1
|
Zare F, Laplante P, Greschner AA, Cailhier JF, Gauthier MA. Stability of a Multiresponsive Sulfonium Vinyl Sulfide Linker toward Nucleophilic/Radical Thiols, Reactive Nitrogen Species, and in Cells under Pro-inflammatory Stimulation. Biomacromolecules 2024; 25:6017-6025. [PMID: 39166922 DOI: 10.1021/acs.biomac.4c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Chemical linkages that respond to biological stimuli are important for many pharmaceutical and biotechnological applications, making it relevant to explore new variants with different responsivity profiles. This work explores the responsiveness of a TAT peptide-based sulfonium vinyl sulfide probe that responds to nucleophilic thiols, radical thiol species (RTS), and reactive nitrogen species (RNS). Under model conditions, response to nucleophilic thiols was very slow (hours/days), though fast with down to molar equivalents of either RTS or RNS (minutes). These reactions led to the traceless release of a methionine-containing peptide in the first two cases and to a hydroxy nitration adduct in the third case. Despite the sensitive nature of the probe, it remained stable for at least ∼2 h in the presence of cells during TAT-mediated trafficking, even under pro-inflammatory stimulation. The thiol-responsiveness is intermediate to that observed for disulfide linkers and conventional cysteine-maleimide linkers, presenting opportunities for biotechnological applications.
Collapse
Affiliation(s)
- Fatemeh Zare
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes J3X 1P7, Canada
| | - Patrick Laplante
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal H2X 0A9, Canada
| | - Andrea A Greschner
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes J3X 1P7, Canada
| | - Jean-François Cailhier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) and Institut du Cancer de Montréal, Montreal H2X 0A9, Canada
| | - Marc A Gauthier
- EMT Research Center, Institut National de la Recherche Scientifique (INRS), Varennes J3X 1P7, Canada
| |
Collapse
|
2
|
Kim H, Taslakjian B, Kim S, Tirrell MV, Guler MO. Therapeutic Peptides, Proteins and their Nanostructures for Drug Delivery and Precision Medicine. Chembiochem 2024; 25:e202300831. [PMID: 38408302 DOI: 10.1002/cbic.202300831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Peptide and protein nanostructures with tunable structural features, multifunctionality, biocompatibility and biomolecular recognition capacity enable development of efficient targeted drug delivery tools for precision medicine applications. In this review article, we present various techniques employed for the synthesis and self-assembly of peptides and proteins into nanostructures. We discuss design strategies utilized to enhance their stability, drug-loading capacity, and controlled release properties, in addition to the mechanisms by which peptide nanostructures interact with target cells, including receptor-mediated endocytosis and cell-penetrating capabilities. We also explore the potential of peptide and protein nanostructures for precision medicine, focusing on applications in personalized therapies and disease-specific targeting for diagnostics and therapeutics in diseases such as cancer.
Collapse
Affiliation(s)
- HaRam Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Boghos Taslakjian
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Sarah Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Matthew V Tirrell
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| |
Collapse
|
3
|
Greschner AA, Brahiti N, Auger M, Hu L, Soleymani Abyaneh H, Barbeau X, Parent V, Gaillet B, Guay D, Soultan AH, Gauthier MA. PEGylation of a Peptide-Based Amphiphilic Delivery Agent and Influence on Protein Delivery to Cells. Biomacromolecules 2023; 24:4890-4900. [PMID: 37862236 DOI: 10.1021/acs.biomac.3c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The cell membrane is a restrictive biological barrier, especially for large, charged molecules, such as proteins. The use of cell-penetrating peptides (CPPs) can facilitate the delivery of proteins, protein complexes, and peptides across the membrane by a variety of mechanisms that are all limited by endosomal sequestration. To improve CPP-mediated delivery, we previously reported the rapid and effective cytosolic delivery of proteins in vitro and in vivo by their coadministration with the peptide S10, which combines a CPP and an endosomal leakage domain. Amphiphilic peptides with hydrophobic properties, such as S10, can interact with lipids to destabilize the cell membrane, thus promoting cargo internalization or escape from endosomal entrapment. However, acute membrane destabilization can result in a dose-limiting cytotoxicity. In this context, the partial or transient deactivation of S10 by modification with methoxy poly(ethylene glycol) (mPEG; i.e., PEGylation) may provide the means to alter membrane destabilization kinetics, thereby attenuating the impact of acute permeabilization on cell viability. This study investigates the influence of PEGylation parameters (molecular weight, architecture, and conjugation chemistry) on the delivery efficiency of a green fluorescent protein tagged with a nuclear localization signal (GFP-NLS) and cytotoxicity on cells in vitro. Results suggest that PEGylation mostly interferes with adsorption and secondary structure formation of S10 at the cell membrane, and this effect is exacerbated by the mPEG molecular weight. This effect can be compensated for by increasing the concentration of conjugates prepared with lower molecular weight mPEG (5 to ∼20 kDa) but not for conjugates prepared with higher molecular weight mPEG (40 kDa). For conjugates prepared with moderate-to-high molecular weight mPEG (10 to 20 kDa), partial compensation of inactivation could be achieved by the inclusion of a reducible disulfide bond, which provides a mechanism to liberate the S10 from the polymer. Grafting multiple copies of S10 to a high-molecular-weight multiarmed PEG (40 kDa) improved GFP-NLS delivery efficiency. However, these constructs were more cytotoxic than the native peptide. Considering that PEGylation could be harnessed for altering the pharmacokinetics and biodistribution profiles of peptide-based delivery agents in vivo, the trends observed herein provide new perspectives on how to manipulate the membrane permeabilization process, which is an important variable for achieving delivery.
