1
|
Shears SB. Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1. ACTA ACUST UNITED AC 2009; 49:87-96. [PMID: 19200440 DOI: 10.1016/j.advenzreg.2008.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Section, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHSS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
2
|
Shears SB, Yang L, Qian X. Cell signaling by a physiologically reversible inositol phosphate kinase/phosphatase. ACTA ACUST UNITED AC 2005; 44:265-77. [PMID: 15581495 DOI: 10.1016/j.advenzreg.2004.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Stephen B Shears
- Laboratory of Signal Transduction, Inositol Signaling Section, National Institute of Environmental Health Sciences, NIH/DHHS, Research Triangle Park, NC 27709, USA.
| | | | | |
Collapse
|
3
|
Spät A, Hunyady L. Control of aldosterone secretion: a model for convergence in cellular signaling pathways. Physiol Rev 2004; 84:489-539. [PMID: 15044681 DOI: 10.1152/physrev.00030.2003] [Citation(s) in RCA: 329] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aldosterone secretion by glomerulosa cells is stimulated by angiotensin II (ANG II), extracellular K(+), corticotrophin, and several paracrine factors. Electrophysiological, fluorimetric, and molecular biological techniques have significantly clarified the molecular action of these stimuli. The steroidogenic effect of corticotrophin is mediated by adenylyl cyclase, whereas potassium activates voltage-operated Ca(2+) channels. ANG II, bound to AT(1) receptors, acts through the inositol 1,4,5-trisphosphate (IP(3))-Ca(2+)/calmodulin system. All three types of IP(3) receptors are coexpressed, rendering a complex control of Ca(2+) release possible. Ca(2+) release is followed by both capacitative and voltage-activated Ca(2+) influx. ANG II inhibits the background K(+) channel TASK and Na(+)-K(+)-ATPase, and the ensuing depolarization activates T-type (Ca(v)3.2) Ca(2+) channels. Activation of protein kinase C by diacylglycerol (DAG) inhibits aldosterone production, whereas the arachidonate released from DAG in ANG II-stimulated cells is converted by lipoxygenase to 12-hydroxyeicosatetraenoic acid, which may also induce Ca(2+) signaling. Feedback effects and cross-talk of signal-transducing pathways sensitize glomerulosa cells to low-intensity stimuli, such as physiological elevations of [K(+)] (< or =1 mM), ANG II, and ACTH. Ca(2+) signaling is also modified by cell swelling, as well as receptor desensitization, resensitization, and downregulation. Long-term regulation of glomerulosa cells involves cell growth and proliferation and induction of steroidogenic enzymes. Ca(2+), receptor, and nonreceptor tyrosine kinases and mitogen-activated kinases participate in these processes. Ca(2+)- and cAMP-dependent phosphorylation induce the transfer of the steroid precursor cholesterol from the cytoplasm to the inner mitochondrial membrane. Ca(2+) signaling, transferred into the mitochondria, stimulates the reduction of pyridine nucleotides.
Collapse
Affiliation(s)
- András Spät
- Dept. of Physiology, Semmelweis University, Faculty of Medicine, PO Box 259, H-1444 Budapest, Hungary.
