1
|
Cannarella R, Crafa A, Curto R, Mongioì LM, Garofalo V, Cannarella V, Condorelli RA, La Vignera S, Calogero AE. Human sperm RNA in male infertility. Nat Rev Urol 2025; 22:92-115. [PMID: 39256514 DOI: 10.1038/s41585-024-00920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 09/12/2024]
Abstract
The function and value of specific sperm RNAs in apparently idiopathic male infertility are currently poorly understood. Whether differences exist in the sperm RNA profile between patients with infertility and fertile men needs clarification. Similarly, the utility of sperm RNAs in predicting successful sperm retrieval and assisted reproductive technique (ART) outcome is unknown. Patients with infertility and fertile individuals seem to have differences in the expression of non-coding RNAs that regulate genes controlling spermatogenesis. Several RNAs seem to influence embryo quality and development. Also, RNA types seem to predict successful sperm retrieval in patients with azoospermia. These findings suggest that sperm RNAs could influence decision-making during the management of patients with infertility. This evidence might help to identify possible therapeutic approaches aimed at modulating the expression of dysregulated genes in patients with infertility. Performing prospective studies with large sample sizes is necessary to investigate cost-effective panels consisting of proven molecular targets to ensure that this evidence can be translated to clinical practice.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberto Curto
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vincenzo Garofalo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Vittorio Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Naveed M, Shen Z, Bao J. Sperm-borne small non-coding RNAs: potential functions and mechanisms as epigenetic carriers. Cell Biosci 2025; 15:5. [PMID: 39825433 PMCID: PMC11740426 DOI: 10.1186/s13578-025-01347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations. However, the exact mechanisms through which these paternally supplied epigenetic carriers operate remain unclear and are under hot debate. This concise review presents the most extensive evidence to date on environmentally-responsive sperm-borne sncRNAs, encompassing brief summary of their origin, dynamics, compartmentalization, characteristics, as well as in-depth elaboration of their functional roles in epigenetic and transgenerational inheritance. Additionally, the review delves into the potential mechanisms by which sperm-delivered sncRNAs may acquire and transmit paternally acquired traits to offspring, modulating zygotic gene expression and influencing early embryonic development.
Collapse
Affiliation(s)
- Muhammad Naveed
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Zhaokang Shen
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China
| | - Jianqiang Bao
- Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Hefei National Laboratory for Physical Sciences at Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China (USTC), Hefei, Anhui, China.
| |
Collapse
|
3
|
Abu-Halima M, Fischer U, Al Smadi MA, Ludwig N, Acheli A, Engel A, Abdul-Khaliq H, Meese E. Single Sperm RNA signatures reveal MicroRNA biomarkers for male subfertility. J Assist Reprod Genet 2024; 41:3119-3132. [PMID: 39312032 PMCID: PMC11621271 DOI: 10.1007/s10815-024-03264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 12/06/2024] Open
Abstract
PURPOSE To investigate small RNA profiles in sperm, identify stable miRNA patterns unique to sperm, and assess the behavior of consistently expressed miRNAs in sperm from subfertile men compared to fertile controls. METHODS The small RNA profiles of single sperm from four proven fertile men were analyzed using Small RNA next-generation sequencing (NGS). Subsequently, a specific set of miRNAs was validated using RT-qPCR on additional sperm samples from 65 subfertile men from an infertility clinic and 30 proven fertile men. RESULTS Small RNA sequencing revealed a diverse range of sperm small RNA biotypes, including miRNAs. The mapped read percentage ranged from 22.19% for single sperm to 83.29% for enriched sperm samples used at different RNA concentrations. In single sperm, a smaller proportion of sequences were attributed to piRNAs (2.79%), miRNA (0.94%), tRNA (0.82%), and rRNA (0.47%) compared to enriched sperm samples, where piRNA (41.68%), tRNA (20.31%), miRNA (11.11%), and rRNA (6.54%) were observed. Distinct detection rates and a higher number of detected miRNAs were noted with enriched sperm samples compared to single sperm obtained using either a micromanipulator or microdissection systems. Among the identified miRNAs, 110 were consistently present in all samples. RT-qPCR revealed 15 miRNAs with increased expression and 5 miRNAs with decreased expression in sperm samples from subfertile men compared to proven fertile men. These differentially validated miRNAs were significantly correlated, either positively or negatively, with sperm count, motility, and morphology. CONCLUSION The study extensively examines small RNAs in single sperm, identifying sperm-specific miRNAs that could serve as molecular markers to distinguish between subfertile and fertile men in clinical settings.
Collapse
Affiliation(s)
- Masood Abu-Halima
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany.
- Department of Paediatric Cardiology, Saarland University Hospital, Homburg, Germany.
| | - Ulrike Fischer
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Mohammad A Al Smadi
- Reproductive Endocrinology and IVF Unit, King Hussein Medical Centre, Amman, Jordan
| | - Nicole Ludwig
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Anissa Acheli
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| | - Annika Engel
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Hashim Abdul-Khaliq
- Department of Paediatric Cardiology, Saarland University Hospital, Homburg, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
4
|
Zhang LX, Mao J, Zhou YD, Mao GY, Guo RF, Ge HS, Chen X. Evaluation of microRNA expression profiles in human sperm frozen using permeable cryoprotectant-free droplet vitrification and conventional methods. Asian J Androl 2024; 26:366-376. [PMID: 38738948 PMCID: PMC11280198 DOI: 10.4103/aja202390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/18/2024] [Indexed: 05/14/2024] Open
Abstract
For sperm cryopreservation, the conventional method, which requires glycerol, has been used for a long time. In addition, the permeable cryoprotectant-free vitrification method has been continuously studied. Although the differences of cryopreservation effects between the two methods have being studied, differences in microRNA (miRNA) profiles between them remain unclear. In this study, we investigated the differences in miRNA expression profiles among conventional freezing sperm, droplet vitrification freezing sperm and fresh human sperm. We also analyzed the differences between these methods in terms of differentially expressed miRNAs (DEmiRs) related to early embryonic development and paternal epigenetics. Our results showed no significant differences between the cryopreservation methods in terms of sperm motility ratio, plasma membrane integrity, DNA integrity, mitochondrial membrane potential, acrosome integrity, and ultrastructural damage. However, sperm miRNA-sequencing showed differences between the two methods in terms of the numbers of DEmiRs (28 and 19 with vitrification using a nonpermeable cryoprotectant and the conventional method, respectively) in postthaw and fresh sperm specimens. DEmiRs related to early embryonic development and paternal epigenetics mainly included common DEmiRs between the groups. Our results showed that the differences between conventional freezing and droplet vitrification were minimal in terms of miRNA expression related to embryonic development and epigenetics. Changes in sperm miRNA expression due to freezing are not always detrimental to embryonic development. This study compared differences in miRNA expression profiles before and after cryopreservation between cryopreservation by conventional and vitrification methods. It offers a new perspective to evaluate various methods of sperm cryopreservation.
Collapse
Affiliation(s)
- Li-Xin Zhang
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Jing Mao
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Yan-Dong Zhou
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Guang-Yao Mao
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Run-Fa Guo
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Hong-Shan Ge
- Department of Reproductive Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China
| | - Xia Chen
- Department of Histology and Embryology, Medical School, Nantong University, Nantong 226001, China
| |
Collapse
|
5
|
Tiwari S, Shahat A, Kastelic J, Thakor N, Thundathil J. Optimized total RNA isolation from bovine sperm with enhanced sperm head lysis. Biochem Cell Biol 2024; 102:194-205. [PMID: 37948675 DOI: 10.1139/bcb-2023-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Increasing evidence of sperm RNA's role in fertilization and embryonic development has provided impetus for its isolation and thorough characterization. Sperm are considered tough-to-lyse cells due to the compact condensed DNA in sperm heads. Lack of consensus among bovine sperm RNA isolation protocols introduces experimental variability in transcriptome studies. Here, we describe an optimized method for total RNA isolation from bovine sperm using the TRIzol reagent. This study critically investigated the effects of various lysis conditions on sperm RNA isolation. Sperm suspended in TRIzol were subjected to a combination of mechanical treatments (sonication and passage through a 30G needle and syringe) and chemical treatments (supplementation with reducing agents 1,4-dithiothreitol and tris(2-carboxyethyl) phosphine hydrochloride (TCEP)). Microscopic evaluation of sperm lysis confirmed preferential sperm tail versus sperm head lysis. Interestingly, only TCEP-supplemented TRIzol (both mechanical treatments) had progressive sperm head lysis and consistently yielded total sperm RNA. Furthermore, RNA integrity was confirmed based on the electrophoresis profile and an absence of genomic DNA and somatic cells (e.g., epithelial cells, spermatids, etc.) with RT-qPCR. Our findings highlighted the importance of sperm lysis, specifically of the sperm head using TCEP with mechanical treatment, in total RNA isolation and presented a bovine-specific sperm RNA isolation method to reduce experimental variabilities.
Collapse
Affiliation(s)
- Saurabh Tiwari
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Abdallah Shahat
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - John Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nehal Thakor
- Department of Chemistry & Biochemistry, University of Lethbridge, AB, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, Lethbridge, AB, Canada
| | - Jacob Thundathil
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Southern Alberta Genome Sciences Centre (SAGSC), University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
6
|
Rice RC, Gil DV, Baratta AM, Frawley RR, Hill SY, Farris SP, Homanics GE. Inter- and transgenerational heritability of preconception chronic stress or alcohol exposure: Translational outcomes in brain and behavior. Neurobiol Stress 2024; 29:100603. [PMID: 38234394 PMCID: PMC10792982 DOI: 10.1016/j.ynstr.2023.100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Chronic stress and alcohol (ethanol) use are highly interrelated and can change an individual's behavior through molecular adaptations that do not change the DNA sequence, but instead change gene expression. A recent wealth of research has found that these nongenomic changes can be transmitted across generations, which could partially account for the "missing heritability" observed in genome-wide association studies of alcohol use disorder and other stress-related neuropsychiatric disorders. In this review, we summarize the molecular and behavioral outcomes of nongenomic inheritance of chronic stress and ethanol exposure and the germline mechanisms that could give rise to this heritability. In doing so, we outline the need for further research to: (1) Investigate individual germline mechanisms of paternal, maternal, and biparental nongenomic chronic stress- and ethanol-related inheritance; (2) Synthesize and dissect cross-generational chronic stress and ethanol exposure; (3) Determine cross-generational molecular outcomes of preconception ethanol exposure that contribute to alcohol-related disease risk, using cancer as an example. A detailed understanding of the cross-generational nongenomic effects of stress and/or ethanol will yield novel insight into the impact of ancestral perturbations on disease risk across generations and uncover actionable targets to improve human health.