Collapse
Affiliation(s)
- Andrea A Greschner
- Institut National de la Recherche Scientifique (INRS),EMT Research Center, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Nadine Brahiti
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
| | - Maud Auger
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
- Département de génie chimique Université Laval, Room #3570, 1065 avenue de la Médecine, Pavillon Adrien-Pouliot, Québec QC G1V 0A6, Canada
| | - Lei Hu
- Institut National de la Recherche Scientifique (INRS),EMT Research Center, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Hoda Soleymani Abyaneh
- Institut National de la Recherche Scientifique (INRS),EMT Research Center, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Xavier Barbeau
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
| | - Victor Parent
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
| | - Bruno Gaillet
- Département de génie chimique Université Laval, Room #3570, 1065 avenue de la Médecine, Pavillon Adrien-Pouliot, Québec QC G1V 0A6, Canada
| | - David Guay
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
- Département de génie chimique Université Laval, Room #3570, 1065 avenue de la Médecine, Pavillon Adrien-Pouliot, Québec QC G1V 0A6, Canada
| | - Al-Halifa Soultan
- Feldan Therapeutics, 2666 boulevard du Parc Technologique Suite 290, Québec QC G1P 4S6, Canada
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS),EMT Research Center, 1650 boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| |
Collapse
|
4
|
Menon D, Singh R, Joshi KB, Gupta S, Bhatia D. Designer, Programmable DNA-peptide hybrid materials with emergent properties to probe and modulate biological systems. Chembiochem 2023; 24:e202200580. [PMID: 36468492 DOI: 10.1002/cbic.202200580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The chemistry of DNA endows it with certain functional properties that facilitate the generation of self-assembled nanostructures, offering precise control over their geometry and morphology, that can be exploited for advanced biological applications. Despite the structural promise of these materials, their applications are limited owing to lack of functional capability to interact favourably with biological systems, which has been achieved by functional proteins or peptides. Herein, we outline a strategy for functionalizing DNA structures with short-peptides, leading to the formation of DNA-peptide hybrid materials. This proposition offers the opportunity to leverage the unique advantages of each of these bio-molecules, that have far reaching emergent properties in terms of better cellular interactions and uptake, better stability in biological media, an acceptable and programmable immune response and high bioactive molecule loading capacities. We discuss the synthetic strategies for the formation of these materials, namely, solid-phase functionalization and solution-coupling functionalization. We then proceed to highlight selected biological applications of these materials in the domains of cell instruction & molecular recognition, gene delivery, drug delivery and bone & tissue regeneration. We conclude with discussions shedding light on the challenges that these materials pose and offer our insights on future directions of peptide-DNA research for targeted biomedical applications.
Collapse
Affiliation(s)
- Dhruv Menon
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Ramesh Singh
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Kashti B Joshi
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| |
Collapse
|
5
|
Rachmale M, Rajput N, Jadav T, Sahu AK, Tekade RK, Sengupta P. Implication of metabolomics and transporter modulation based strategies to minimize multidrug resistance and enhance site-specific bioavailability: a needful consideration toward modern anticancer drug discovery. Drug Metab Rev 2022; 54:101-119. [PMID: 35254954 DOI: 10.1080/03602532.2022.2048007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Induction of drug-metabolizing enzymes and efflux transporters (DMET) through activation of pregnane x receptor (PXR) is the primary factor involved in almost all bioavailability and drug resistance-related problems of anticancer drugs. PXR is a transcriptional regulator of many metabolizing enzymes and efflux transporters proteins like p-glycoprotein (p-gp), multidrug resistant protein 1 and 2 (MRP 1 and 2), and breast cancer resistant protein (BCRP), etc. Several anticancer drugs are potent activators of PXR receptors and can modulate the gene expression of DMET proteins. Involvement of anticancer drugs in transcriptional regulation of DMET can prompt increased metabolism and efflux of their own or other co-administered drugs, which leads to poor site-specific bioavailability and increased drug resistance. In this review, we have discussed several novel strategies to evade drug-induced PXR activation and p-gp efflux including assessment of PXR ligand and p-gp substrate at early stages of drug discovery. Additionally, we have critically discussed the chemical structure and drug delivery-based approaches to avoid PXR binding and inhibit the p-gp activity of the drugs at their target sites.