| | | |
Collapse
|
4
|
Purification and some properties of inositol 1,3,4,5,6-Pentakisphosphate 2-kinase from immature soybean seeds. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)46940-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Hughes PJ, Kirk CJ, Michell RH. Inhibition of porcine brain inositol 1,3,4-trisphosphate kinase by inositol polyphosphates, other polyol phosphates, polyanions and polycations. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1223:57-70. [PMID: 8061054 DOI: 10.1016/0167-4889(94)90073-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have partially purified an enzyme activity that phosphorylates inositol 1,3,4-trisphosphate from porcine brain, rat liver and bovine testis by FPLC chromatography on Q-Sepharose anion-exchange resin and Heparin-agarose. The products of this reaction were inositol 1,3,4,6-tetrakisphosphate and inositol 1,3,4,5-tetrakisphosphate. The same enzyme appears to be responsible for both 6-kinase and 5-kinase activities against inositol 1,3,4-trisphosphate (the 6-kinase: 5-kinase activity ratio is approximately 4 to 1), has a pH optimum of approximately 6.8 and requires Mg2+ for activity. The Km values of the enzyme for inositol 1,3,4-trisphosphate and ATP were approximately 0.5 microM and approximately 100 microM, respectively. Inositol 3,4,5,6-tetrakisphosphate, inositol 1,3,4,6-tetrakisphosphate and inositol 1,3,4,5-tetrakisphosphate are all competitive inhibitors with K(i) values of 0.4 microM, 3 microM and 5 microM, respectively, well within their likely intracellular concentration ranges: they inhibited 6-kinase and 5-kinase activities equally. 2,3-Bisphosphoglycerate and spermine were also competitive inhibitors, with K(i) values of 0.8 mM an 12 mM, respectively. Dextran sulphate was a non-competitive inhibitor with a Ki of approximately 15 microM, and poly-L-lysine (IC50 approximately 200 microM), polyvinylsulphate (IC50 approximately 250 microM) and heparin (IC50 approximately 2 mg/ml) also inhibited. Inhibition by these compounds suggests that inositol 3,4,5,6-tetrakisphosphate (and to a lesser extent inositol 1,3,4,5-tetrakisphosphate and other naturally occurring intracellular ions) may restrict the synthesis of inositol 1,3,4,6-tetrakisphosphate and hence regulate the rate of inositol penta- and hexakisphosphate synthesis from receptor-generated inositol phosphates.
Collapse
Affiliation(s)
- P J Hughes
- Centre for Clinical Research in Immunology and Signalling, University of Birmingham, UK
| | | | | |
Collapse
|
6
|
Balla T, Catt KJ. Phosphoinositides and calcium signaling New aspects and diverse functions in cell regulation. Trends Endocrinol Metab 1994; 5:250-5. [PMID: 18407216 DOI: 10.1016/1043-2760(94)p3084-k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Numerous circulating and locally produced hormones bind to specific cell-surface receptors and activate a variety of second-messenger pathways that evoke characteristic phenotypic responses in their target cells. One of the most ubiquitous signal transduction mechanisms is the phosphoinositide-calcium messenger system, which is activated by hormones, neurotransmitters, and growth factors. Stimulation of these receptors by their ligands causes a characteristic change in the metabolism of membrane phospholipids with production of diacylglycerol and a rapid increase in cytoplasmic Ca(2+) concentration, due to the release of stored intracellular Ca(2+) and stimulated Ca(2+) entry from the extracellular space. These intracettular signals act in concert to activate protein kinases that phosphorylate a variety of regulatory proteins. The link between phosphoinositide turnover and Ca(2+) mobilization is inositol 1,4,5-trisphosphate, the major Ca(2+)-mobilizing second messenger, which is produced from membrane phosphoinositides by activated phospholipase C enzymes. The mechanisms of ligand-regulated Ca(2+) influx and the additional regulatory role(s) of phosphoinositides and inositol phosphates are still being unfolded. This review and the following article summarize some recent developments and unsolved issues about this major signal transduction cascade that links calcium-mobilizing hormone receptors to the regulation of endocrine cell function.
Collapse
Affiliation(s)
- T Balla
- The Endocrinology and Reproduction Research Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
7
|
Balla T, Sim SS, Baukal AJ, Rhee SG, Catt KJ. Inositol polyphosphates are not increased by overexpression of Ins(1,4,5)P3 3-kinase but show cell-cycle dependent changes in growth factor-stimulated fibroblasts. Mol Biol Cell 1994; 5:17-27. [PMID: 8186462 PMCID: PMC301006 DOI: 10.1091/mbc.5.1.17] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
NIH 3T3 fibroblasts were stably transfected with rat brain inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) 3-kinase to explore the relationship between increased production of Ins(1,3,4,5)P4 and the formation of InsP5 and InsP6. Mass measurements of InsP5 and InsP6 revealed no significant difference between kinase- and vector-transfected fibroblasts. However, such 3-kinase-transfected cells, when labeled with [3H]inositol for 48-72 h, showed lower levels of [3H]InsP5 and [3H]InsP6, as well as [3H]Ins(1,3,4,6)P4 and D/L[3H]Ins(1,4,5,6)P4, than their vector-transfected counterparts. Because Ins(1,4,5)P3 3-kinase-transfected cells grew less rapidly than vector-transfected controls, we determined whether the synthesis of InsP5 and InsP6 was related to a specific phase of the cell cycle. When NIH 3T3 cells prelabeled with [3H]inositol were synchronized by serum deprivation followed by stimulation with platelet-derived growth factor (PDGF), the amounts of labeled InsP5 and InsP6 began to increase only after 12 h of stimulation, when cells entered the S-phase as indicated by increased [3H]thymidine incorporation. The enhanced synthesis of these inositol polyphosphates was preceded by an early increase in Ins(1,4,5)P3 and its metabolites that was no longer evident by the fifth hour of PDGF action. There was also a prominent and biphasic increase in the level of D/L-Ins(1,4,5,6)P4 with an early peak at approximately 3 h and a second rise that paralleled the increases in InsP5 and InsP6. These results indicate that the formation of highly phosphorylated inositols is not tightly coupled to the receptor-mediated formation of Ins(1,4,5)P3 and its metabolites but is mainly determined by other factors that operate at specific points of the cell cycle.