Collapse
Affiliation(s)
- Rachel C. Rice
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniela V. Gil
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Annalisa M. Baratta
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Remy R. Frawley
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shirley Y. Hill
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sean P. Farris
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gregg E. Homanics
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Bollwein H, Malama E. Review: Evaluation of bull fertility. Functional and molecular approaches. Animal 2023; 17 Suppl 1:100795. [PMID: 37567681 DOI: 10.1016/j.animal.2023.100795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 08/13/2023] Open
Abstract
With the term "assisted reproduction technologies" in modern cattle farming, one could imply the collection of techniques that aim at the optimal use of bovine gametes to produce animals of high genetic value in a time- and cost-efficient manner. The accurate characterisation of sperm quality plays a critical role for the efficiency of several assisted reproduction-related procedures, such as sperm processing, in vitro embryo production and artificial insemination. Bull fertility is ultimately a collective projection of the ability of a series of ejaculates to endure sperm processing stress, and achieve fertilisation of the oocyte and production of a viable and well-developing embryo. In this concept, the assessment of sperm functional and molecular characteristics is key to bull fertility diagnostics and prognostics. Among others, functional features linked to sperm plasma membrane, acrosome and DNA integrity are usually assessed as a measure of the ability of sperm to express the phenotypes that will allow them to maintain their homeostasis and orchestrate-in a strict temporal manner-the course of events that will enable the delivery of their genetic content to the oocyte upon fertilisation. Nevertheless, measures of sperm functionality are not always adequate indicators of bull fertility. Nowadays, advancements in the field of molecular biology have facilitated the profiling of several biomolecules in male gametes. The molecular profiling of bovine sperm offers a deeper insight into the mechanisms underlying sperm physiology and, thus, can reveal novel candidate markers for bull fertility prognosis. In this review, the importance of three organelles (the nucleus, the plasma membrane and the acrosome) for the characterisation of sperm fertilising capacity and bull fertility is discussed at functional and molecular levels. In particular, information about sperm head morphometry, chromatin structure, viability as well as the ability of sperm to capacitate and undergo the acrosome reaction are presented in relation to the cryotolerance of male gametes and bull fertility. Finally, major spermatozoal coding and non-coding RNAs, and proteins that are involved in the above-mentioned aspects of sperm functionality are also summarised.
Collapse
Affiliation(s)
- H Bollwein
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - E Malama
- Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
8
|
Warr S, Pini T, de Graaf SP, Rickard JP. Molecular insights to the sperm-cervix interaction and the consequences for cryopreserved sperm. Biol Reprod 2023; 108:183-196. [PMID: 36191077 DOI: 10.1093/biolre/ioac188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cryopreserved ram spermatozoa are limited in their capacity to traverse the ovine cervix and achieve fertilization. This altered interaction may be related to modified molecular communication between frozen-thawed ram spermatozoa, seminal plasma, and the female tract. As such, this review aims to identify the biological processes which underpin sperm maturation and transport throughout the female reproductive tract to elucidate factors which may alter this natural process in cryopreserved ram spermatozoa. We also assess critical barriers to ram spermatozoa specific to the ovine cervix and the role of seminal plasma in mitigating these barriers. Transcriptomics is explored as a new approach to understand the sperm-cervix interaction. Recent studies have demonstrated that both spermatozoa and seminal plasma contain a complex profile of coding and non-coding RNAs. These molecular species have clear links with functional fertility, and mounting evidence suggests they may be altered by cryopreservation. Emerging in vitro cell culture models are also investigated as a "next step" in studying this interaction, utilizing transcriptomics to identify subtle changes in female tract gene expression in response to spermatozoa. The application of such models is proposed as an exciting opportunity to investigate the unique challenges faced by cryopreserved spermatozoa traversing the ovine cervix prior to fertilization.
Collapse
Affiliation(s)
- Sophie Warr
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Taylor Pini
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Simon P de Graaf
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Jessica P Rickard
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Chan SY, Wan CWT, Law TYS, Chan DYL, Fok EKL. The Sperm Small RNA Transcriptome: Implications beyond Reproductive Disorder. Int J Mol Sci 2022; 23:15716. [PMID: 36555356 PMCID: PMC9779749 DOI: 10.3390/ijms232415716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Apart from the paternal half of the genetic material, the male gamete carries assorted epigenetic marks for optimal fertilization and the developmental trajectory for the early embryo. Recent works showed dynamic changes in small noncoding RNA (sncRNA) in spermatozoa as they transit through the testicular environment to the epididymal segments. Studies demonstrated the changes to be mediated by epididymosomes during the transit through the adluminal duct in the epididymis, and the changes in sperm sncRNA content stemmed from environmental insults significantly altering the early embryo development and predisposing the offspring to metabolic disorders. Here, we review the current knowledge on the establishment of the sperm sncRNA transcriptome and their role in male-factor infertility, evidence of altered offspring health in response to the paternal life experiences through sperm sncRNA species and, finally, their implications in assisted reproductive technology in terms of epigenetic inheritance.
Collapse
Affiliation(s)
- Sze Yan Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Crystal Wing Tung Wan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tin Yu Samuel Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David Yiu Leung Chan
- Department of Obstetrics and Gynecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ellis Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| |
Collapse
|
10
|
Bisconti M, Leroy B, Gallagher MT, Senet C, Martinet B, Arcolia V, Wattiez R, Kirkman-Brown JC, Simon JF, Hennebert E. The ribosome inhibitor chloramphenicol induces motility deficits in human spermatozoa: A proteomic approach identifies potentially involved proteins. Front Cell Dev Biol 2022; 10:965076. [PMID: 36120567 PMCID: PMC9478589 DOI: 10.3389/fcell.2022.965076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Mature spermatozoa are almost completely devoid of cytoplasm; as such it has long been believed that they do not contain ribosomes and are therefore not capable of synthesising proteins. However, since the 1950s, various studies have shown translational activity within spermatozoa, particularly during their in vitro capacitation. But the type of ribosomes involved (cytoplasmic or mitochondrial) is still debated. Here, we investigate the presence and activity of the two types of ribosomes in mature human spermatozoa. By targeting ribosomal RNAs and proteins, we show that both types of ribosomes are localized in the midpiece as well as in the neck and the base of the head of the spermatozoa. We assessed the impact of cycloheximide (CHX) and chloramphenicol (CP), inhibitors of cytoplasmic and mitochondrial ribosomes, respectively, on different sperm parameters. Neither CHX, nor CP impacted sperm vitality, mitochondrial activity (measured through the ATP content), or capacitation (measured through the content in phosphotyrosines). However, increasing CP concentrations induced a decrease in total and progressive motilities as well as on some kinematic parameters while no effect was observed with CHX. A quantitative proteomic analysis was performed by mass spectrometry in SWATH mode to compare the proteomes of spermatozoa capacitated in the absence or presence of the two ribosome inhibitors. Among the ∼700 proteins identified in the different tested conditions, 3, 3 and 25 proteins presented a modified abundance in the presence of 1 and 2 mg/ml of CHX, and 1 mg/ml of CP, respectively. The observed abundance variations of some CP-down regulated proteins were validated using Multiple-Reaction Monitoring (MRM). Taken together, our results are in favor of an activity of mitochondrial ribosomes. Their inhibition by CP results in a decrease in the abundance of several proteins, at least FUNDC2 and QRICH2, and consequently induces sperm motility deficits.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Coralie Senet
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
| | - Baptiste Martinet
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Vanessa Arcolia
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Ruddy Wattiez
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Jackson C. Kirkman-Brown
- Institute of Metabolism and Systems Research, University of Birmingham, Centre for Human Reproductive Science, Birmingham Women’s and Children’s National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Jean-François Simon
- Clinique de Fertilité Régionale de Mons, CHU Ambroise Paré Hospital, Mons, Belgium
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium
- *Correspondence: Elise Hennebert,
| |
Collapse
|
11
|
Silva C, Viana P, Barros A, Sá R, Sousa M, Pereira R. Further Insights on RNA Expression and Sperm Motility. Genes (Basel) 2022; 13:genes13071291. [PMID: 35886074 PMCID: PMC9319021 DOI: 10.3390/genes13071291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Asthenozoospermia is one of the main causes of male infertility and it is characterized by reduced sperm motility. Several mutations in genes that code for structural or functional constituents of the sperm have already been identified as known causes of asthenozoospermia. In contrast, the role of sperm RNA in regulating sperm motility is still not fully understood. Consequently, here we aim to contribute to the knowledge regarding the expression of sperm RNA, and ultimately, to provide further insights into its relationship with sperm motility. We investigated the expression of a group of mRNAs by using real-time PCR (CATSPER3, CFAP44, CRHR1, HIP1, IQCG KRT34, LRRC6, QRICH2, RSPH6A, SPATA33 and TEKT2) and the highest score corresponding to the target miRNA for each mRNA in asthenozoospermic and normozoospermic individuals. We observed a reduced expression of all mRNAs and miRNAs in asthenozoospermic patients compared to controls, with a more accentuated reduction in patients with progressive sperm motility lower than 15%. Our work provides further insights regarding the role of RNA in regulating sperm motility. Further studies are required to determine how these genes and their corresponding miRNA act regarding sperm motility, particularly KRT34 and CRHR1, which have not previously been seen to play a significant role in regulating sperm motility.
Collapse
Affiliation(s)
- Carolina Silva
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Faculty of Medicine, University of Coimbra (FMUC), 3000-370 Coimbra, Portugal
| | - Paulo Viana
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
| | - Alberto Barros
- Centre for Reproductive Genetics A. Barros, 4100-012 Porto, Portugal; (P.V.); (A.B.)
- Department of Genetics, Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- Institute of Health Research and Innovation (IPATIMUP/i3S), University of Porto, 4200-135 Porto, Portugal
| | - Rosália Sá
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
| | - Rute Pereira
- Laboratory of Cell Biology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS/ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-313 Porto, Portugal; (C.S.); (R.S.); (M.S.)
- Correspondence:
| |
Collapse
|
12
|
Hotzy C, Fowler E, Kiehl B, Francis R, Mason J, Moxon S, Rostant W, Chapman T, Immler S. Evolutionary history of sexual selection affects microRNA profiles in Drosophila sperm. Evolution 2021; 76:310-319. [PMID: 34874067 DOI: 10.1111/evo.14411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022]
Abstract
The presence of small RNAs in sperm is a relatively recent discovery and little is currently known about their importance and functions. Environmental changes including social conditions and dietary manipulations are known to affect the composition and expression of some small RNAs in sperm and may elicit a physiological stress response resulting in an associated change in gamete miRNA profiles. Here, we tested how microRNA profiles in sperm are affected by variation in both sexual selection and dietary regimes in Drosophila melanogaster selection lines. The selection lines were exposed to standard versus low yeast diet treatments and three different population sex ratios (male-biased, female-biased or equal sex) in a full-factorial design. After 38 generations of selection, all males were maintained on their selected diet and in a common garden male-only environment prior to sperm sampling. We performed transcriptome analyses on miRNAs in purified sperm samples. We found 11 differentially expressed miRNAs with the majority showing differences between male- and female-biased lines. Dietary treatment only had a significant effect on miRNA expression levels in interaction with sex ratio. Our findings suggest that long-term adaptation may affect miRNA profiles in sperm and that these may show varied interactions with short-term environmental changes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cosima Hotzy
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| | - Emily Fowler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Berrit Kiehl
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| | - Roy Francis
- Department of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| | - Janet Mason
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Wayne Rostant
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
13
|
Santiago J, Silva JV, Howl J, Santos MAS, Fardilha M. All you need to know about sperm RNAs. Hum Reprod Update 2021; 28:67-91. [PMID: 34624094 DOI: 10.1093/humupd/dmab034] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Spermatogenesis generates a small and highly specialised type of cell that is apparently incapable of transcription and translation. For many years, this dogma was supported by the assumption that (i) the compact sperm nucleus, resulting from the substitution of histones by protamine during spermatogenesis, renders the genome inaccessible to the transcriptional machinery; and (ii) the loss of most organelles, including endoplasmic reticulum and ribosomes, limits or prevents translational activity. Despite these observations, several types of coding and non-coding RNAs have been identified in human sperm. Their functional roles, particularly during fertilisation and embryonic development, are only now becoming apparent. OBJECTIVE AND RATIONALE This review aimed to summarise current knowledge of the origin, types and functional roles of sperm RNAs, and to evaluate the clinical benefits of employing these transcripts as biomarkers of male fertility and reproductive outcomes. The possible contribution of sperm RNAs to intergenerational or transgenerational phenotypic inheritance is also addressed. SEARCH METHODS A comprehensive literature search on PubMed was conducted using the search terms 'sperm' AND 'RNA'. Searches focussed upon articles written in English and published prior to August 2020. OUTCOMES The development of more sensitive and accurate RNA technologies, including RNA sequencing, has enabled the identification and characterisation of numerous transcripts in human sperm. Though a majority of these RNAs likely arise during spermatogenesis, other data support an epididymal origin of RNA transmitted to maturing sperm by extracellular vesicles. A minority may also be synthesised by de novo transcription in mature sperm, since a small portion of the sperm genome remains packed by histones. This complex RNA population has important roles in paternal chromatin packaging, sperm maturation and capacitation, fertilisation, early embryogenesis and developmental maintenance. In recent years, additional lines of evidence from animal models support a role for sperm RNAs in intergenerational or transgenerational inheritance, modulating both the genotype and phenotype of progeny. Importantly, several reports indicate that the sperm RNA content of fertile and infertile men differs considerably and is strongly modulated by the environment, lifestyle and pathological states. WIDER IMPLICATIONS Transcriptional profiling has considerable potential for the discovery of fertility biomarkers. Understanding the role of sperm transcripts and comparing the sperm RNA fingerprint of fertile and infertile men could help to elucidate the regulatory pathways contributing to male factor infertility. Such data might also provide a molecular explanation for several causes of idiopathic male fertility. Ultimately, transcriptional profiling may be employed to optimise ART procedures and overcome some of the underlying causes of male infertility, ensuring the birth of healthy children.