Collapse
Affiliation(s)
- Megha Rachmale
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Laurent Q, Martinent R, Lim B, Pham AT, Kato T, López-Andarias J, Sakai N, Matile S. Thiol-Mediated Uptake. JACS AU 2021; 1:710-728. [PMID: 34467328 PMCID: PMC8395643 DOI: 10.1021/jacsau.1c00128] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 05/19/2023]
Abstract
This Perspective focuses on thiol-mediated uptake, that is, the entry of substrates into cells enabled by oligochalcogenides or mimics, often disulfides, and inhibited by thiol-reactive agents. A short chronology from the initial observations in 1990 until today is followed by a summary of cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs) as privileged scaffolds in thiol-mediated uptake and inhibitors of thiol-mediated uptake as potential antivirals. In the spirit of a Perspective, the main part brings together topics that possibly could help to explain how thiol-mediated uptake really works. Extreme sulfur chemistry mostly related to COCs and their mimics, cyclic disulfides, thiosulfinates/-onates, diselenolanes, benzopolysulfanes, but also arsenics and Michael acceptors, is viewed in the context of acidity, ring tension, exchange cascades, adaptive networks, exchange affinity columns, molecular walkers, ring-opening polymerizations, and templated polymerizations. Micellar pores (or lipid ion channels) are considered, from cell-penetrating peptides and natural antibiotics to voltage sensors, and a concise gallery of membrane proteins, as possible targets of thiol-mediated uptake, is provided, including CLIC1, a thiol-reactive chloride channel; TMEM16F, a Ca-activated scramblase; EGFR, the epithelial growth factor receptor; and protein-disulfide isomerase, known from HIV entry or the transferrin receptor, a top hit in proteomics and recently identified in the cellular entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rémi Martinent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
7
|
Nobili S, Lapucci A, Landini I, Coronnello M, Roviello G, Mini E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol 2020; 60:72-95. [PMID: 31412294 DOI: 10.1016/j.semcancer.2019.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
Abstract
ATP Binding Cassette (ABC) transporters, widely studied in cancer for their role in drug resistance, have been more recently also considered for their contribution to cancer cell biology. To date, many data provide evidences for their potential role in all the phases of cancer development from cancer susceptibility, tumor initiation, tumor progression and metastasis. Although many evidences are based on correlative analyses, data describing a direct or indirect role of ABC transporters in cancer biology are increasing. Overall, current available information suggests a relevant molecular effector role of some ABC transporters in cancer invasion and metastasis as reported in experimental tumor models. From a therapeutic point of view, due to the physiological relevant roles that ABC transporters play in the organism, the capability to selectively inhibit the function or the expression of ABC transporters in cancer stem cells or other tumor cells, represents the main challenge for researcher scientists. A detailed and updated description of the current knowledge on the role of ABC transporters in cancer biology is provided.
Collapse
Affiliation(s)
- Stefania Nobili
- Department of Health Sciences, University of Florence, Florence, Italy.
| | - Andrea Lapucci
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Ida Landini
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | | | - Enrico Mini
- Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
8
|
Stasińska AR, Putaj P, Chmielewski MK. Disulfide bridge as a linker in nucleic acids' bioconjugation. Part II: A summary of practical applications. Bioorg Chem 2019; 95:103518. [PMID: 31911308 DOI: 10.1016/j.bioorg.2019.103518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022]
Abstract
Disulfide conjugation invariably remains a key tool in research on nucleic acids. This versatile and cost-effective method plays a crucial role in structural studies of DNA and RNA as well as their interactions with other macromolecules in a variety of biological systems. In this article we review applications of disulfide-bridged conjugates of oligonucleotides with other (bio)molecules such as peptides, proteins etc. and present key findings obtained with their help.
Collapse
Affiliation(s)
- Anna R Stasińska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Piotr Putaj
- FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland
| | - Marcin K Chmielewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznań, Poland; FutureSynthesis sp. z o.o. ul. Rubież 46H, 61-612 Poznań, Poland.
| |
Collapse
|
9
|
Gong L. Analysis of oligonucleotides by ion-pairing hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:2125-2134. [PMID: 28972295 DOI: 10.1002/rcm.8004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/18/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Hydrophilic interaction liquid chromatography/electrospray ionization mass spectrometry (HILIC-LC/ESI-MS) has been proved to be useful for the quality control of oligonucleotides. However, the lack of separation for some oligonucleotides using HILIC-LC/MS has proved problematic. This study aimed to improve the resolving ability of HILIC-LC/MS. METHODS The study was performed on a Waters UPLC® system coupled to a Waters LCT premier XE ESI-TOF mass spectrometer using a Zorbax® RRHD HILIC column (2.1 mm × 100 mm, 1.8 μm). Buffer systems contained triethylammonium acetate (TEAA) and acetonitrile. The effects of the concentration of TEAA and the type of organic modifiers on the separation of oligonucleotides were investigated. RESULTS The results showed that the optimum concentration of TEAA is 10 mM and acetonitrile is a better organic solvent than methanol. The addition of TEAA in the HILIC mobile phase improved the separation of N from N + A significantly compared to the HILIC method buffered with ammonium acetate. The IP-HILIC chromatography has demonstrated that the separation of oligonucleotides is sequence dependent. In addition, the IP-HILIC method produces a much simpler mass spectrum of an oligonucleotide with very efficient desalting. CONCLUSIONS The HILIC-LC/MS method with the addition of TEAA at a MS-compatible concentration has improved the separation of oligonucleotides. The IP-HILIC-LC/MS method also produces very simple mass spectra with high desalting efficiency.
Collapse
Affiliation(s)
- Lingzhi Gong
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
10
|
Ding XR, Yang J, Lu DD, Li QJ, Zhang ZY, Zhou Z, Wang SQ. Delivery System Targeting Hemagglutinin of Influenza Virus A to Facilitate Antisense-Based Anti-H1N1 Therapy. Bioconjug Chem 2017; 28:1842-1849. [PMID: 28635259 DOI: 10.1021/acs.bioconjchem.7b00124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Antisense oligonucleotides (ODNs) are therapeutic molecules that hybridize to complementary target mRNA sequences. To further overcome the poor cellular uptake of ODNs, we proposed a novel strategy to deliver ODNs by conjugating the anti-influenza A virus (IAV) ODN with a peptide showing high affinity to the hemagglutinin (HA) on the surface of IAV particles or the IAV-infected host cells. The HA-specific binding peptides were selected by phage display, and the individual binding clones are characterized by DNA sequencing, and the selected phage was further assayed by enzyme-linked immunosorbent assay. The final selected HA-binding peptide, SHGRITFAYFAN, was conjugated to an anti-IAV ODN. The delivery efficiency and the anti-IAV effects of the conjugated molecule were evaluated in a cell-culture and a mouse-infection model. The conjugated molecule was successfully delivered into IAV-infected host cells more efficiently than the anti-IAV ODN in vitro and in vivo. Furthermore, the conjugated molecule protected 80% of the mice from lethal challenge and inhibited the plaque count by 75% compared to the unconjugated molecule (60% and 40%). These findings demonstrate that the delivery of antisense oligodeoxynucleotides to infected tissues by a virus-binding peptide-mediated system is a potential therapeutic strategy against IAV.
