Konrad M, Merz WE. Long-term effect of cyclic AMP on N-glycosylation is caused by an increase in the activity of the cis-prenyltransferase.
Biochem J 1996;
316 ( Pt 2):575-81. [PMID:
8687403 PMCID:
PMC1217387 DOI:
10.1042/bj3160575]
[Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previously we have shown that long-term pretreatment of JEG-3 choriocarcinoma cells with 8-bromo-cAMP increases the capacity for N-glycosylation that was caused by an 8-10-fold enlargement of the dolichol pyrophosphoryl oligosaccharide (Dol-PP-oligosaccharide) pool [Konrad and Merz (1994) J. Biol. Chem. 269, 8659-8666]. The factors involved in the effect of cAMP on synthesis of Dol-PP-oligosaccharide are investigated here. The GlcNAc transfer to dolichol phosphate (Dol-P) was found to be unaffected by pretreatment with 8-bromo-cAMP. By measuring the uptake of [3H]mevalonate, a 20-fold increase in the incorporation of the label into Dol-P was observed in the cells treated with 8-bromo-cAMP. Under the same conditions, the synthesis of dolichol was enhanced 60-fold. However, the incorporation of the radioactivity into cholesterol was not increased in the JEG-3 cells pretreated with 8-bromo-cAMP, which suggests a specific stimulation of the dolichol/Dol-P pathway by cAMP. The cis-prenyltransferase activity was found to be increased 10-fold in cells pretreated with 8-bromo-cAMP. Dolichol kinase activity was unaffected by stimulation with 8-bromo-cAMP. The present study suggests that the larger glycosylation capacity in JEG-3 cells treated with 8-bromo-cAMP is caused by an increase in the microsomal cis-prenyltransferase activity.
Collapse