Collapse
Affiliation(s)
- T Balla
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
8
|
The interconversion of inositol 1,3,4,5,6-pentakisphosphate and inositol tetrakisphosphates in AR4-2J cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36642-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Verjans B, Erneux C, Raspe E, Dumont JE. Kinetics of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate generation in dog-thyroid primary cultured cells stimulated by carbachol. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:43-9. [PMID: 2001706 DOI: 10.1111/j.1432-1033.1991.tb15783.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The action of carbachol on the generation of inositol trisphosphate and tetrakisphosphate isomers was investigated in dog-thyroid primary cultured cells radiolabelled with [3H]inositol. The separation of the inositol phosphate isomers was performed by reverse-phase high pressure liquid chromatography. The structure of inositol phosphates co-eluting with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] standards was determined by enzymatic degradation using a purified Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase. The data indicate that Ins(1,3,4,5)P4 was the only [3H]inositol phosphate which co-eluted with a [32P]Ins(1,3,4,5)P4 standard, whereas 80% of the [3H]InsP3 co-eluting with an Ins(1,4,5)P3 standard was actually this isomer. In the presence of Li+, carbachol led to rapid increases in [3H]Ins(1,4,5)P4. The level of Ins(1,4,5)P3 reached a peak at 200% of the control after 5-10 s of stimulation and fell to a plateau that remained slightly elevated for 2 min. The level of Ins(1,3,4,5)P4 reached its maximum at 20s. The level of inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] increased continuously for 2 min after the addition of carbachol. Inositol-phosphate generation was also investigated under different pharmacological conditions. Li+ largely increased the level of Ins(1,3,4)P3 but had no effect on Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin, which stimulates dog-thyroid adenylate cyclase and cyclic-AMP accumulation, had no effect on the generation of inositol phosphates. The absence of extracellular Ca2+ largely decreased the level of Ins(1,3,4,5)P4 as expected considering the Ca2(+)-calmodulin sensitivity of the Ins(1,4,5)P3 3-kinase. Staurosporine, an inhibitor of protein kinase C, increased the levels of Ins(1,4,5)P3, Ins(1,3,4,5)P4 and Ins(1,3,4)P3. This supports a negative feedback control of diacyglycerol on Ins(1,4,5)P3 generation.
Collapse
Affiliation(s)
- B Verjans
- Institute of Interdisciplinary Research (IRIBHN), School of Medicine, Free University of Brussels (ULB), Belgium
| | | | | | | |
Collapse
|
10
|
Abstract
Many hormones, growth factors, and neurotransmitters stimulate their target cells by promoting the hydrolysis of plasma-membrane phosphoinositides to form the two second messengers, diacylglycerol and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. In such cells, ligand-receptor interaction stimulates specific phospholipases that are activated by guanyl nucleotide regulatory G proteins or tyrosine phosphorylation. In many cells, the initial rise in cytoplasmic calcium due to Ins(1,4,5)P3-induced mobilization of calcium from agonist-sensitive stores is followed by a sustained phase of cytoplasmic calcium elevation that maintains the target-cell response, and is dependent on influx of extracellular calcium. Numerous inositol phosphates are formed during metabolism of the calcium-mobilizing messenger, inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], to lower and higher phosphorylated derivatives. The cloning of several phospholipase-C isozymes, as well as the Ins(1,4,5)P3-5 kinase and the Ins(1,4,5)P3 receptor, have clarified several aspects of the diversity and complexity of the phosphoinositide-calcium signaling system. In addition to their well-established roles in hormonal activation of cellular responses such as secretion and contraction, phospholipids and their hydrolysis products have been increasingly implicated in the actions of growth factors and oncogenes on cellular growth and proliferation.