Collapse
Affiliation(s)
- Xiao Ran Ding
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Jing Yang
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Dan Dan Lu
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Qing Jun Li
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Zhao Yan Zhang
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Zhe Zhou
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| | - Sheng Qi Wang
- Laboratory of Biotechnology, Beijing Institute of Radiation Medicine , Beijing 100850, PR China
| |
Collapse
|
11
|
Han N, Pang L, Xu J, Hyun H, Park J, Yeo Y. Development of Surface-Variable Polymeric Nanoparticles for Drug Delivery to Tumors. Mol Pharm 2017; 14:1538-1547. [PMID: 28368124 DOI: 10.1021/acs.molpharmaceut.7b00050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To develop nanoparticle drug carriers that interact with cells specifically in the mildly acidic tumor microenvironment, we produced polymeric nanoparticles modified with amidated TAT peptide via a simple surface modification method. Two types of core poly(lactic-co-glycolic acid) nanoparticles (NL and NP) were prepared with a phospholipid shell as an optional feature and covered with polydopamine that enabled the conjugation of TAT peptide on the surface. Subsequent treatment with acid anhydrides such as cis-aconitic anhydride (CA) and succinic anhydride (SA) converted amines of lysine residues in TAT peptide to β-carboxylic amides, introducing carboxylic groups that undergo pH-dependent protonation and deprotonation. The nanoparticles modified with amidated TAT peptide (NLpT-CA and NPpT-CA) avoided interactions with LS174T colon cancer cells and J774A.1 macrophages at pH 7.4 but restored the ability to interact with LS174T cells at pH 6.5, delivering paclitaxel efficiently to the cells following a brief contact time. In LS174T tumor-bearing nude mice, NPpT-CA showed less accumulation in the lung than NPpT, reflecting the shielding effect of amidation, but tumor accumulation of NPpT and NPpT-CA was equally minimal. Comparison of particle stability and protein corona formation in media containing sera from different species suggests that NPpT-CA has been activated and opsonized in mouse blood to a greater extent than those in bovine serum-containing medium, thus losing the benefits of pH-sensitivity expected from in vitro experiments.
Collapse
Affiliation(s)
- Ning Han
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , 103 Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Liang Pang
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Department of Pharmaceutics, School of Pharmacy, Fudan University , 826 Zhangheng Road, Shanghai 201203, P. R. China
| | - Jun Xu
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Hyesun Hyun
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Jinho Park
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company , Indianapolis, Indiana 46285, United States
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.,Weldon School of Biomedical Engineering, Purdue University , 206 South Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
12
|
Fragment-based solid-phase assembly of oligonucleotide conjugates with peptide and polyethylene glycol ligands. Eur J Med Chem 2016; 121:132-142. [PMID: 27236069 DOI: 10.1016/j.ejmech.2016.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/25/2016] [Accepted: 05/01/2016] [Indexed: 12/26/2022]
Abstract
Ligand conjugation to oligonucleotides is an attractive strategy for enhancing the therapeutic potential of antisense and siRNA agents by inferring properties such as improved cellular uptake or better pharmacokinetic properties. Disulfide linkages enable dissociation of ligands and oligonucleotides in reducing environments found in endosomal compartments after cellular uptake. Solution-phase fragment coupling procedures for producing oligonucleotide conjugates are often tedious, produce moderate yields and reaction byproducts are frequently difficult to remove. We have developed an improved method for solid-phase coupling of ligands to oligonucleotides via disulfides directly after solid-phase synthesis. A 2'-thiol introduced using a modified nucleotide building block was orthogonally deprotected on the controlled pore glass solid support with N-butylphosphine. Oligolysine peptides and a short monodisperse ethylene glycol chain were successfully coupled to the deprotected thiol. Cleavage from the resin and full removal of oligonucleotide protection groups were achieved using methanolic ammonia. After standard desalting, and without further purification, homogenous conjugates were obtained as demonstrated by HPLC, gel electrophoresis, and mass spectrometry. The attachment of both amphiphilic and cationic ligands proves the versatility of the conjugation procedure. An antisense oligonucleotide conjugate with hexalysine showed pronounced gene silencing in a cell culture tumor model in the absence of a transfection reagent and the corresponding ethylene glycol conjugate resulted in down regulation of the target gene to nearly 50% after naked application.
Collapse
|
13
|
Duan Q, Lu K, Ma L, Zhao D. Concise Synthesis of Triazole-Linked 5'-Peptide-Oligonucleotide Conjugates by Click Chemistry. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:579-89. [PMID: 26167666 DOI: 10.1080/15257770.2015.1037455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A concise synthesis of oligonucleotide 5'-peptide-conjugates via copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition in aqueous solution is described. Synthesis of reagents was accomplished by on-column derivatization of corresponding peptides and oligonucleotides. This method is well suited for the preparation of peptide-oligonucleotide conjugates containing 1,2,3-triazole linkage between the 5'-position of an oligonucleotide and the N-terminus of a peptide.
