Brandt MA, Powers-Lee SG. The interaction of cardiolipin with rat liver carbamoyl phosphate synthetase I.
Arch Biochem Biophys 1991;
290:14-20. [PMID:
1898084 DOI:
10.1016/0003-9861(91)90585-7]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A selective interaction of rat liver carbamoyl phosphate synthetase I with cardiolipin, and other anionic phospholipids, has been demonstrated. The enzymatic activity of the synthetase is inhibited by cardiolipin and, to a lesser extent, by phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine. This group of anionic phospholipids also induced a conformational change in the synthetase, yielding a species with increased exposure of the linkages between independently folded domains of the enzyme, as determined by limited proteolysis under nondenaturing conditions. The interaction of cardiolipin with carbamoyl phosphate synthetase I was a fairly slow process, with complex kinetics, and was apparently irreversible. The inclusion of Mg2+ or of MgATP in the incubation mixture prevented the cardiolipin effects. The zwitterionic phospholipids phosphatidylcholine and phosphatidylethanolamine had negligible effects on the structure and activity of the synthetase. This interaction between cardiolipin and carbamoyl phosphate synthetase I potentially constitutes one of the mechanisms by which the synthetase forms its loose association with the inner mitochondrial membrane. Multiple mechanisms, including synthetase conformational changes, cardiolipin phase changes, and ATP/ADP binding site involvement, are possibly involved in the phospholipid/synthetase interaction and the resulting potential regulatory mechanism(s) for urea cycle activity.
Collapse