Collapse
Affiliation(s)
- K J Catt
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
11
|
MacFarland RT, Zelus BD, Beavo JA. High concentrations of a cGMP-stimulated phosphodiesterase mediate ANP-induced decreases in cAMP and steroidogenesis in adrenal glomerulosa cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52413-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
12
|
Stephens LR, Berrie CP, Irvine RF. Agonist-stimulated inositol phosphate metabolism in avian erythrocytes. Biochem J 1990; 269:65-72. [PMID: 2375758 PMCID: PMC1131532 DOI: 10.1042/bj2690065] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
1. A screen for agonists capable of stimulating the formation of inositol phosphates in erythrocytes from 5-day-old chickens revealed the presence of a population of phosphoinositidase C-linked purinergic receptors. 2. If chicken erythrocytes prelabelled with [3H]Ins were exposed to a maximal effective dose of adenosine 5'-[beta-thio]diphosphate for 30 s, the agonist-stimulated increment in total [3H]inositol phosphates was confined to [3H]Ins(1,4,5)P3, Ins(1,3,4,5)P4 and InsP2. After 40 min stimulation, the radiolabelling of nearly all of the [3H]inositol phosphates that have been detected in these extracts [Stephens, Hawkins & Downes (1989) Biochem. J. 262, 727-737] had risen. However, some of these increases [especially those in Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5] were accountable for almost entirely by increases in specific radioactivity rather than in mass. 3. The effect of purinergic stimulation on the rate of incorporation of [32P]Pi in the medium into the gamma-phosphate group of ATP and InsP4 and InsP5 was also measured. After 40 min stimulation, the incorporation of 32P into Ins(1,3,4,6)P4, Ins(1,3,4,5)P4, Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5 was significantly elevated, whereas the mass of the last two and the specific radioactivity of the gamma-phosphate of ATP were unchanged compared with control erythrocyte suspensions. 4. In control suspensions of avian erythrocytes, the specific radioactivity of the individual phosphate moieties of Ins(1,3,4,6)P4 increased through the series 1, 6, 4 and 3 [Stephens & Downes (1990) Biochem. J. 265, 435-452]. This pattern of 32P incorporation is not the anticipated outcome of 6-hydroxy phosphorylation of Ins(1,3,4)P3 [the assumed route of synthesis of Ins(1,3,4,6)P4]. Although adenosine [beta-thio]diphosphate significantly stimulated the accumulation of [3H]Ins(1,3,4)P3, and despite the fact that avian erythrocyte lysates were shown to possess a chromatographically distinct, soluble, ATP-dependent, Ins(1,3,4)P3 6-hydroxykinase activity, purinergic stimulation of intact cells did not significantly alter the pattern of incorporation of [32P]Pi into the individual phosphate moieties of Ins(1,3,4,6)P4. These results suggest that the route of synthesis of this inositol phosphate species is not changed during the presence of an agonist.