Collapse
Affiliation(s)
- Qunpeng Duan
- a School of Material and Chemical Engineering, Henan Institute of Engineering , Zhengzhou , China
| | | | | | | |
Collapse
|
14
|
Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens. Sci Rep 2016; 6:20832. [PMID: 26860980 PMCID: PMC4748415 DOI: 10.1038/srep20832] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022] Open
Abstract
There is a pressing need for novel and innovative therapeutic strategies to address infections caused by intracellular pathogens. Peptide nucleic acids (PNAs) present a novel method to target intracellular pathogens due to their unique mechanism of action and their ability to be conjugated to cell penetrating peptides (CPP) to overcome challenging delivery barriers. In this study, we targeted the RNA polymerase α subunit (rpoA) using a PNA that was covalently conjugated to five different CPPs. Changing the conjugated CPP resulted in a pronounced improvement in the antibacterial activity observed against Listeria monocytogenes in vitro, in cell culture, and in a Caenorhabditis elegans (C. elegans) infection model. Additionally, a time-kill assay revealed three conjugated CPPs rapidly kill Listeria within 20 minutes without disrupting the bacterial cell membrane. Moreover, rpoA gene silencing resulted in suppression of its message as well as reduced expression of other critical virulence genes (Listeriolysin O, and two phospholipases plcA and plcB) in a concentration-dependent manner. Furthermore, PNA-inhibition of bacterial protein synthesis was selective and did not adversely affect mitochondrial protein synthesis. This study provides a foundation for improving and developing PNAs conjugated to CPPs to better target intracellular pathogens.
Collapse
|
15
|
Wagner AT, Roesky PW. Rare-Earth Metal Oxo/Hydroxo Clusters - Synthesis, Structures, and Applications. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501281] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Concise postsynthetic preparation of oligonucleotide-oligopeptide conjugates through facile disulfide bond formation. Future Med Chem 2015; 7:1657-73. [PMID: 26381134 DOI: 10.4155/fmc.15.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Despite recent advances, major hurdles still need to be cleared for widespread application of therapeutic antisense technologies. In particular, pharmacokinetic properties and efficient cellular uptake need to be improved through chemical derivatization or bioconjugation. RESULTS The 2'-O-thioethylene nucleotide building block affords easy implementation into standard oligonucleotide synthesis protocols and was used to attach oligolysine chains to phosphodiester oligonucleotides by direct reaction with S-sulfonate protected peptides. Efficient gene silencing was induced in a cell culture model after transfection reagent-free application of the conjugates. CONCLUSION A facile optimized procedure for generating oligonucleotide-peptide conjugates was established. The attachment of short basic peptides via a labile linker is sufficient to enhance membrane permeability of oligonucleotides and result in successful gene silencing.
Collapse
|
17
|
Prasad P, Cheng J, Shuhendler A, Rauth AM, Wu XY. A novel nanoparticle formulation overcomes multiple types of membrane efflux pumps in human breast cancer cells. Drug Deliv Transl Res 2015; 2:95-105. [PMID: 25786718 DOI: 10.1007/s13346-011-0051-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multidrug resistance (MDR) in cancer cells can involve overexpression of different types of membrane drug efflux pumps and other drug resistance mechanisms. Hence, inhibition of one resistance mechanism may not be therapeutically effective. Previously we demonstrated a new polymer lipid hybrid nanoparticle (PLN) system was able to circumvent drug resistance of P-glycoprotein (P-gp) overexpressing breast cancer cells. The objectives of the present study were 2-fold: (1) to evaluate the ability of the PLN system to overcome two other membrane efflux pumps-multidrug resistance protein 1 (MRP1+) and breast cancer resistance protein (BCRP+) overexpressed on human breast cancer cell lines MCF7 VP (MRP1+) and MCF7 MX (BCRP+); and (2) to evaluate possible synergistic effects of doxorubicin (Dox)-mitomycin C (MMC) in these cell lines. These objectives were accomplished by measuring in vitro cellular uptake, intracellular trafficking, and cytotoxicity (using a clonogenic assay and median effect analysis), of Dox, MMC, or Dox-MMC co-loaded PLN. Treatment of MDR cells with PLN encapsulating single anticancer agents significantly enhanced cell kill compared to free Dox or MMC solutions. Dox-MMC co-loaded PLN were 20-30-folds more effective in killing MDR cells than free drugs. Co-encapsulated Dox-MMC was more effective in killing MDR cells than single agent-encapsulated PLN. Microscopic images showed perinuclear localization of fluorescently labelled PLN in all cell lines. These results are consistent with our previous results for P-gp overexpressing breast cancer cells suggesting the PLN system can overcome multiple types of membrane efflux pumps increasing the cytotoxicity of Dox-MMC at significantly lower doses than free drugs.