Collapse
Affiliation(s)
- Joana Santiago
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Joana V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.,i3S-Institute for Innovation and Health Research, University of Porto, Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine (UMIB), Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - John Howl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, UK
| | - Manuel A S Santos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
14
|
Trigg NA, Skerrett-Byrne DA, Xavier MJ, Zhou W, Anderson AL, Stanger SJ, Katen AL, De Iuliis GN, Dun MD, Roman SD, Eamens AL, Nixon B. Acrylamide modulates the mouse epididymal proteome to drive alterations in the sperm small non-coding RNA profile and dysregulate embryo development. Cell Rep 2021; 37:109787. [PMID: 34610313 DOI: 10.1016/j.celrep.2021.109787] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/10/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Paternal exposure to environmental stressors elicits distinct changes to the sperm sncRNA profile, modifications that have significant post-fertilization consequences. Despite this knowledge, there remains limited mechanistic understanding of how paternal exposures modify the sperm sncRNA landscape. Here, we report the acute sensitivity of the sperm sncRNA profile to the reproductive toxicant acrylamide. Furthermore, we trace the differential accumulation of acrylamide-responsive sncRNAs to coincide with sperm transit of the proximal (caput) segment of the epididymis, wherein acrylamide exposure alters the abundance of several transcription factors implicated in the expression of acrylamide-sensitive sncRNAs. We also identify extracellular vesicles secreted from the caput epithelium in relaying altered sncRNA profiles to maturing spermatozoa and dysregulated gene expression during early embryonic development following fertilization by acrylamide-exposed spermatozoa. These data provide mechanistic links to account for how environmental insults can alter the sperm epigenome and compromise the transcriptomic profile of early embryos.
Collapse
Affiliation(s)
- Natalie A Trigg
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - David A Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Miguel J Xavier
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Wei Zhou
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC 3052, Australia; Gynaecology Research Centre, The Royal Women's Hospital, Parkville, VIC 3052, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Aimee L Katen
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Priority Research Centre for Drug Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Geoffry N De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Priority Research Centre for Cancer Research Innovation and Translation, Hunter Medical Research Institute, Lambton, NSW 2305, Australia
| | - Shaun D Roman
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia; Priority Research Centre for Drug Development, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Andrew L Eamens
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
15
|
Sellem E, Marthey S, Rau A, Jouneau L, Bonnet A, Le Danvic C, Guyonnet B, Kiefer H, Jammes H, Schibler L. Dynamics of cattle sperm sncRNAs during maturation, from testis to ejaculated sperm. Epigenetics Chromatin 2021; 14:24. [PMID: 34030709 PMCID: PMC8146655 DOI: 10.1186/s13072-021-00397-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
Background During epididymal transit, spermatozoa go through several functional maturation steps, resulting from interactions with epididymal secretomes specific to each region. In particular, the sperm membrane is under constant remodeling, with sequential attachment and shedding of various molecules provided by the epididymal lumen fluid and epididymosomes, which also deliver sncRNA cargo to sperm. As a result, the payload of sperm sncRNAs changes during the transit from the epididymis caput to the cauda. This work was designed to study the dynamics of cattle sperm sncRNAs from spermatogenesis to final maturation. Results Comprehensive catalogues of sperm sncRNAs were obtained from testicular parenchyma, epididymal caput, corpus and cauda, as well as ejaculated semen from three Holstein bulls. The primary cattle sncRNA sperm content is markedly remodeled as sperm mature along the epididymis. Expression of piRNAs, which are abundant in testis parenchyma, decreases dramatically at epididymis. Conversely, sperm progressively acquires miRNAs, rsRNAs, and tsRNAs along epididymis, with regional specificities. For instance, miRNAs and tsRNAs are enriched in epididymis cauda and ejaculated sperm, while rsRNA expression peaks at epididymis corpus. In addition, epididymis corpus contains mainly 20 nt long piRNAs, instead of 30 nt in all other locations. Beyond the bulk differences in abundance of sncRNAs classes, K-means clustering was performed to study their spatiotemporal expression profile, highlighting differences in specific sncRNAs and providing insights into their putative biological role at each maturation stage. For instance, Gene Ontology analyses using miRNA targets highlighted enriched processes such as cell cycle regulation, response to stress and ubiquitination processes in testicular parenchyma, protein metabolism in epididymal sperm, and embryonic morphogenesis in ejaculated sperm. Conclusions Our findings confirm that the sperm sncRNAome does not simply reflect a legacy of spermatogenesis. Instead, sperm sncRNA expression shows a remarkable level of plasticity resulting probably from the combination of multiple factors such as loss of the cytoplasmic droplet, interaction with epididymosomes, and more surprisingly, the putative in situ production and/or modification of sncRNAs by sperm. Given the suggested role of sncRNA in epigenetic trans-generational inheritance, our detailed spatiotemporal analysis may pave the way for a study of sperm sncRNAs role in embryo development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00397-5.
Collapse
Affiliation(s)
- Eli Sellem
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France.
| | - Sylvain Marthey
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,INRAE, MaIAGE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Andrea Rau
- AgroParisTech, INRAE, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,BioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules Verne, Estrées-Mons, France
| | - Luc Jouneau
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Aurelie Bonnet
- R&D Department, ALLICE, 149 rue de Bercy, 75012, Paris, France
| | | | - Benoît Guyonnet
- R&D Department, Union Evolution, rue Eric Tabarly, 35538, Noyal-Sur-Vilaine, France
| | - Hélène Kiefer
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Hélène Jammes
- UVSQ, INRAE, BREED, Université Paris Saclay, 78350, Jouy en Josas, France.,Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | | |
Collapse
|
16
|
Corral-Vazquez C, Blanco J, Aiese Cigliano R, Sarrate Z, Rivera-Egea R, Vidal F, Garrido N, Daub C, Anton E. The RNA content of human sperm reflects prior events in spermatogenesis and potential post-fertilization effects. Mol Hum Reprod 2021; 27:6265603. [PMID: 33950245 DOI: 10.1093/molehr/gaab035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/09/2021] [Indexed: 01/18/2023] Open
Abstract
Transcriptome analyses using high-throughput methodologies allow a deeper understanding of biological functions in different cell types/tissues. The present study provides an RNA-seq profiling of human sperm mRNAs and lncRNAs (messenger and long non-coding RNAs) in a well-characterized population of fertile individuals. Sperm RNA was extracted from twelve ejaculate samples under strict quality controls. Poly(A)-transcripts were sequenced and aligned to the human genome. mRNAs and lncRNAs were classified according to their mean expression values (FPKM: Fragments Per Kilobase of transcript per Million mapped reads) and integrity. Gene Ontology analysis of the Expressed and Highly Expressed mRNAs showed an involvement in diverse reproduction processes, while the Ubiquitously Expressed and Highly Stable mRNAs were mainly involved in spermatogenesis. Transcription factor enrichment analyses revealed that the Highly Expressed and Ubiquitously Expressed sperm mRNAs were primarily regulated by zinc-fingers and spermatogenesis-related proteins. Regarding the Expressed lncRNAs, only one-third of their potential targets corresponded to Expressed mRNAs and were enriched in cell-cycle regulation processes. The remaining two-thirds were absent in sperm and were enriched in embryogenesis-related processes. A significant amount of post-testicular sperm mRNAs and lncRNAs was also detected. Even though our study is solely directed to the poly-A fraction of sperm transcripts, results indicate that both sperm mRNAs and lncRNAs constitute a footprint of previous spermatogenesis events and are configured to affect the first stages of embryo development.
Collapse
Affiliation(s)
- C Corral-Vazquez
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - J Blanco
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Z Sarrate
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - R Rivera-Egea
- IVIRMA Valencia, IVI Foundation, Laboratorio de Andrología, Valencia, Spain
| | - F Vidal
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - N Garrido
- IVI Foundation, Instituto de Investigación Sanitaria la Fe, Valencia, Spain
| | - C Daub
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - E Anton
- Genetics of Male Fertility Group, Unitat de Biologia Cel·lular (Facultat de Biociències), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
17
|
Roszkowski M, Mansuy IM. High Efficiency RNA Extraction From Sperm Cells Using Guanidinium Thiocyanate Supplemented With Tris(2-Carboxyethyl)Phosphine. Front Cell Dev Biol 2021; 9:648274. [PMID: 33968930 PMCID: PMC8097045 DOI: 10.3389/fcell.2021.648274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/30/2021] [Indexed: 01/08/2023] Open
Abstract
The extraction of high-quality ribonucleic acid (RNA) from tissues and cells is a key step in many biological assays. Guanidinium thiocyanate-phenol-chloroform (AGPC) is a widely used and efficient method to obtain pure RNA from most tissues and cells. However, it is not efficient with some cells like sperm cells because they are resistant to chaotropic lysis solutions containing guanidinium thiocyanate such as Buffer RLT+ and Trizol. Here, we show that disulfide bonds are responsible for the chemical resistance of sperm cells to RNA extraction reagents. We show that while β-mercaptoethanol (βME) can increase sperm lysis in Buffer RLT+, it has no effect in Trizol and leaves sperm cells intact. We measured the reduction of disulfide bonds in 2,2′-dithiodipyridine (DTDP) and observed that βME has a pH-dependent activity in chaotropic solutions, suggesting that pH is a limiting factor. We identified tris(2-carboxyethyl)phosphine (TCEP) as an efficient lysis enhancer of AGPC solutions that can retain reducing activity even at acidic pH. Trizol supplemented with TCEP allows the complete and rapid lysis of sperm cells, increasing RNA yield by 100-fold and resulting in RNA with optimal quality for reverse transcription and polymerase chain reaction. Our findings highlight the importance of efficient cell lysis and extraction of various macromolecules for bulk and single-cell assays, and can be applied to other lysis-resistant cells and vesicles, thereby optimizing the amount of required starting material and animals.