Collapse
Affiliation(s)
- L R Stephens
- Department of Biochemistry, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, U.K
| | | | | |
Collapse
|
13
|
Menniti FS, Oliver KG, Nogimori K, Obie JF, Shears SB, Putney JW. Origins of myo-inositol tetrakisphosphates in agonist-stimulated rat pancreatoma cells. Stimulation by bombesin of myo-inositol 1,3,4,5,6-pentakisphosphate breakdown to myo-inositol 3,4,5,6-tetrakisphosphate. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38572-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Inositol 1,3,4,5,6-pentakisphosphate and inositol hexakisphosphate inhibit inositol-1,3,4,5-tetrakisphosphate 3-phosphatase in rat parotid glands. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38752-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Hawkins PT, Reynolds DJ, Poyner DR, Hanley MR. Identification of a novel inositol phosphate recognition site: specific [3H]inositol hexakisphosphate binding to brain regions and cerebellar membranes. Biochem Biophys Res Commun 1990; 167:819-27. [PMID: 2322254 DOI: 10.1016/0006-291x(90)92099-l] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[3H]Inositol hexakisphosphate (InsP6) binds with a heterogeneous distribution to frozen sections of unfixed rat brain and is displaced by unlabelled InsP6. The pattern of binding correlates with binding to neuronal cell bodies. [3H]InsP6 binding to cerebellar membranes has been further characterised, is reversible, and saturable, and exhibits high specificity for inositol polyphosphates. The IC50 for competition by unlabelled InsP6 is approximately 100nM, whereas inositol 1,3,4,5,6 pentakisphosphate (Ins(13456)P5), inositol 1,3,4,5 tetrakisphosphate (Ins(1345)P4), and inositol 1,4,5 trisphosphate (Ins(145)P3) bind with an affinity at least one order of magnitude lower. [3H]InsP6 binding is clearly distinct from previously characterised Ins(145)P3 (ref. 1, 2) and Ins(1345)P4 (ref. 3) binding, both in terms of pharmacology and brain distribution.
Collapse
Affiliation(s)
- P T Hawkins
- MRC Molecular Neurobiology Unit, MRC Centre, Cambridge, England
| | | | | | | |
Collapse
|
16
|
Ji H, Sandberg K, Baukal A, Catt K. Metabolism of Inositol Pentakisphosphate to Inositol Hexakisphosphate in Xenopus laevis Oocytes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47044-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
|
18
|
The regulation of the phosphorylation of inositol 1,3,4-trisphosphate in cell-free preparations and its relevance to the formation of inositol 1,3,4,6-tetrakisphosphate in agonist-stimulated rat parotid acinar cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47191-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Balla T, Baukal AJ, Hunyady L, Catt KJ. Agonist-induced Regulation of Inositol Tetrakisphosphate Isomers and Inositol Pentakisphosphate in Adrenal Glomerulosa Cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)80040-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
20
|
Balla T, Hunyady L, Baukal AJ, Catt KJ. Structures and Metabolism of Inositol Tetrakisphosphates and Inositol Pentakisphosphate in Bovine Adrenal Glomerulosa Cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)60543-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
21
|
Affiliation(s)
- S B Shears
- Laboratory of Cellular and Molecular Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
22
|
Balla T, Hausdorff WP, Baukal AJ, Catt KJ. Inositol polyphosphate production and regulation of cytosolic calcium during the biphasic activation of adrenal glomerulosa cells by angiotensin II. Arch Biochem Biophys 1989; 270:398-403. [PMID: 2930197 DOI: 10.1016/0003-9861(89)90043-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stimulation of aldosterone production by angiotensin II in the adrenal glomerulosa cell is mediated by increased phosphoinositide turnover and elevation of intracellular Ca2+ concentration. In cultured bovine glomerulosa cells, angiotensin II caused rapid increases in inositol-1,4,5-trisphosphate (Ins-1,4,5-P3) levels and cytosolic Ca2+ during the first minute of stimulation, when both responses peaked between 5 and 10 s and subsequently declined to above-baseline levels. In addition to this temporal correlation, the dose-response relationships of the angiotensin-induced peak increases in cytosolic Ca2+ concentrations and Ins-1,4,5-P3 levels measured at 10 s were closely similar. However, at later times (greater than 1 min) there was a secondary elevation of Ins-1,4,5-P3, paralleled by increased formation of inositol 1,3,4,5-tetrakisphosphate that was associated with cytosolic Ca2+ concentrations only slightly above the resting value. These results are consistent with the primary role of Ins-1,4,5-P3 in calcium mobilization during activation of the glomerulosa cell by angiotensin II. They also suggest that Ins-1,4,5-P3 participates in the later phase of the target-cell response, possibly by acting alone or in conjunction with its phosphorylated metabolites to promote calcium entry and elevation of cytosolic Ca2+ during the sustained phase of aldosterone secretion.
Collapse
Affiliation(s)
- T Balla
- Endocrinology and Reproduction Research Branch, NICHD, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|