Collapse
Affiliation(s)
- Preethy Prasad
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada, M5S 3M2
| | | | | | | | | |
Collapse
|
18
|
Gong L, McCullagh JSO. Comparing ion-pairing reagents and sample dissolution solvents for ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometry analysis of oligonucleotides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:339-350. [PMID: 24395501 DOI: 10.1002/rcm.6773] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/19/2013] [Accepted: 10/20/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE A sensitive and selective liquid chromatography/mass spectrometry (LC/MS) method is essential for quality control of synthetic oligonucleotides. However, researchers are still searching for improvements to ion-pairing reagents for ion-pairing reversed-phase LC/MS. This study performed a comprehensive comparison of six ion-pairing reagents to determine their performance as mobile phase modifiers for oligonucleotide LC/MS. METHODS The study was performed using a Waters ultra-performance liquid chromatography (UPLC®) system coupled to a Waters LCT premier XE ESI-TOF mass spectrometer by using a UPLC® OST column (2.1 mm × 100 mm, 1.7 µm). Buffer systems containing ion-pairing reagents (triethylamine, tripropylamine, hexylamine, N,N-dimethylbutylamine, dibutylamine, N,N-diisopropylethylamine) and hexafluoro-2-propanol were compared by measuring the adduct ion formation, chromatographic separation, and MS signal intensity of four oligonucleotides (10mer to 40mer). The effect of dissolution solvents on MS signal intensity and adduct ion formation was also investigated. RESULTS Results showed that the type of dissolution solvent can have a signficiant impact on adduct ion formation with oligonucleotides. Results also showed that the maximum separation for small, medium and large oligonucleotides occured when using tripropylamine, N,N-dimethylbutylamine, and dibutylamine, respectively. However, on average 15 mM hexylamine and 50 mM hexafluoro-2-propanol provided the best chromtatographic performance (resolution values: 14.1 ± 0.34, 11.0 ± 0.17, and 6.4 ± 0.11 for the pairs of oligonucleotides T10 & T15, T15 & T25, and T25 & T40, respectively (3 replicates)). CONCLUSIONS The impact of dissolution solvent on the MS signal of oligonucleotides depends on the type of ion-pairing reagent. Buffer combining 15 mM hexylamine and 50 mM hexafluoro-2-propanol produced the highest overall performance for oligonucleotides (10mer to 40mer) with respect to chromatographic resolution and mass detection.
Collapse
Affiliation(s)
- Lingzhi Gong
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | | |
Collapse
|
19
|
Yan C, Gu J, Hou D, Jing H, Wang J, Guo Y, Katsumi H, Sakane T, Yamamoto A. Improved tumor targetability of Tat-conjugated PAMAM dendrimers as a novel nanosized anti-tumor drug carrier. Drug Dev Ind Pharm 2014; 41:617-22. [PMID: 24564798 DOI: 10.3109/03639045.2014.891127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The generation 4-poly-amidoamine-dendrimers (PAMAM G4 dendrimer, P) was conjugated to Tat peptide (Tat, T), a cell-penetrating peptide, in search of an efficient anti-tumor drug delivery vehicle for cancer therapy. In this study, we synthesized BODIPY-labeled Tat-Conjugated PAMAM dendrimers (BPTs) as a novel nanosized anticancer drug carriers and systemically investigated their biodistribution and the tumor accumulation in Sarcoma 180-bearing mice. In addition, the uptake and the cytotoxicity to S180 cells of BPTs thereof were evaluated. The unmodified dendrimer (BP) showed a soon clearance from the blood stream and nonspecific accumulation in tumor. In contrast, the Tat-modified dendrimer, BPT(64) with appropriate particle size showed a better retention in blood and could be accumulated effectively in tumor tissue via the enhanced permeability and retention (EPR) effect. Moreover, BPTs with a high Tat modification rate was accumulated more effectively in tumor tissue. In vitro experiments, these BPTs displayed low cytotoxicity on S180 cells and high uptake to S180 cells. These findings indicate that the nanoparticulate system on the basis of Tat-conjugated PAMAM dendrimers is safer and effective in the concentration range (below 20 μg/ml) to be used as a carrier of anti-tumor drugs for tumor targeting by intravenous administration.
Collapse
Affiliation(s)
- Chengyun Yan
- College of Pharmacy, Guilin Medical University , Guilin, Guangxi , People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Alhakamy NA, Nigatu AS, Berkland CJ, Ramsey JD. Noncovalently associated cell-penetrating peptides for gene delivery applications. Ther Deliv 2013; 4:741-57. [PMID: 23738670 PMCID: PMC4207642 DOI: 10.4155/tde.13.44] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The use of various cell-penetrating peptides (CPPs) to deliver genetic material for gene therapy applications has been a topic of interest for more than 20 years. The delivery of genetic material by using CPPs can be divided into two categories: covalently bound and electrostatically bound. Complexity of the synthesis procedure can be a significant barrier to translation when using a strategy requiring covalent binding of CPPs. In contrast, electrostatically complexing CPPs with genetic material or with a viral vector is relatively simple and has been demonstrated to improve gene delivery in both in vitro and in vivo studies. This review highlights gene therapy applications of complexes formed noncovalently between CPPs and genetic material or viruses.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
| | - Adane S Nigatu
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA 74078
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS, USA 66047
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA 74078
| |
Collapse
|
21
|
Thielemann DT, Wagner AT, Rösch E, Kölmel DK, Heck JG, Rudat B, Neumaier M, Feldmann C, Schepers U, Bräse S, Roesky PW. Luminescent cell-penetrating pentadecanuclear lanthanide clusters. J Am Chem Soc 2013; 135:7454-7. [PMID: 23650953 DOI: 10.1021/ja403539t] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel pentadecanuclear lanthanide hydroxy cluster [{Ln15(μ3-OH)20(PepCO2)10(DBM)10Cl}Cl4] (Ln = Eu (1), Tb (2)) featuring the first example with peptoids as supporting ligands was prepared and fully characterized. The solid-state structures of 1 and 2 were established via single-crystal X-ray crystallography. ESI-MS experiments revealed the retention of the cluster core in solution. Although OH groups are present, 1 showed intense red fluorescence with 11(1)% absolute quantum yield, whereas the emission intensity and the quantum yield of 2 were significantly weaker. In vitro investigations on 1 and 2 with HeLa tumor cells revealed an accumulation of the clusters in the endosomal-lyosomal system, as confirmed by confocal microscopy in the TRLLM mode. The cytotoxicity of 1 and 2 toward the HeLa cells is moderate.