Collapse
Affiliation(s)
- Martin Roszkowski
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Department of Health Science and Technology of the ETH Zurich, Zurich, Switzerland
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich, and Institute for Neuroscience, Department of Health Science and Technology of the ETH Zurich, Zurich, Switzerland
| |
Collapse
|
18
|
Lombó M, Herráez P. The effects of endocrine disruptors on the male germline: an intergenerational health risk. Biol Rev Camb Philos Soc 2021; 96:1243-1262. [PMID: 33660399 DOI: 10.1111/brv.12701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022]
Abstract
Environmental pollution is becoming one of the major concerns of society. Among the emerging contaminants, endocrine-disrupting chemicals (EDCs), a large group of toxicants, have been the subject of many scientific studies. Besides the capacity of these compounds to interfere with the endocrine system, they have also been reported to exert both genotoxic and epigenotoxic effects. Given that spermatogenesis is a coordinated process that requires the involvement of several steroid hormones and that entails deep changes in the chromatin, such as DNA compaction and epigenetic remodelling, it could be affected by male exposure to EDCs. A great deal of evidence highlights that these compounds have detrimental effects on male reproductive health, including alterations to sperm motility, sexual function, and gonad development. This review focuses on the consequences of paternal exposure to such chemicals for future generations, which still remain poorly known. Historically, spermatozoa have long been considered as mere vectors delivering the paternal haploid genome to the oocyte. Only recently have they been understood to harbour genetic and epigenetic information that plays a remarkable role during offspring early development and long-term health. This review examines the different modes of action by which the spermatozoa represent a key target for EDCs, and analyses the consequences of environmentally induced changes in sperm genetic and epigenetic information for subsequent generations.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Animal Reproduction, INIA, Puerta de Hierro 18, Madrid, 28040, Spain
| | - Paz Herráez
- Department of Molecular Biology, Faculty of Biology, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain
| |
Collapse
|
19
|
Sun YH, Wang A, Song C, Shankar G, Srivastava RK, Au KF, Li XZ. Single-molecule long-read sequencing reveals a conserved intact long RNA profile in sperm. Nat Commun 2021; 12:1361. [PMID: 33649327 PMCID: PMC7921563 DOI: 10.1038/s41467-021-21524-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/22/2021] [Indexed: 01/31/2023] Open
Abstract
Sperm contributes diverse RNAs to the zygote. While sperm small RNAs have been shown to impact offspring phenotypes, our knowledge of the sperm transcriptome, especially the composition of long RNAs, has been limited by the lack of sensitive, high-throughput experimental techniques that can distinguish intact RNAs from fragmented RNAs, known to abound in sperm. Here, we integrate single-molecule long-read sequencing with short-read sequencing to detect sperm intact RNAs (spiRNAs). We identify 3440 spiRNA species in mice and 4100 in humans. The spiRNA profile consists of both mRNAs and long non-coding RNAs, is evolutionarily conserved between mice and humans, and displays an enrichment in mRNAs encoding for ribosome. In sum, we characterize the landscape of intact long RNAs in sperm, paving the way for future studies on their biogenesis and functions. Our experimental and bioinformatics approaches can be applied to other tissues and organisms to detect intact transcripts.
Collapse
Affiliation(s)
- Yu H Sun
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Anqi Wang
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Chi Song
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, OH, USA
- Division of Reproductive Endocrinology, Geisinger Medical Center, Danville, PA, USA
| | - Goutham Shankar
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, NY, USA
| | - Rajesh K Srivastava
- Department of Obstetrics/Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Kin Fai Au
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.
| | - Xin Zhiguo Li
- Center for RNA Biology: From Genome to Therapeutics, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
20
|
Le Blévec E, Muroňová J, Ray PF, Arnoult C. Paternal epigenetics: Mammalian sperm provide much more than DNA at fertilization. Mol Cell Endocrinol 2020; 518:110964. [PMID: 32738444 DOI: 10.1016/j.mce.2020.110964] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
The spermatozoon is a highly differentiated cell with unique characteristics: it is mobile, thanks to its flagellum, and is very compact. The sperm cytoplasm is extremely reduced, containing no ribosomes, and therefore does not allow translation, and its nucleus contains very closed chromatin, preventing transcription. This DNA compaction is linked to the loss of nucleosomes and the replacement of histones by protamines. Based on these characteristics, sperm was considered to simply deliver paternal DNA to the oocyte. However, some parts of the sperm DNA remain organized in a nucleosomal format, and bear epigenetic information. In addition, the nucleus and the cytoplasm contain a multitude of RNAs of different types, including non-coding RNAs (ncRNAs) which also carry epigenetic information. For a long time, these RNAs were considered residues of spermatogenesis. After briefly describing the mechanisms of compaction of sperm DNA, we focus this review on the origin and function of the different ncRNAs. We present studies demonstrating the importance of these RNAs in embryonic development and transgenerational adaptation to stress. We also look at other epigenetic marks, such as DNA methylation or post-translational modifications of histones, and show that they are sensitive to environmental stress and transmissible to offspring. The post-fertilization role of certain sperm-borne proteins is also discussed.
Collapse
Affiliation(s)
- Emilie Le Blévec
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; IMV Technologies, ZI N° 1 Est, L'Aigle, F-61300, France
| | - Jana Muroňová
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France
| | - Pierre F Ray
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Christophe Arnoult
- Université Grenoble Alpes, Grenoble, F-38000, France; Institute for Advanced Biosciences INSERM U1209, CNRS UMR5309, Grenoble, F-38000, France.
| |
Collapse
|
21
|
Male Factors: the Role of Sperm in Preimplantation Embryo Quality. Reprod Sci 2020; 28:1788-1811. [DOI: 10.1007/s43032-020-00334-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
|
22
|
Santoro M, De Amicis F, Aquila S, Bonofiglio D. Peroxisome proliferator-activated receptor gamma expression along the male genital system and its role in male fertility. Hum Reprod 2020; 35:2072-2085. [PMID: 32766764 DOI: 10.1093/humrep/deaa153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Indexed: 12/14/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) acts as a ligand activated transcription factor and regulates processes, such as energy homeostasis, cell proliferation and differentiation. PPARγ binds to DNA as a heterodimer with retinoid X receptor and it is activated by polyunsaturated fatty acids and fatty acid derivatives, such as prostaglandins. In addition, the insulin-sensitizing thiazolidinediones, such as rosiglitazone, are potent and specific activators of PPARγ. PPARγ is present along the hypothalamic-pituitary-testis axis and in the testis, where low levels in Leydig cells and higher levels in Sertoli cells as well as in germ cells have been found. High amounts of PPARγ were reported in the normal epididymis and in the prostate, but the receptor was almost undetectable in the seminal vesicles. Interestingly, in the human and in pig, PPARγ protein is highly expressed in ejaculated spermatozoa, suggesting a possible role of PPARγ signaling in the regulation of sperm biology. This implies that both natural and synthetic PPARγ ligands may act directly on sperm improving its performance. Given the close link between energy balance and reproduction, activation of PPARγ may have promising metabolic implications in male reproductive functions. In this review, we first describe PPARγ expression in different compartments of the male reproductive axis. Subsequently, we discuss the role of PPARγ in both physiological and several pathological conditions related to the male fertility.
Collapse
Affiliation(s)
- Marta Santoro
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy
| | - Saveria Aquila
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences (Department of Excellence, Italian Law 232/2016), Arcavacata di Rende, Cosenza 87036, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Cosenza 87036, Italy
| |
Collapse
|
23
|
Abstract
Having been debated for many years, the presence and role of spermatozoal RNAs is resolving, and their contribution to development is now appreciated. Data from different species continue show that sperm contain a complex suite of coding and noncoding RNAs that play a role in an individual's life course. Mature sperm RNAs provide a retrospective of spermatogenesis, with their presence and abundance reflecting sperm maturation, fertility potential, and the paternal contribution to the developmental path the offspring may follow.Sperm RNAs delivered upon fertilization provide some of the initial contacts with the oocyte, directly confront the maternal with the paternal contribution as a prelude to genome consolidation. Following syngamy, early embryo development may in part be modulated by paternal RNAs that can include epidydimal passengers. This provides a direct path to relay an experience and then initiate a paternal response to the environment to the oocyte and beyond. Their epigenetic impact is likely felt prior to embryonic genome activation when the population of sperm delivered transcripts markedly changes. Here, we review the insights gained from sperm RNAs over the years, the subtypes, and the caveats of the RNAs described. We discuss the role of sperm RNAs in fertilization and embryo development, and their possible mechanism(s) influencing offspring phenotype. Approaches to meet the future challenges as the study of sperm RNAs continues, include, elucidating the potential mechanisms underlying how paternal allostatic load, the constant adaptation of health to external conditions, may be relayed by sperm RNAs to affect future generations.
Collapse
Affiliation(s)
- Marta Gòdia
- Animal Genomics Group, Center for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Cerdanyola del Vallès (Barcelona), Catalonia, Spain
| | - Grace Swanson
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA.,C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
24
|
Bianchi E, Boekelheide K, Sigman M, Braun JM, Eliot M, Hall SJ, Dere E, Hwang K. Spermatozoal large RNA content is associated with semen characteristics, sociodemographic and lifestyle factors. PLoS One 2019; 14:e0216584. [PMID: 31120914 PMCID: PMC6532849 DOI: 10.1371/journal.pone.0216584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/25/2019] [Indexed: 11/28/2022] Open
Abstract
Semen analysis is one of the standard diagnostic tools currently used to assess male infertility and reproductive toxicity. However, semen analysis has a limited ability to separate fertile from infertile populations. Additional methods to detect impaired fertility are needed. The purpose of the present study was to evaluate how spermatozoal RNA content varies with sociodemographic and behavior/lifestyle factors, and to determine if spermatozoal large and small RNAs discriminate normal from abnormal spermatozoa. Semen specimens were collected from 133 men aged between 18 to 55 years undergoing semen analysis as part of couple infertility evaluation while 10 proven fertile donors were recruited as control group. Semen samples were classified as normal or abnormal according to World Health Organization (WHO) 2010 criteria. Sperm RNAs were extracted after somatic cells were lysed, and the association of large or small RNA content with semen quality and sociodemographic and behavioral/lifestyle factors was evaluated using a generalized additive model and one-way ANOVA. Inverse relationship was observed between large RNA content and sperm parameters such as sperm count, density and motility. Large RNA content per sperm was significantly increased in semen samples showing abnormal number of round cells. Furthermore, sperm motility was inversely associated with spermatozoal small RNA contents. Grouping donors by the number of semen abnormalities, we observed significant increased spermatozoal large and small RNA content in men with more than two semen abnormalities. Alcohol consumption was strongly associated with increased large RNA per sperm concentration after adjustment for age and BMI. Our study demonstrates a strong relationship between spermatozoal large RNA content and poor semen characteristics that may lead to a role in the assessment of male fertility, and may be used as an endpoint for reproductive toxicology risk assessment.
Collapse
Affiliation(s)
- Enrica Bianchi
- Division of Urology, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Mark Sigman
- Division of Urology, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Joseph M. Braun
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island, United States of America
| | - Melissa Eliot
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island, United States of America
| | - Susan J. Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Edward Dere
- Division of Urology, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, United States of America
| | - Kathleen Hwang
- Department of Urology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
25
|
Singh R, Junghare V, Hazra S, Singh U, Sengar GS, Raja TV, Kumar S, Tyagi S, Das AK, Kumar A, Koringa P, Jakhesara S, Joshi CJ, Deb R. Database on spermatozoa transcriptogram of catagorised Frieswal crossbred (Holstein Friesian X Sahiwal) bulls. Theriogenology 2019; 129:130-145. [PMID: 30844654 DOI: 10.1016/j.theriogenology.2019.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/11/2019] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
Bull spermatozoa contain different functional genes and many of them plays important roles in different stages of spermatogenesis, spermatozoa kinetics, fertilization as well as embryonic development. RNA deep sequencing is one of the preferred tools for absolute quantification of messenger RNA. The intention of the current study was to investigate the abundance of spermatozoal transcripts in categorized Frieswal (Holstein-Friesian X Sahiwal) crossbred bull semen through RNA deep sequencing. A total 1546561 and 1019308 numbers of reads were identified among good and poor quality bull spermatozoa based on their conception rate. Post mapping with Bos taurus reference genome identified 1,321,236 and 842,022 number of transcripts among good and poor quality RNA libraries, respectively. However, a total number of 3510 and 6759 functional transcripts were identified among good and poor quality bull spermatozoa, respectively. Most of the identified transcripts were related to spermatozoa functions, embryonic development and other functional aspects of fertilization. Wet laboratory validation of the top five selected transcripts (AKAP4, PRM1, ATP2B4, TRIM71 and SLC9B2) illustrated the significant (p < 0.01) level of expression in the good quality crossbred bull semen than the poor quality counterparts. The present study with comprehensive profiling of spermatozoal transcripts provides a useful non-invasive tool to understand the causes of as well as an effective way to predict male infertility in crossbred bulls.
