been discussed to be a promising tracer for assessing tumor proliferation. In order to perform clinical studies for evaluating [18F]FLT a simplified labeling procedure was developed using 2,3′-anhydrothymidine with benzoyl as a protecting group in the 5′-position (I). In DMSO the labeling yield was 46% at 160 °C in 10 min. Hydrolysis was efficiently performed with 0.25% NaOH at room temperature within 10 min. The labeling procedure was transferred to a remote controlled synthesis module allowing the production of [18F]FLT in high activities. The overall radiochemical yield was 18.1 ± 5.4% (n= 55) with absolute yields of 9.2 ± 2.6 GBq of [18F]FLT at EOS ready for injection (60 min after EOB; irradiation parameters: 35 μA, 60 min) and specific activities of 100–220 GBq/μmol. A convenient cartridge method for metabolite analysis was developed and validatedversusHPLC showing that after 90 min 69.0 ± 7.0% of the radioactivity in plasma (less than 20% of initial radioactivity) was unchanged [18F]FLT (26 patients with various tumors).
Collapse
|
41
|
Been LB, Hoekstra HJ, Suurmeijer AJH, Jager PL, van der Laan BFAM, Elsinga PH. [18F]FLT-PET and [18F]FDG-PET in the evaluation of radiotherapy for laryngeal cancer. Oral Oncol 2009; 45:e211-5. [PMID: 19692292 DOI: 10.1016/j.oraloncology.2009.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/10/2009] [Accepted: 07/10/2009] [Indexed: 11/17/2022]
Abstract
The evaluation of response to radiotherapy in patients with laryngeal cancer is a challenge because of the difficulty to differentiate between post-therapy changes and recurrent or residual tumor. Positron emission tomography is a non-invasive imaging tool that may be helpful in this differentiation. In this study, [(18)F]-fluoro-3'-deoxy-L-thymidine ([(18)F]FLT), a proliferation tracer is compared with 2-[(18)F]-fluoro-2-deoxy-D-glucose ([(18)F]FDG). Patients with primary laryngeal cancer, scheduled to undergo radiotherapy were included in this study. Patients underwent both [(18)F]FLT-PET and [(18)F]FDG-PET shortly before radiotherapy. Ten patients underwent [(18)F]FLT-PET and [(18)F]FDG-PET 2-3 months after radiotherapy. Scans were analyzed visually for areas of increased tracer uptake. The standardized uptake value (SUV) was measured as a semi-quantitative value of tracer uptake. Fourteen patients, all male, were included in this study. Both [(18)F]FLT-PET and [(18)F]FDG-PET showed increased tracer uptake in 12 out of 14 patients (86%). [(18)F]FDG uptake was significantly higher than [(18)F]FLT uptake (SUV(max): 4.5 vs. 2.4 (P=0.002); SUV(mean): 3.4 vs. 1.9 (P=0.002)). After radiotherapy, 3 patients had histologically proven residual or recurrent laryngeal cancer. [(18)F]FDG was true positive in 2 out of 3 patients, whereas [(18)F]FLT showed increased tracer uptake in only one. Of the remaining 7 patients, [(18)F]FLT was true negative in all, whereas [(18)F]FDG showed increased uptake in one (false positive). [(18)F]FLT-PET is feasible in visualizing laryngeal cancer and its evaluation of treatment. The overall uptake of this tracer is significantly lower as compared with [(18)F]FDG, but tumor to background ratios are comparable.
Collapse
Affiliation(s)
- Lukas B Been
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Comparison of [18F]-Tracers in Various Experimental Tumor Models by PET Imaging and Identification of an Early Response Biomarker for the Novel Microtubule Stabilizer Patupilone. Mol Imaging Biol 2009; 11:308-21. [DOI: 10.1007/s11307-009-0216-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/06/2008] [Accepted: 10/24/2008] [Indexed: 01/29/2023]
|
43
|
Pérez-Pérez MJ, Priego EM, Hernández AI, Familiar O, Camarasa MJ, Negri A, Gago F, Balzarini J. Structure, physiological role, and specific inhibitors of human thymidine kinase 2 (TK2): present and future. Med Res Rev 2008; 28:797-820. [PMID: 18459168 PMCID: PMC7168489 DOI: 10.1002/med.20124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Human mitochondrial thymidine kinase (TK2) is a pyrimidine deoxynucleoside kinase (dNK) that catalyzes the phosphorylation of pyrimidine deoxynucleosides to their corresponding deoxynucleoside 5′‐monophosphates by γ‐phosphoryl transfer from ATP. In resting cells, TK2 is suggested to play a key role in the mitochondrial salvage pathway to provide pyrimidine nucleotides for mitochondrial DNA (mtDNA) synthesis and maintenance. However, recently the physiological role of TK2turned out to have direct clinical relevance as well. Point mutations in the gene encoding TK2 have been correlated to mtDNA disorders in a heterogeneous group of patients suffering from the so‐called mtDNA depletion syndrome (MDS). TK2 activity could also be involved in mitochondrial toxicity associated to prolonged treatment with antiviral nucleoside analogues like AZT and FIAU. Therefore, TK2 inhibitors can be considered as valuable tools to unravel the role of TK2 in the maintenance and homeostasis of mitochondrial nucleotide pools and mtDNA, and to clarify the contribution of TK2 activity to mitochondrial toxicity of certain antivirals. Highly selective TK‐2 inhibitors having an acyclic nucleoside structure and efficiently discriminating between TK‐2 and the closely related TK‐1 have already been reported. It is actually unclear whether these agents efficiently reach the inner mitochondrial compartment. In the present review article,structural features of TK2, MDS‐related mutations observed in TK2 and their role in MDS will be discussed. Also, an update on novel and selective TK2 inhibitors will be provided. © 2008 Wiley Periodicals, Inc. Med Res Rev, 28, No. 5, 797–820, 2008