Collapse
Affiliation(s)
- Dominique T Thielemann
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sternberg U, Birtalan E, Jakovkin I, Luy B, Schepers U, Bräse S, Muhle-Goll C. Structural characterization of a peptoid with lysine-like side chains and biological activity using NMR and computational methods. Org Biomol Chem 2012; 11:640-7. [PMID: 23223799 DOI: 10.1039/c2ob27039k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
N-substituted glycine oligomers or peptoids with charged side chains are a novel class of cell penetrating peptide mimetics and have been shown to serve as drug delivery agents. Here, we investigated by NMR spectroscopy and quantum chemical calculations whether a Rhodamine B labelled peptoid [RhoB(Spiro)-Ahx]-[But](6A)NH(2) with lysine-like side chains adopts structural motifs similar to regular peptides. Due to a low chemical shift dispersion, high resolution structure determination with conventional NMR-derived distance restraints and J-couplings was not possible. Instead, a combined assignment and structure refinement strategy using the QM/MM force field COSMOS-NMR was developed to interpret the highly ambiguous chemical shift and distance constraints and obtain a medium resolution three-dimensional structural model. This allowed us to select for the all cis-amide conformation of the peptide with a pseudo-helical arrangement of extended side chains as a faithful representative structure of [RhoB(Spiro)-Ahx]-[But](6A)NH(2). We tested the biological activity of the peptoid by live-cell imaging, which showed that the cellular uptake of the peptoid was comparable to conventional cell-penetrating peptides.
Collapse
Affiliation(s)
- Ulrich Sternberg
- Karlsruhe Institute of Technology (KIT), POB 3640, D-76021 Karlsruhe, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Felber AE, Bayó-Puxan N, Deleavey GF, Castagner B, Damha MJ, Leroux JC. The interactions of amphiphilic antisense oligonucleotides with serum proteins and their effects on in vitro silencing activity. Biomaterials 2012; 33:5955-65. [PMID: 22656448 DOI: 10.1016/j.biomaterials.2012.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/10/2012] [Indexed: 11/19/2022]
Abstract
Antisense oligonucleotides (AONs) are a class of compounds with high therapeutic potential. One of the challenges facing this platform is the development of effective techniques to achieve cellular delivery. AON conjugates, in which traditional AONs are attached to certain biomolecules, can exhibit improved intracellular bioavailability in the absence of delivery systems. In this study, the lipophilic moieties docosahexaenoic acid, cholesterol, and docosanoic acid (DSA) were conjugated to various phosphorothioated DNA and chemically-modified 2'-fluoro-arabinonucleic acid AONs via an amino-hexanol-linker added to the 5'-end of the molecule. The gene silencing potential of these compounds was evaluated in vitro in the absence or presence of a transfecting agent (polyion complex micelle). Incubation with sub-micromolar concentration of DSA-conjugates could, in the absence of serum proteins, downregulate more than 60% of the targeted mRNA under carrier-free and carrier-loaded delivery methods. Gene silencing activity of carrier-free DSA-conjugates was, however, decreased in a dose-dependent fashion by adding albumin in the transfection medium. Supplementing the medium with free fatty acid prevented the interaction of the DSA-conjugate with albumin, and restored its silencing activity. These findings suggest that strategies aiming at preventing the association of hydrophobized AONs to serum proteins at the site of action may improve their activity.
Collapse
Affiliation(s)
- Arnaud E Felber
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Wolfgang-Pauli Str. 10, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Exploring transduction mechanisms of protein transduction domains (PTDs) in living cells utilizing single-quantum dot tracking (SQT) technology. SENSORS 2012; 12:549-72. [PMID: 22368485 PMCID: PMC3279229 DOI: 10.3390/s120100549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 12/30/2011] [Accepted: 12/31/2011] [Indexed: 12/04/2022]
Abstract
Specific protein domains known as protein transduction domains (PTDs) can permeate cell membranes and deliver proteins or bioactive materials into living cells. Various approaches have been applied for improving their transduction efficacy. It is, therefore, crucial to clarify the entry mechanisms and to identify the rate-limiting steps. Because of technical limitations for imaging PTD behavior on cells with conventional fluorescent-dyes, how PTDs enter the cells has been a topic of much debate. Utilizing quantum dots (QDs), we recently tracked the behavior of PTD that was derived from HIV-1 Tat (TatP) in living cells at the single-molecule level with 7-nm special precision. In this review article, we initially summarize the controversy on TatP entry mechanisms; thereafter, we will focus on our recent findings on single-TatP-QD tracking (SQT), to identify the major sequential steps of intracellular delivery in living cells and to discuss how SQT can easily provide direct information on TatP entry mechanisms. As a primer for SQT study, we also discuss the latest findings on single particle tracking of various molecules on the plasma membrane. Finally, we discuss the problems of QDs and the challenges for the future in utilizing currently available QD probes for SQT. In conclusion, direct identification of the rate-limiting steps of PTD entry with SQT should dramatically improve the methods for enhancing transduction efficiency.