Collapse
Affiliation(s)
- Rani Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India.
| | - Vivek Junghare
- Department of Biotechnology, Center of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Saugata Hazra
- Department of Biotechnology, Center of Nanotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Umesh Singh
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - Gyanendra Singh Sengar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - T V Raja
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - Sushil Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - Shrikant Tyagi
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - A K Das
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - Ashish Kumar
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India
| | - Prakash Koringa
- Ome Research Laboratory, Anand Agricultural University, Anand, Gujarat, India
| | - Subhash Jakhesara
- Ome Research Laboratory, Anand Agricultural University, Anand, Gujarat, India
| | - C J Joshi
- Ome Research Laboratory, Anand Agricultural University, Anand, Gujarat, India
| | - Rajib Deb
- Molecular Genetics Laboratory, ICAR-Central Institute for Research on Cattle, Meerut, 250001, Uttar Pradesh, India.
| |
Collapse
|
26
|
Carrell DT. The Sperm Epigenome: Implications for Assisted Reproductive Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:47-56. [DOI: 10.1007/978-3-030-21664-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Mazilina MA, Komarova EM, Baranov VS. RNA in Human Sperm and Some Problems of Male Fertility. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Li Y, Li RH, Ran MX, Zhang Y, Liang K, Ren YN, He WC, Zhang M, Zhou GB, Qazi IH, Zeng CJ. High throughput small RNA and transcriptome sequencing reveal capacitation-related microRNAs and mRNA in boar sperm. BMC Genomics 2018; 19:736. [PMID: 30305024 PMCID: PMC6180635 DOI: 10.1186/s12864-018-5132-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Background Capacitation, a prerequisite for oocyte fertilization, is a complex process involving series of structural and functional changes in sperms such as membrane modifications, modulation of enzyme activities, and protein phosphorylation. In order to penetrate and fertilize an oocyte, mammalian sperms must undergo capacitation. Nevertheless, the process of sperm capacitation remains poorly understood and requires further elucidation. In the current study, via high throughput sequencing, we identified and explored the differentially expressed microRNAs (miRNAs) and mRNAs involved in boar sperm capacitation. Results We identified a total of 5342 mRNAs and 204 miRNAs that were differentially expressed in fresh and capacitated boar sperms. From these, 12 miRNAs (8 known and 4 newly identified miRNAs) and their differentially expressed target mRNAs were found to be involved in sperm capacitation-related PI3K-Akt, MAPK, cAMP-PKA and Ca2+signaling pathways. Conclusions Our study is first to provide the complete miRNA and transcriptome profiles of boar sperm. Our findings provide important insights for the understanding of the RNA profile in boar sperm and future elucidation of the underlying molecular mechanism relevant to mammalian sperm capacitation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5132-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Rong-Hong Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Ming-Xia Ran
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Yan Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Kai Liang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Ying-Nan Ren
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Wen-Cheng He
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Ming Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Guang-Bin Zhou
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China
| | - Izhar Hyder Qazi
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China.,Department of Veterinary Anatomy & Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Sindh, 67210, Pakistan
| | - Chang-Jun Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, China.
| |
Collapse
|
29
|
Denomme MM, McCallie BR, Parks JC, Schoolcraft WB, Katz-Jaffe MG. Alterations in the sperm histone-retained epigenome are associated with unexplained male factor infertility and poor blastocyst development in donor oocyte IVF cycles. Hum Reprod 2018; 32:2443-2455. [PMID: 29087470 DOI: 10.1093/humrep/dex317] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Is there a distinct sperm histone-retained epigenetic signature in unexplained male factor infertility patients resulting in compromised blastocyst development? SUMMARY ANSWER Using only donor oocyte IVF cycles, sperm DNA methylation patterns and miRNA profiles were significantly altered in normozoospermic patients resulting in poor blastocyst development, reflecting a subset of unexplained male factor infertility. WHAT IS KNOWN ALREADY Aberrant sperm DNA methylation has been associated with known male factor infertility, particularly noted in oligozoospermic patients. Unexplained male factor infertility remains a significant proportion of in vitro fertilization failures having unknown underlying physiology. STUDY DESIGN, SIZE, DURATION Sperm samples (n = 40) and blastocysts (n = 48) were obtained during fertile donor oocyte IVF cycles with normozoospermic parameters, thereby excluding known female and male infertility factors. Samples were divided into two groups based on blastocyst development (Good Group = ≥20% embryos with D5 grade 'AA' blastocysts, and ≥60% embryos of transferable quality on D5 and D6; Poor Group = ≤10% embryos with D5 grade 'AA' blastocysts, and ≤40% embryos of transferable quality on D5 and D6). PARTICIPANTS/MATERIALS, SETTING, METHODS Samples were obtained from patients undergoing IVF treatments with informed consent and institutional review board approval. The Infinium HumanMethylation450 BeadChip microarray was used to identify histone-retained CpG island genes and genomic regions showing differences in sperm DNA methylation between the Good Group and the Poor Group. Pathway and gene network analysis for the significantly altered genes was performed, and targeted DNA methylation validation was completed for 23 genes and two imprinting control regions. Sperm miRNA profiles were assessed using the TaqMan® Human MicroRNA Array Card, with corresponding blastocyst mRNA gene expression examined by qRT-PCR. MAIN RESULTS AND THE ROLE OF CHANCE Our study is the first to investigate unexplained male factor infertility while significantly eliminating confounding female factors from our sample population by using only young fertile donor oocytes. We identified 1634 CpG sites located at retained histone CpG island regions that had significant sperm DNA methylation differentials between the two embryogenesis groups (P < 0.05). A largely hypermethylated profile was evident in the Good Group, with a small but distinct and statistically significant shift (P < 0.05) observed in the Poor Group. Genes involved in embryonic development were highly represented among histone-retained CpG sites with decreased methylation in the Poor Group (P < 0.05). Ten significantly altered sperm miRNAs (P < 0.05), correlated with altered target gene mRNA expression in the blastocysts from the Poor Group (P < 0.05). Taken together, significantly impacted sperm miRNA and target transcript levels in blastocysts from the Poor Group may contribute alongside aberrant sperm DNA methylation to the compromised blastocyst development observed. LIMITATIONS, REASONS FOR CAUTION Our examination of CpG island regions restricted to retained histones represents only a small part of the sperm epigenome. The results observed are descriptive and further studies are needed to elucidate the functional effects of differential sperm DNA methylation on unexplained male factor infertility and blastocyst development. WIDER IMPLICATIONS OF THE FINDINGS Slight epigenetic changes in sperm may have a cumulative effect on fertility and embryonic developmental competence. Knowledge of sperm epigenetics and inheritance has important implications for future generations, while providing evidence for potential causes of unexplained male factor infertility. STUDY FUNDING/COMPETING INTEREST(S) No external funding was used for this study. None of the authors have any competing interest.
Collapse
Affiliation(s)
- Michelle M Denomme
- Fertility Labs of Colorado, 10290 Ridgegate Circle, Lone Tree CO, 80124, USA
| | - Blair R McCallie
- Fertility Labs of Colorado, 10290 Ridgegate Circle, Lone Tree CO, 80124, USA
| | - Jason C Parks
- Fertility Labs of Colorado, 10290 Ridgegate Circle, Lone Tree CO, 80124, USA
| | - William B Schoolcraft
- Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree CO, 80124, USA
| | - Mandy G Katz-Jaffe
- Fertility Labs of Colorado, 10290 Ridgegate Circle, Lone Tree CO, 80124, USA.,Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree CO, 80124, USA
| |
Collapse
|
30
|
Gòdia M, Mayer FQ, Nafissi J, Castelló A, Rodríguez-Gil JE, Sánchez A, Clop A. A technical assessment of the porcine ejaculated spermatozoa for a sperm-specific RNA-seq analysis. Syst Biol Reprod Med 2018; 64:291-303. [PMID: 29696996 DOI: 10.1080/19396368.2018.1464610] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The study of the boar sperm transcriptome by RNA-seq can provide relevant information on sperm quality and fertility and might contribute to animal breeding strategies. However, the analysis of the spermatozoa RNA is challenging as these cells harbor very low amounts of highly fragmented RNA, and the ejaculates also contain other cell types with larger amounts of non-fragmented RNA. Here, we describe a strategy for a successful boar sperm purification, RNA extraction and RNA-seq library preparation. Using these approaches our objectives were: (i) to evaluate the sperm recovery rate (SRR) after boar spermatozoa purification by density centrifugation using the non-porcine-specific commercial reagent BoviPureTM; (ii) to assess the correlation between SRR and sperm quality characteristics; (iii) to evaluate the relationship between sperm cell RNA load and sperm quality traits and (iv) to compare different library preparation kits for both total RNA-seq (SMARTer Universal Low Input RNA and TruSeq RNA Library Prep kit) and small RNA-seq (NEBNext Small RNA and TailorMix miRNA Sample Prep v2) for high-throughput sequencing. Our results show that pig SRR (~22%) is lower than in other mammalian species and that it is not significantly dependent of the sperm quality parameters analyzed in our study. Moreover, no relationship between the RNA yield per sperm cell and sperm phenotypes was found. We compared a RNA-seq library preparation kit optimized for low amounts of fragmented RNA with a standard kit designed for high amount and quality of input RNA and found that for sperm, a protocol designed to work on low-quality RNA is essential. We also compared two small RNA-seq kits and did not find substantial differences in their performance. We propose the methodological workflow described for the RNA-seq screening of the boar spermatozoa transcriptome. ABBREVIATIONS FPKM: fragments per kilobase of transcript per million mapped reads; KRT1: keratin 1; miRNA: micro-RNA; miscRNA: miscellaneous RNA; Mt rRNA: mitochondrial ribosomal RNA; Mt tRNA: mitochondrial transference RNA; OAZ3: ornithine decarboxylase antizyme 3; ORT: osmotic resistance test; piRNA: Piwi-interacting RNA; PRM1: protamine 1; PTPRC: protein tyrosine phosphatase receptor type C; rRNA: ribosomal RNA; snoRNA: small nucleolar RNA; snRNA: small nuclear RNA; SRR: sperm recovery rate; tRNA: transfer RNA.