Collapse
|
44
|
Development of an optimized dose for coformulation of zidovudine with drugs that select for the K65R mutation using a population pharmacokinetic and enzyme kinetic simulation model. Antimicrob Agents Chemother 2008; 52:4241-50. [PMID: 18838591 DOI: 10.1128/aac.00054-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In vitro selection studies and data from large genotype databases from clinical studies have demonstrated that tenofovir disoproxil fumarate and abacavir sulfate select for the K65R mutation in the human immunodeficiency virus type 1 polymerase region. Furthermore, other novel non-thymine nucleoside reverse transcriptase (RT) inhibitors also select for this mutation in vitro. Studies performed in vitro and in humans suggest that viruses containing the K65R mutation remained susceptible to zidovudine (ZDV) and other thymine nucleoside antiretroviral agents. Therefore, ZDV could be coformulated with these agents as a "resistance repellent" agent for the K65R mutation. The approved ZDV oral dose is 300 mg twice a day (b.i.d.) and is commonly associated with bone marrow toxicity thought to be secondary to ZDV-5'-monophosphate (ZDV-MP) accumulation. A simulation study was performed in silico to optimize the ZDV dose for b.i.d. administration with K65R-selecting antiretroviral agents in virtual subjects using the population pharmacokinetic and cellular enzyme kinetic parameters of ZDV. These simulations predicted that a reduction in the ZDV dose from 300 to 200 mg b.i.d. should produce similar amounts of ZDV-5'-triphosphate (ZDV-TP) associated with antiviral efficacy (>97% overlap) and reduced plasma ZDV and cellular amounts of ZDV-MP associated with toxicity. The simulations also predicted reduced peak and trough amounts of cellular ZDV-TP after treatment with 600 mg ZDV once a day (q.d.) rather than 300 or 200 mg ZDV b.i.d., indicating that q.d. dosing with ZDV should be avoided. These in silico predictions suggest that 200 mg ZDV b.i.d. is an efficacious and safe dose that could delay the emergence of the K65R mutation.
Collapse
|
45
|
Abstract
Increased cellular proliferation is an integral part of the cancer phenotype. Several in vitro assays have been developed to measure the rate of tumor growth, but these require biopsies, which are particularly difficult to obtain over time and in different areas of the body in patients with multiple metastatic lesions. Most of the effort to develop imaging methods to noninvasively measure the rate of tumor cell proliferation has focused on the use of PET in conjunction with tracers for the thymidine salvage pathway of DNA synthesis, because thymidine contains the only pyrimidine or purine base that is unique to DNA. Imaging with 11C-thymidine has been tested for detecting tumors and tracking their response to therapy in animals and patients. Its major limitations are the short half-life of 11C and the rapid catabolism of thymidine after injection. These limitations led to the development of analogs that are resistant to degradation and can be labeled with radionuclides more conducive to routine clinical use, such as 18F. At this point, the thymidine analogs that have been studied the most are 3'-deoxy-3'-fluorothymidine (FLT) and 1-(2'-deoxy-2'-fluoro-1-beta-d-arabinofuranosyl)-thymine (FMAU). Both are resistant to degradation and track the DNA synthesis pathway. FLT is phosphorylated by thymidine kinase 1, thus being retained in proliferating cells. It is incorporated by the normal proliferating marrow and is glucuronidated in the liver. FMAU can be incorporated into DNA after phosphorylation but shows less marrow uptake. It shows high uptake in the normal heart, kidneys, and liver, in part because of the role of mitochondrial thymidine kinase 2. Early clinical data for 18F-FLT demonstrated that its uptake correlates well with in vitro measures of proliferation. Although 18F-FLT can be used to detect tumors, its tumor-to-normal tissue contrast is generally lower than that of 18F-FDG in most cancers outside the brain. The most promising use for thymidine and its analogs is in monitoring tumor treatment response, as demonstrated in animal studies and pilot human trials. Further work is needed to determine the optimal tracer(s) and timing of imaging after treatment.