Collapse
Affiliation(s)
- Marta Gòdia
- a Animal Genomics Group , Centre for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB , Cerdanyola del Valles , Catalonia , Spain
| | - Fabiana Quoos Mayer
- a Animal Genomics Group , Centre for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB , Cerdanyola del Valles , Catalonia , Spain.,b Agricultural Diagnostic and Research Departament , Instituto de Pesquisas Veterinárias Desidério Finamor, Secretariat of Agriculture, Livestock and Irrigation , Eldorado do Sul , Rio Grande do Sul , Brazil
| | - Julieta Nafissi
- a Animal Genomics Group , Centre for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB , Cerdanyola del Valles , Catalonia , Spain.,c Department of Biotechnology and Food Technology , Technology Institute (INTEC), Argentine University of Enterprise (UADE) , Buenos Aires , Argentina
| | - Anna Castelló
- a Animal Genomics Group , Centre for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB , Cerdanyola del Valles , Catalonia , Spain.,d Unit of Animal Science, Department of Animal Science and Nutrition , Autonomous University of Barcelona , Cerdanyola del Valles , Catalonia , Spain
| | - Joan Enric Rodríguez-Gil
- e Unit of Animal Reproduction, Department of Animal Medicine and Surgery , Autonomous University of Barcelona , Cerdanyola del Valles , Catalonia , Spain
| | - Armand Sánchez
- a Animal Genomics Group , Centre for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB , Cerdanyola del Valles , Catalonia , Spain.,d Unit of Animal Science, Department of Animal Science and Nutrition , Autonomous University of Barcelona , Cerdanyola del Valles , Catalonia , Spain
| | - Alex Clop
- a Animal Genomics Group , Centre for Research in Agricultural Genomics-CSIC-IRTA-UAB-UB , Cerdanyola del Valles , Catalonia , Spain
| |
Collapse
|
31
|
Bianchi E, Stermer A, Boekelheide K, Sigman M, Hall SJ, Reyes G, Dere E, Hwang K. High-quality human and rat spermatozoal RNA isolation for functional genomic studies. Andrology 2018; 6:374-383. [PMID: 29470852 DOI: 10.1111/andr.12471] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/11/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
Sperm RNA is a sensitive monitoring endpoint for male reproductive toxicants, and a potential biomarker to assess male infertility and sperm quality. However, isolation of sperm RNA is a challenging procedure due to the heterogeneous population of cells present in the ejaculate, the low yield of RNA per spermatozoon, and the absence of 18S and 28S ribosomal RNA subunits. The unique biology of spermatozoa has created some uncertainty in the field about RNA isolation methods, indicating the need for rigorous quality control checks to ensure reproducibility of data generated from sperm RNA. Therefore, we developed a reliable and effective protocol for RNA isolation from rat and human spermatozoa that delivers highly purified and intact RNA, verified using RNA-specific electrophoretic chips and molecular biology approaches such as RT-PCR and Western blot analysis. The sperm RNA isolation technique was optimized using rat spermatozoa and then adapted to human spermatozoa. Three steps in the sperm isolation procedure, epididymal fluid collection, sperm purification, and spermatozoon RNA extraction, were evaluated and assessed. The sperm RNA extraction methodology consists of collection of rat epididymal fluid with repeated needle punctures of the epididymis, somatic cell elimination using detergent-based somatic cell lysis buffer (SCLB) and the use of RNA isolation Kit. Rat sperm heads are more resistant to disruption than human spermatozoa, necessitating the addition of mechanical lysis with microbeads and heat in the rat protocol, whereas the human sperm protocol only required lysis buffer. In conclusion, this methodology results in reliable and consistent isolation of high-quality sperm RNA. Using this technique will aid in translation of data collected from animal models, and reproducibility of clinical assessment of male factor fertility using RNA molecular biomarkers.
Collapse
Affiliation(s)
- E Bianchi
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - A Stermer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - K Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - M Sigman
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - S J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - G Reyes
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - E Dere
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - K Hwang
- Division of Urology, Rhode Island Hospital, Providence, RI, USA.,Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
32
|
Sperm-borne miR-449b influences cleavage, epigenetic reprogramming and apoptosis of SCNT embryos in bovine. Sci Rep 2017; 7:13403. [PMID: 29042680 PMCID: PMC5645405 DOI: 10.1038/s41598-017-13899-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/02/2017] [Indexed: 01/23/2023] Open
Abstract
Accumulating evidence indicates the absence of paternally derived miRNAs, piwiRNAs, and proteins may be one important factor contributing to developmental failure in somatic cell cloned embryos. In the present study, we found microRNA-449b (miR-449b) was highly expressed in sperm. Target gene predictions and experimental verification indicate that several embryonic development-related genes, including CDK6, c-MYC, HDAC1 and BCL-2, are targets of miR-449b. We therefore investigated the role of miR-449b using somatic cell nuclear transfer (SCNT) embryo model. Bovine fetal fibroblasts, expressing miR-449b through a doxycycline (dox) induced expression system were used as nuclear donor cells for SCNT. The results showed that miR-449b expression in SCNT embryos significantly enhanced the cleavage rate at 48 h after activation and the levels of H3K9 acetylation at the 2-cell to 8-cell stages, meanwhile, significantly decreased the apoptosis index of blastocysts. In addition, we verified miR-449b could regulate the expression levels of CDK6, c-MYC, HDAC1 and BCL-2. In conclusion, the present study shows that miR-449b expression improves the first cleavage division, epigenetic reprogramming and apoptotic status of bovine preimplantation cloned embryos.
Collapse
|
33
|
Abstract
Transcriptional activity is repressed due to the packaging of sperm chromatins during spermiogenesis. The detection of numerous transcripts in sperm, however, raises the question whether transcriptional events exist in sperm,
which has been the central focus of the recent studies. To summarize the transcriptional activity during spermiogenesis and in sperm, we reviewed the documents on transcript differences during spermiogenesis, in sperm with
differential motility, before and after capacitation and cryopreservation. This will lay a theoretical foundation for studying the mechanism(s) of gene expression in sperm, and would be invaluable in making better use of animal
sires and developing reproductive control technologies.
Collapse
Affiliation(s)
- Xiaoxia Ren
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Xiaoli Chen
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Zhenling Wang
- Beijing Agricultural Vocation College, Beijing 102442, China
| | - Dong Wang
- The Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| |
Collapse
|
34
|
Guo L, Chao SB, Xiao L, Wang ZB, Meng TG, Li YY, Han ZM, Ouyang YC, Hou Y, Sun QY, Ou XH. Sperm-carried RNAs play critical roles in mouse embryonic development. Oncotarget 2017; 8:67394-67405. [PMID: 28978041 PMCID: PMC5620181 DOI: 10.18632/oncotarget.18672] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022] Open
Abstract
Recently, numerous studies have reported that the mature sperm contains both coding and non-coding RNAs and the sperm delivers some RNAs to the oocyte at fertilization. However, the functions of the RNAs carried to the oocyte by sperm at fertilization in embryonic development remains a mystery. In this study, the mature spermatozoa were treated with lysolecithin, pronase and RNases (RNase A and RNase H) to remove the sperm-carried RNAs, and then injected into normal mature oocyte. The results showed that after the treatment, the content of the sperm RNAs was decreased by about 90%. The blastocyst formation rate and the live birth rate of the embryos from intracytoplasmic sperm injection (ICSI) using the treated sperm were significantly decreased (P<0.01), while these effects were partially rescued by injecting total wide-type sperm RNAs. The reproductive capacity of offspring (F0) in sperm-treated group was similar with that in control group (P>0.05), but the body weight of F1 mice from sperm-treated group was lower than that in control group after two weeks of birth (P<0.05). These results demonstrated that the sperm-carried RNAs have important roles in embryonic development.
Collapse
Affiliation(s)
- Lei Guo
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| | - Shi-Bin Chao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,The ART Center, Jiujiang Maternal and Child Health Care Hospital, Jiangxi 332000, PR China
| | - Lu Xiao
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Yuan-Yuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhi-Ming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ying-Chun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiang-Hong Ou
- Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, PR China
| |
Collapse
|
35
|
Zhang X, Gao F, Fu J, Zhang P, Wang Y, Zeng X. Systematic identification and characterization of long non-coding RNAs in mouse mature sperm. PLoS One 2017; 12:e0173402. [PMID: 28291811 PMCID: PMC5349675 DOI: 10.1371/journal.pone.0173402] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
Increasing studies have shown that mature spermatozoa contain many transcripts including mRNAs and miRNAs. However, the expression profile of long non-coding RNAs (lncRNAs) in mammalian sperm has not been systematically investigated. Here, we used highly purified RNA to investigate lncRNA expression profiles in mouse mature sperm by stranded-specific RNA-seq. We identified 20,907 known and 4,088 novel lncRNAs transcripts, and the existence of intact lncRNAs was confirmed by RT-PCR and fluorescence in situ hybridization on two representative lncRNAs. Compared to round spermatids, 1,794 upregulated and 165 downregulated lncRNAs and 4,435 upregulated and 3,920 downregulated mRNAs were identified in sperm. Based on the "Cis and Trans" RNA-RNA interaction principle, we found 14,259 targeted coding genes of differently expressed lncRNAs. In terms of Gene ontology (GO) analysis, differentially expressed lncRNAs targeted genes mainly related to nucleic acid metabolic, protein modification, chromatin and histone modification, heterocycle compound metabolic, sperm function, spermatogenesis and other processes. In contrast, differentially expressed transcripts of mRNAs were highly enriched for protein metabolic process and RNA metabolic, spermatogenesis, sperm motility, cell cycle, chromatin organization, heterocycle and aromatic compound metabolic processes. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the differentially expressed lncRNAs were involved in RNA transport, mRNA surveillance pathway, PI3K-Akt signaling pathway, AMPK signaling pathway, protein processing in endoplasmic reticulum. Metabolic pathways, mRNA surveillance pathway, AMPK signaling pathway, cell cycle, RNA transport splicesome and endocytosis incorporated with the differentially expressed mRNA. Furthermore, many lncRNAs were specifically expressed in testis/sperm, and 880 lncRNAs were conserved between human and mouse. In summary, this study provides a preliminary database valuable for identifying lncRNAs critical in the late stage of spermatogenesis or important for sperm function regulation, fertilization and early embryo development.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Fengxin Gao
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Jianbo Fu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Peng Zhang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Yuqing Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Xuhui Zeng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
- * E-mail:
| |
Collapse
|
36
|
Capra E, Turri F, Lazzari B, Cremonesi P, Gliozzi TM, Fojadelli I, Stella A, Pizzi F. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High- and Low-motile sperm populations. BMC Genomics 2017; 18:14. [PMID: 28052756 PMCID: PMC5209821 DOI: 10.1186/s12864-016-3394-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
Background Small RNAs present in bovine ejaculate can be linked to sperm abnormalities and fertility disorders. At present, quality parameters routinely used in semen evaluation are not fully reliable to predict bull fertility. In order to provide additional quality measurements for cryopreserved semen used for breeding, a method based on deep sequencing of sperm microRNA (miRNA) and Piwi-interacting RNA (piRNA) from individual bulls was developed. To validate our method, two populations of spermatozoa isolated from high and low motile fractions separated by Percoll were sequenced, and their small RNAs content characterized. Results Sperm cells from frozen thawed semen samples of 4 bulls were successfully separated in two fractions. We identified 83 miRNAs and 79 putative piRNAs clusters that were differentially expressed in both fractions. Gene pathways targeted by 40 known differentially expressed miRNAs were related to apoptosis. Dysregulation of miR-17-5p, miR-26a-5p, miR-486-5p, miR-122-5p, miR-184 and miR-20a-5p was found to target three pathways (PTEN, PI3K/AKT and STAT). Conclusions Small RNAs sequencing data obtained from single bulls are consistent with previous findings. Specific miRNAs are differentially represented in low versus high motile sperm, suggesting an alteration of cell functions and increased germ cell apoptosis in the low motile fraction. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3394-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - F Turri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - B Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy.,Parco Tecnologico Padano, via Einstein, 26900, Lodi, Italy
| | - P Cremonesi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - T M Gliozzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - I Fojadelli
- Parco Tecnologico Padano, via Einstein, 26900, Lodi, Italy
| | - A Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy.,Parco Tecnologico Padano, via Einstein, 26900, Lodi, Italy
| | - F Pizzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy.
| |
Collapse
|
37
|
Schuster A, Tang C, Xie Y, Ortogero N, Yuan S, Yan W. SpermBase: A Database for Sperm-Borne RNA Contents. Biol Reprod 2016; 95:99. [PMID: 27628216 PMCID: PMC5178153 DOI: 10.1095/biolreprod.116.142190] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/07/2016] [Indexed: 12/31/2022] Open
Abstract
Since their discovery approximately three decades ago, sperm-borne RNAs, both large/small and coding/noncoding, have been reported in multiple organisms, and some have been implicated in spermatogenesis, early development, and epigenetic inheritance. Despite these advances, isolation, quantification, and annotation of sperm-borne RNAs remain nontrivial. The yields and subspecies of sperm-borne RNAs isolated from sperm can vary drastically depending on the methods used, and no cross-species analyses of sperm RNA contents have ever been conducted using a standardized sperm RNA isolation protocol. To address these issues, we developed a simple RNA isolation method that is applicable to sperm of various species, thus allowing for reliable interspecies comparisons. Based on RNA-Seq analyses, we established SpermBase (
www.spermbase.org), a database dedicated to sperm-borne RNA profiling of multiple species. Currently, SpermBase contains large and small RNA expression data for mouse, rat, rabbit, and human total sperm and sperm heads. By analyzing large and small RNAs for conserved features, we found that many sperm-borne RNA species were conserved across all four species analyzed, and among the conserved small RNAs, sperm-borne tRNA-derived small noncoding RNAs and miRNAs can target a large number of genes known to be critical for early development.