Collapse
Affiliation(s)
- James R Bading
- Department of Radioimmunotherapy, City of Hope, Duarte, California, USA
| | | |
Collapse
|
46
|
Ramzaeva N, Michalek E, Kazimierczuk Z, Seela F, Rosemeyer H. Hoogsteen vs. Watson-Crick base pairing: incorporation of 2-substituted adenine- and 7-deazaadenine 2'-deoxy-beta-D-ribonucleosides into oligonucleotides. Chem Biodivers 2008; 4:2725-44. [PMID: 18081083 DOI: 10.1002/cbdv.200790222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Various 2-substituted 2'-deoxyadenosines and 7-deazaadenosines have been synthesized. The phosphonate building block 9 of 2-chloro-7-deaza-2'-deoxyadenosine (7-deazacladribine; 2) was prepared by 4,4'-dimethoxytritylation of the parent nucleoside (-->7), followed by protection of the amino function with a formamidine residue (-->8). The latter was reacted with PCl3/N-methylmorpholine/1,2,4-triazole to give compound 9. Moreover, 2-methoxy-2'-deoxyadenosine (2'-deoxyspongosine; 1b) was converted into the fully protected derivative 12, which was then transformed into the 2-cyanoethyl phosphoramidite 14. Also the 2-(trifluoromethyl)-substituted 2'-deoxyadenosines 19-21 were prepared by glycosylation of the chromophore 16 with the halogenose 17, followed by one-pot deprotection and nucleophilic displacement of the 6-Cl substituent. The new DNA building blocks 9 and 14 were used--together with formerly prepared cladribine derivative 4--for solid-phase synthesis of a series of oligodeoxyribonucleotides. These were studied with respect to their thermal stability as well as of the base pairing mode (Watson-Crick vs. Hoogsteen) of modified bases.
Collapse
Affiliation(s)
- Natalya Ramzaeva
- Organische Chemie I-Bioorganische Chemie, Institut für Chemie, Fachbereich Biologie/Chemie, Universität Osnabrück
| | | | | | | | | |
Collapse
|
47
|
In vivo measurement of cell proliferation in canine brain tumor using C-11-labeled FMAU and PET. Nucl Med Biol 2008; 35:131-41. [DOI: 10.1016/j.nucmedbio.2007.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 09/04/2007] [Accepted: 09/08/2007] [Indexed: 11/21/2022]
|
48
|
Lutz S, Lichter J, Liu L. Exploiting temperature-dependent substrate promiscuity for nucleoside analogue activation by thymidine kinase from Thermotoga maritima. J Am Chem Soc 2007; 129:8714-5. [PMID: 17592850 PMCID: PMC2085358 DOI: 10.1021/ja0734391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Lutz
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
49
|
Eriksson S, Wang L. Substrate Specificities, Expression and Primary Sequences of Deoxynucleoside Kinases; Implications for Chemotherapy. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328319708002930] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Staffan Eriksson
- a Department of Veterinary Medical Chemistry , Swedish University of Agricultural Sciences, The Biomedical Centre , Box 575, 5751 23, Uppsala , Sweden
| | - Liya Wang
- a Department of Veterinary Medical Chemistry , Swedish University of Agricultural Sciences, The Biomedical Centre , Box 575, 5751 23, Uppsala , Sweden
| |
Collapse
|
50
|
Solaroli N, Johansson M, Balzarini J, Karlsson A. Enhanced toxicity of purine nucleoside analogs in cells expressing Drosophila melanogaster nucleoside kinase mutants. Gene Ther 2006; 14:86-92. [PMID: 16885999 DOI: 10.1038/sj.gt.3302835] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The multisubstrate deoxyribonucleoside kinase of Drosophila melanogaster (Dm-dNK) is investigated for possible use as a suicide gene in combined gene/chemotherapy of cancer. The enzyme has broader substrate specificity and higher catalytic rate compared to herpes simplex type 1 thymidine kinase and other known dNKs. Although the enzyme has broad substrate specificity, it has a preference for pyrimidine nucleosides and nucleoside analogs. We have evaluated the substrate specificity and kinetic properties of Dm-dNK proteins containing M88R, V84A+M88R or V84A+M88R+A110D mutations in the amino-acid sequence. These engineered enzymes showed a relative increase in phosphorylation of purine nucleoside analogs such as ganciclovir, 9-beta-D-arabinofuranosylguanine and 2',2'-difluorodeoxyguanosine compared to the wild-type enzyme. The mutant enzymes were expressed in an osteosarcoma thymidine kinase-deficient cell line and the sensitivity of the cell line to nucleoside analogs was determined. The cells expressing the M88R mutant enzyme showed the highest increased sensitivity to purine nucleoside analogs with 8- to 80-fold decreased inhibition constant IC(50) compared to untransduced control cells or cells expressing the wild-type nucleoside kinase. In summary, our data show that enzyme engineering can be used to shift the substrate specificity of the Dm-dNK to selectively increase the sensitivity of cells expressing the enzyme to purine nucleoside analogs.
Collapse
Affiliation(s)
- N Solaroli
- Department of Laboratory Medicine, Division of Metabolic Diseases, Karolinska Institute, Stockholm, Sweden.
| | | | | | | |
Collapse
|