Collapse
Affiliation(s)
- Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Nicole Ortogero
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
- Department of Biology, University of Nevada, Reno, Reno, Nevada
- Correspondence: Wei Yan, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV 89557. E-mail:
| |
Collapse
|
38
|
Liu ZQ, Jiang XH, Qi HY, Xiong LW, Qiu GF. A novel SoxB2 gene is required for maturation of sperm nucleus during spermiogenesis in the Chinese mitten crab, Eriocheir sinensis. Sci Rep 2016; 6:32139. [PMID: 27561408 PMCID: PMC4999818 DOI: 10.1038/srep32139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/03/2016] [Indexed: 01/10/2023] Open
Abstract
SRY-related HMG box (Sox) genes are characterized by the presence of a DNA-binding HMG domain and involved in a diverse range of developmental processes. In this study, we identified a novel Sox gene, designated as EsSoxB2-1, from the Chinese mitten crab Eriocheir sinensis. The EsSoxB2-1 encodes a protein of 259 amino acids, sharing the highest identity with the beetle Tribolium castaneum SOX21b. Unlike insect Sox21b, however, EsSoxB2-1 is intronless and exhibits a gonad-specific expression pattern at both mRNA and protein level. Two core promoters in 5′ flanking region were demonstrated to be essential for inducing transcriptional regulatory activity. The transcription of EsSoxB2-1 mRNA begins in spermatogonia stage, while the translation of EsSOXB2-1 protein initiates at spermiogenesis stage. Interestingly, EsSOXB2-1 protein was exclusively localized in the nucleus of spermatid and spermatozoa even at the end of acrosome reaction, and was bound to the uncondensed chromatin in nucleoplasm of mature spermatozoa. Knockdown of EsSoxB2-1 by RNAi leads to abnormal transformation of the nucleus during spermiogenesis. Together, these findings demonstrated the requirement of EsSoxB2-1 for the spermatozoa nucleus maturation and also suggested that EsSoxB2-1 would be delivered into fertilized eggs along with chromatins as a paternal transcription factor for regulating early embryonic development.
Collapse
Affiliation(s)
- Zhi-Qiang Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Certificated by Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai, 201306, P. R. China
| | - Xue-Hui Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Certificated by Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai, 201306, P. R. China
| | - Hai-Yan Qi
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Certificated by Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai, 201306, P. R. China
| | - Liang-Wei Xiong
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Certificated by Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai, 201306, P. R. China
| | - Gao-Feng Qiu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Certificated by Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, 999 Hucheng Huan Road, Shanghai, 201306, P. R. China
| |
Collapse
|
39
|
Abstract
It is known that spermatogenic disorders are associated with genetic deficiency, although the primary mechanism is still unclear. It is difficult to demonstrate the molecular events occurring in testis, which contains germ cells at different developmental stages. However, transcriptomic methods can help us reveal the molecular drive of male gamete generation. Many transcriptomic studies have been performed on rodents by utilizing the timing of the first wave of spermatogenesis, which is not a suitable strategy for research in fertile men. With the development of separation methods for male germ cells, transcriptome research on the molecular drive of spermatogenesis in fertile men has seen great progress, and the results could be ultimately applied to improve the diagnosis and treatment for male infertility.
Collapse
Affiliation(s)
| | | | - Zheng Li
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127; Department of Andrology, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080; Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
40
|
Daughtry BL, Chavez SL. Chromosomal instability in mammalian pre-implantation embryos: potential causes, detection methods, and clinical consequences. Cell Tissue Res 2016; 363:201-225. [PMID: 26590822 PMCID: PMC5621482 DOI: 10.1007/s00441-015-2305-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/24/2015] [Indexed: 01/08/2023]
Abstract
Formation of a totipotent blastocyst capable of implantation is one of the first major milestones in early mammalian embryogenesis, but less than half of in vitro fertilized embryos from most mammals will progress to this stage of development. Whole chromosomal abnormalities, or aneuploidy, are key determinants of whether human embryos will arrest or reach the blastocyst stage. Depending on the type of chromosomal abnormality, however, certain embryos still form blastocysts and may be morphologically indistinguishable from chromosomally normal embryos. Despite the implementation of pre-implantation genetic screening and other advanced in vitro fertilization (IVF) techniques, the identification of aneuploid embryos remains complicated by high rates of mosaicism, atypical cell division, cellular fragmentation, sub-chromosomal instability, and micro-/multi-nucleation. Moreover, several of these processes occur in vivo following natural human conception, suggesting that they are not simply a consequence of culture conditions. Recent technological achievements in genetic, epigenetic, chromosomal, and non-invasive imaging have provided additional embryo assessment approaches, particularly at the single-cell level, and clinical trials investigating their efficacy are continuing to emerge. In this review, we summarize the potential mechanisms by which aneuploidy may arise, the various detection methods, and the technical advances (such as time-lapse imaging, "-omic" profiling, and next-generation sequencing) that have assisted in obtaining this data. We also discuss the possibility of aneuploidy resolution in embryos via various corrective mechanisms, including multi-polar divisions, fragment resorption, endoreduplication, and blastomere exclusion, and conclude by examining the potential implications of these findings for IVF success and human fecundity.
Collapse
Affiliation(s)
- Brittany L Daughtry
- Department of Cell, Developmental & Cancer Biology, Graduate Program in Molecular & Cellular Biosciences, Oregon Health & Science University School of Medicine, Portland, Ore., USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA
| | - Shawn L Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
- Physiology & Pharmacology, Oregon Health & Science University School of Medicine, Portland, Ore., USA.
- Department of Obstetrics & Gynecology, Oregon Health & Science University School of Medicine, Portland, Ore., USA.
| |
Collapse
|
41
|
Kargar- Dastjerdy P, Tavalaee M, Salehi M, Falahati M, Izadi T, Nasr Esfahani MH, Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran, Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran, Department of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran, Department of Nanotechnology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran, Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran, Isfahan Fertility and Infertility Center, Isfahan, Iran. Altered expression of KLC3 may affect semen parameters. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
42
|
Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, Zheng H, Yan W. Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development 2015; 143:635-47. [PMID: 26718009 DOI: 10.1242/dev.131755] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
Although it is believed that mammalian sperm carry small noncoding RNAs (sncRNAs) into oocytes during fertilization, it remains unknown whether these sperm-borne sncRNAs truly have any function during fertilization and preimplantation embryonic development. Germline-specific Dicer and Drosha conditional knockout (cKO) mice produce gametes (i.e. sperm and oocytes) partially deficient in miRNAs and/or endo-siRNAs, thus providing a unique opportunity for testing whether normal sperm (paternal) or oocyte (maternal) miRNA and endo-siRNA contents are required for fertilization and preimplantation development. Using the outcome of intracytoplasmic sperm injection (ICSI) as a readout, we found that sperm with altered miRNA and endo-siRNA profiles could fertilize wild-type (WT) eggs, but embryos derived from these partially sncRNA-deficient sperm displayed a significant reduction in developmental potential, which could be rescued by injecting WT sperm-derived total or small RNAs into ICSI embryos. Disrupted maternal transcript turnover and failure in early zygotic gene activation appeared to associate with the aberrant miRNA profiles in Dicer and Drosha cKO spermatozoa. Overall, our data support a crucial function of paternal miRNAs and/or endo-siRNAs in the control of the transcriptomic homeostasis in fertilized eggs, zygotes and two-cell embryos. Given that supplementation of sperm RNAs enhances both the developmental potential of preimplantation embryos and the live birth rate, it might represent a novel means to improve the success rate of assisted reproductive technologies in fertility clinics.
Collapse
Affiliation(s)
- Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS 0575, Reno, NV 89557, USA
| | - Andrew Schuster
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS 0575, Reno, NV 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS 0575, Reno, NV 89557, USA
| | - Tian Yu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS 0575, Reno, NV 89557, USA
| | - Nicole Ortogero
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS 0575, Reno, NV 89557, USA
| | - Jianqiang Bao
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS 0575, Reno, NV 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS 0575, Reno, NV 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, 1664 North Virginia Street, MS 0575, Reno, NV 89557, USA
| |
Collapse
|
43
|
Tyminski JP, Gelsleichter JJ, Motta PJ. Androgen receptors in the bonnethead, Sphyrna tiburo: cDNA cloning and tissue-specific expression in the male reproductive tract. Gen Comp Endocrinol 2015; 224:235-46. [PMID: 26320857 DOI: 10.1016/j.ygcen.2015.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/22/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022]
Abstract
As demonstrated in past studies, androgens appear to play critical roles in regulating reproduction in male sharks. However, little is known about the cell-specific actions of androgens in these fishes. To address this, this study examined androgen targets in reproductive organs of a seasonally reproducing shark, the bonnethead (Sphyrna tiburo). A partial bonnethead AR cDNA clone was isolated and found to exhibit strong homology with known vertebrate ARs. Using RT-PCR and in situ hybridization, AR was found to be expressed in multiple cell types in the male bonnethead testis (premeiotic germ cells, Leydig-like interstitial cells, Sertoli cells, peritubular myoid cells, and mature spermatozoa) and gonadal ducts (stromal cells, luminal epithelial cells, mature spermatozoa). Furthermore, AR expression in these organs was found to vary temporally in relation to the seasonal reproductive cycle. Based on immunocytochemistry, the presence of AR protein in male bonnethead reproductive organs was largely consistent with patterns of AR gene expression with the single exception of mature spermatozoa, which exhibited consistently strong mRNA expression but only inconsistent and weak AR protein immunoreactivity. These results suggest important roles for androgens in regulating germ cell proliferation, hormone production, spermatid elongation, spermiation, and gonadal duct function in male bonnetheads. In addition, high abundance of AR mRNA in bonnethead spermatozoa suggest the potential for de novo protein synthesis following spermiation/copulation and/or a role for AR mRNA in early embryonic development, both of which have been proposed to explain the occurrence of mRNA transcripts in spermatozoa from various vertebrates.
Collapse
Affiliation(s)
- John P Tyminski
- Center for Shark Research, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA
| | - James J Gelsleichter
- Department of Biological Sciences, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA.
| | - Philip J Motta
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| |
Collapse
|
44
|
Carbone L, Chavez SL. Mammalian pre-implantation chromosomal instability: species comparison, evolutionary considerations, and pathological correlations. Syst Biol Reprod Med 2015; 61:321-35. [PMID: 26366555 DOI: 10.3109/19396368.2015.1073406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pre-implantation embryo development in mammals begins at fertilization with the migration and fusion of the maternal and paternal pro-nuclei, followed by the degradation of inherited factors involved in germ cell specification and the activation of embryonic genes required for subsequent cell divisions, compaction, and blastulation. The majority of studies on early embryogenesis have been conducted in the mouse or non-mammalian species, often requiring extrapolation of the findings to human development. Given both conserved similarities and species-specific differences, however, even comparison between closely related mammalian species may be challenging as certain aspects, including susceptibility to chromosomal aberrations, varies considerably across mammals. Moreover, most human embryo studies are limited to patient samples obtained from in vitro fertilization (IVF) clinics and donated for research, which are generally of poorer quality and produced with germ cells that may be sub-optimal. Recent technical advances in genetic, epigenetic, chromosomal, and time-lapse imaging analyses of high quality whole human embryos have greatly improved our understanding of early human embryogenesis, particularly at the single embryo and cell level. This review summarizes the major characteristics of mammalian pre-implantation development from a chromosomal perspective, in addition to discussing the technological achievements that have recently been developed to obtain this data. We also discuss potential translation to clinical applications in reproductive medicine and conclude by examining the broader implications of these findings for the evolution of mammalian species and cancer pathology in somatic cells.
Collapse
Affiliation(s)
- Lucia Carbone
- a Division of Neuroscience , Oregon National Primate Research Center .,b Department of Behavioral Neuroscience .,c Department of Molecular & Medical Genetics .,d Bioinformatics & Computational Biology, Oregon Health & Science University
| | - Shawn L Chavez
- e Division of Reproductive & Developmental Sciences , Oregon National Primate Research Center .,f Department of Obstetrics & Gynecology , and.,g Department of Physiology & Pharmacology , Oregon Health & Science University , Portland , Oregon , USA
| |
Collapse
|
45
|
Parthipan S, Selvaraju S, Somashekar L, Kolte AP, Arangasamy A, Ravindra JP. Spermatozoa input concentrations and RNA isolation methods on RNA yield and quality in bull (Bos taurus). Anal Biochem 2015; 482:32-9. [DOI: 10.1016/j.ab.2015.03.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/14/2015] [Accepted: 03/19/2015] [Indexed: 11/15/2022]
|
46
|
Barragán M, Martínez A, Llonch S, Pujol A, Vernaeve V, Vassena R. Effect of ribonucleic acid (RNA) isolation methods on putative reference genes messenger RNA abundance in human spermatozoa. Andrology 2015; 3:797-804. [PMID: 26097086 DOI: 10.1111/andr.12053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 02/02/2023]
Abstract
Although the male gamete participates in a significant proportion of infertility cases, there are currently no proven molecular markers of sperm quality. The search for significant gene expression markers is partially hindered by the lack of a recognized set of reference genes (RGs) to normalize reverse transcription quantitative PCR (RT-qPCR) data across studies. The aim of this study is to define a set of RGs in assisted reproduction patients undergoing different sample collection and RNA isolation methods. Twenty-two normozoospermic men were included in the study. From each man, semen was either cryopreserved by slow freezing or analyzed fresh, and, for each, RNA was extracted with either phenol-free or phenol-based methods. In two cases, both methods were used to isolate RNA. Twenty putative RGs were analyzed and their mRNA abundance across samples was estimated by RT-qPCR. To determine the genes whose steady-state mRNA abundance remains unchanged, three different algorithms (geNorm, BestKeeper and NormFinder) were applied to the qPCR data. We found that RGs such as GAPDH or ACTB, useful in other biological contexts, cannot be used as reference for human spermatozoa. It is possible to compare gene expression from fresh and cryopreserved sperm samples using the same isolation method, while the mRNA abundance of expressed genes becomes different depending on the RNA isolation technique employed. In our conditions, the most appropriate RGs for RT-qPCR analysis were RPLP1, RPL13A, and RPLP2. Published discrepancies in gene expression studies in human spermatozoa may be due in part to inappropriate RGs selection, suggesting a possible different interpretation of PCR data in several reports, which were normalized using unstable RGs.
Collapse
Affiliation(s)
| | | | | | - A Pujol
- Clinica EUGIN, Barcelona, Spain
| | - V Vernaeve
- Clinica EUGIN, Barcelona, Spain.,Fundació EUGIN, Barcelona, Spain
| | | |
Collapse
|
47
|
Pantano L, Jodar M, Bak M, Ballescà JL, Tommerup N, Oliva R, Vavouri T. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes. RNA (NEW YORK, N.Y.) 2015; 21:1085-1095. [PMID: 25904136 PMCID: PMC4436662 DOI: 10.1261/rna.046482.114] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 02/19/2015] [Indexed: 05/29/2023]
Abstract
At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline.
Collapse
Affiliation(s)
- Lorena Pantano
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Can Ruti Campus, Badalona, Barcelona 08916, Spain
| | - Meritxell Jodar
- Genetics Unit, Department of Physiological Sciences, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Biochemistry and Molecular Genetics Service, Hospital Clinic, 08036 Barcelona, Spain
| | - Mads Bak
- Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen, DK-2200 Copenhagen, Denmark Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Josep Lluís Ballescà
- Andrology Unit, Institut Clínic de Ginecologia, Obstetricia i Neonatologia, Hospital Clínic, 08036 Barcelona, Spain
| | - Niels Tommerup
- Center for non-coding RNA in Technology and Health (RTH), University of Copenhagen, DK-2200 Copenhagen, Denmark Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health Science, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rafael Oliva
- Genetics Unit, Department of Physiological Sciences, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Biochemistry and Molecular Genetics Service, Hospital Clinic, 08036 Barcelona, Spain
| | - Tanya Vavouri
- Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Can Ruti Campus, Badalona, Barcelona 08916, Spain Josep Carreras Leukaemia Research Institute (IJC), ICO-Hospital GermansTrias i Pujol, Badalona, Barcelona 08916, Spain
| |
Collapse
|
48
|
Fagerlind M, Stålhammar H, Olsson B, Klinga-Levan K. Expression of miRNAs in Bull Spermatozoa Correlates with Fertility Rates. Reprod Domest Anim 2015; 50:587-94. [PMID: 25998690 DOI: 10.1111/rda.12531] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/19/2015] [Indexed: 01/05/2023]
Abstract
Bull spermatozoa are rich in active miRNAs, and it has been shown that specific spermborne miRNAs can be linked to fertility. Thus, expression profiling of spermatozoa could be helpful for understanding male fertility and the ability of spermatozoa to initiate and sustain zygotic, embryonic and foetal development. Herein we hypothesized that bulls with moderate to high fertility can be identified by differences in amounts of certain miRNAs between their ejaculates. RNA samples from spermatozoa of eight brother pairs (one bull with high and one with moderate NRR in each pair) of the Holstein breed were prepared. miRNA was isolated, and the expression of 178 miRNAs was determined by RT-qPCR. Important findings were that highly expressed miRNAs, not linked to NRR status, were identified in the bull sperm samples, which indicate that these miRNAs have an important role in early embryogenesis. A large fraction of the targets genes were phosphoproteins and genes involved in the regulation of transcription. Seven miRNAs (mir-502-5p, mir-1249, mir-320a, mir-34c-3p, mir-19b-3p, mir-27a-5p and mir-148b-3p) were differentially expressed between bulls with moderate and high NRR with a strong tendency towards a higher expression of miRNAs in bulls with moderate fertility. Thus, bulls with a moderate NRR negatively regulate the expression of protein-coding genes, which leads to problems during the pregnancy.
Collapse
Affiliation(s)
- M Fagerlind
- Systems Biology Research Centre - Infection Biology, School of Bioscience, University of Skövde, Skövde, Sweden
| | | | - B Olsson
- Systems Biology Research Centre - Bioinformatics, School of Bioscience, University of Skövde, Skövde, Sweden
| | - K Klinga-Levan
- Systems Biology Research Centre - Tumor Biology, School of Bioscience, University of Skövde, Skövde, Sweden
| |
Collapse
|
49
|
Differential Genes Expression between Fertile and Infertile Spermatozoa Revealed by Transcriptome Analysis. PLoS One 2015; 10:e0127007. [PMID: 25973848 PMCID: PMC4431685 DOI: 10.1371/journal.pone.0127007] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/09/2015] [Indexed: 01/18/2023] Open
Abstract
Background It was believed earlier that spermatozoa have no traces of RNA because of loss of most of the cytoplasm. Recent studies have revealed the presence of about 3000 different kinds of mRNAs in ejaculated spermatozoa. However, the correlation of transcriptome profile with infertility remains obscure. Methods Total RNA from sperm (after exclusion of somatic cells) of 60 men consisting of individuals with known fertility (n=20), idiopathic infertility (normozoospermic patients, n=20), and asthenozoospermia (n=20) was isolated. After RNA quality check on Bioanalyzer, AffymetrixGeneChip Human Gene 1.0 ST Array was used for expression profiling, which consisted of >30,000 coding transcripts and >11,000 long intergenic non-coding transcripts. Results Comparison between all three groups revealed that two thousand and eighty one transcripts were differentially expressed. Analysis of these transcripts showed that some transcripts [ribosomal proteins (RPS25, RPS11, RPS13, RPL30, RPL34, RPL27, RPS5), HINT1, HSP90AB1, SRSF9, EIF4G2, ILF2] were up-regulated in the normozoospermic group, but down-regulated in the asthenozoospermic group in comparison to the control group. Some transcripts were specific to the normozoospermic group (up-regulated: CAPNS1, FAM153C, ARF1, CFL1, RPL19, USP22; down-regulated: ZNF90, SMNDC1, c14orf126, HNRNPK), while some were specific to the asthenozoospermic group (up-regulated: RPL24, HNRNPM, RPL4, PRPF8, HTN3, RPL11, RPL28, RPS16, SLC25A3, C2orf24, RHOA, GDI2, NONO, PARK7; down-regulated: HNRNPC, SMARCAD1, RPS24, RPS24, RPS27A, KIFAP3). A number of differentially expressed transcripts in spermatozoa were related to reproduction (n = 58) and development (n= 210). Some of these transcripts were related to heat shock proteins (DNAJB4, DNAJB14), testis specific genes (TCP11, TESK1, TSPYL1, ADAD1), and Y-chromosome genes (DAZ1, TSPYL1). Conclusion A complex RNA population in spermatozoa consisted of coding and non-coding RNAs. A number of transcripts that participate in a host of cellular processes, including reproduction and development were differentially expressed between fertile and infertile individuals. Differences between comparison groups suggest that sperm RNA has strong potential of acting as markers for fertility evaluation.
Collapse
|
50
|
O'Doherty AM, McGettigan PA. Epigenetic processes in the male germline. Reprod Fertil Dev 2015; 27:725-38. [DOI: 10.1071/rd14167] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Sperm undergo some of the most extensive chromatin modifications seen in mammalian biology. During male germline development, paternal DNA methylation marks are erased and established on a global scale through waves of demethylation and de novo methylation. As spermatogenesis progresses, the majority of the histones are removed and replaced by protamines, enabling a tighter packaging of the DNA and transcriptional shutdown. Following fertilisation, the paternal genome is rapidly reactivated, actively demethylated, the protamines are replaced with histones and the embryonic genome is activated. The development of new assays, made possible by high-throughput sequencing technology, has resulted in the revisiting of what was considered settled science regarding the state of DNA packaging in mammalian spermatozoa. Researchers have discovered that not all histones are replaced by protamines and, in certain experiments, various species of RNA have been detected in what was previously considered transcriptionally quiescent spermatozoa. Most controversially, several groups have suggested that environmental modifications of the epigenetic state of spermatozoa may operate as a non-DNA-based form of inheritance, a process known as ‘transgenerational epigenetic inheritance’. Other developments in the field include the increased focus on the involvement of short RNAs, such as microRNAs, long non-coding RNAs and piwi-interacting RNAs. There has also been an accumulation of evidence illustrating associations between defects in sperm DNA packaging and disease and fertility. In this paper we review the literature, recent findings and areas of controversy associated with epigenetic processes in the male germline, focusing on DNA methylation dynamics, non-coding RNAs, the biology of sperm chromatin packaging and transgenerational inheritance.
Collapse
|