Collapse
|
25
|
Comparing the intracellular fate of components within a noncovalent streptavidin nanoparticle with covalent conjugation. Nucl Med Biol 2012; 39:101-7. [DOI: 10.1016/j.nucmedbio.2011.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/31/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022]
|
26
|
Svensen N, Díaz-Mochón JJ, Dhaliwal K, Planonth S, Dewar M, Armstrong JD, Bradley M. Screening of a Combinatorial Homing Peptide Library for Selective Cellular Delivery. Angew Chem Int Ed Engl 2011; 50:6133-6. [DOI: 10.1002/anie.201101804] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Svensen N, Díaz-Mochón JJ, Dhaliwal K, Planonth S, Dewar M, Armstrong JD, Bradley M. Screening of a Combinatorial Homing Peptide Library for Selective Cellular Delivery. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201101804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Yu GS, Bae YM, Choi H, Kong B, Choi IS, Choi JS. Synthesis of PAMAM Dendrimer Derivatives with Enhanced Buffering Capacity and Remarkable Gene Transfection Efficiency. Bioconjug Chem 2011; 22:1046-55. [DOI: 10.1021/bc100479t] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | | | | | - Bokyung Kong
- Molecular-Level Interface Research Center, Department of Chemistry, KAIST, Daejeon, 305-764, Korea
| | - Insung S. Choi
- Molecular-Level Interface Research Center, Department of Chemistry, KAIST, Daejeon, 305-764, Korea
| | - Joon Sig Choi
- Department of Biochemistry
- Graduate School of Analytical Science and Technology
| |
Collapse
|
29
|
Genetic engineering of mammalian cells by direct delivery of FLP recombinase protein. Methods 2011; 53:386-93. [DOI: 10.1016/j.ymeth.2010.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/24/2010] [Accepted: 12/17/2010] [Indexed: 11/23/2022] Open
|
30
|
Ming X. Cellular delivery of siRNA and antisense oligonucleotides via receptor-mediated endocytosis. Expert Opin Drug Deliv 2011; 8:435-49. [PMID: 21381985 DOI: 10.1517/17425247.2011.561313] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION There is great potential for antisense and siRNA oligonucleotides to become mainstream therapeutic entities thanks to their high specificity and wide therapeutic target space compared with small molecules. Despite this potential, the pharmacological targets within the cells are less accessible to oligonucleotides that are hydrophilic and often charged. Oligonucleotides access their intracellular targets mainly by means of endocytosis, but only a fraction of them reach their targets, as delivery requires functional synergy of cellular uptake and intracellular trafficking. AREAS COVERED This review provides an update on the progress of receptor-targeted delivery of oligonucleotides over the last 15 years and summarizes various targeting moieties for oligonucleotide delivery and coupling strategies. To inspire new strategies that can lead to oligonucleotides in the clinic, this review highlights how oligonucleotides successfully reach their intracellular targets by means of receptor-mediated endocytosis. EXPERT OPINION Understanding the mechanisms of oligonucleotide internalization has led to greater cellular uptake and superior endosomal release through the rational design of receptor-targeted delivery systems. Further improvements will again depend on a better understanding of the intracellular trafficking of oligonucleotides.
Collapse
Affiliation(s)
- Xin Ming
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
31
|
Lu K, Duan QP, Ma L, Zhao DX. Chemical strategies for the synthesis of peptide-oligonucleotide conjugates. Bioconjug Chem 2010; 21:187-202. [PMID: 19856957 DOI: 10.1021/bc900158s] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of synthetic oligonucleotides and their mimics to inhibit gene expression by hybridizing with their target sequences has been hindered by their poor cellular uptake and inability to reach the nucleus. Covalent postsynthesis or solid-phase conjugation of peptides to oligonucleotides offers a possible solution to these problems. As feasible chemistry is a prerequisite for biological studies, development of efficient and reproducible approaches for convenient preparation of peptide-oligonucleotide conjugates has become a subject of considerable importance. The present review gives an account of the main synthetic methods available to prepare covalent conjugation of peptides to oligonucleotides.
Collapse
Affiliation(s)
- Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | | | | | | |
Collapse
|
32
|
Shao SL, Zhang WW, Li XY, Zhang ZZ, Yun DZ, Fu B, Zuo MX. Reversal of MDR1 Gene-Dependent Multidrug Resistance in HL60/HT9 Cells Using Short Hairpin RNA Expression Vectors. Cancer Biother Radiopharm 2010; 25:171-7. [DOI: 10.1089/cbr.2008.0611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Shu-Li Shao
- College of Life Science and Engineering, Qiqihar University, Qiqihaer, Hei Longjiang Province, China
- College of Life Science, Beijing Normal University, Beijing, China
| | - Wei-Wei Zhang
- College of Life Science and Engineering, Qiqihar University, Qiqihaer, Hei Longjiang Province, China
| | - Xu-Yan Li
- College of Life Science and Engineering, Qiqihar University, Qiqihaer, Hei Longjiang Province, China
| | - Zhen-Zhu Zhang
- College of Life Science and Engineering, Qiqihar University, Qiqihaer, Hei Longjiang Province, China
| | - Dong-Ze Yun
- College of Life Science and Engineering, Qiqihar University, Qiqihaer, Hei Longjiang Province, China
| | - Bo Fu
- College of Life Science and Engineering, Qiqihar University, Qiqihaer, Hei Longjiang Province, China
| | - Ming-Xue Zuo
- College of Life Science, Beijing Normal University, Beijing, China
| |
Collapse
|
33
|
Roviello GN, Benedetti E, Pedone C, Bucci EM. Nucleobase-containing peptides: an overview of their characteristic features and applications. Amino Acids 2010; 39:45-57. [PMID: 20349320 DOI: 10.1007/s00726-010-0567-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Accepted: 03/11/2010] [Indexed: 11/26/2022]
Abstract
Reports on nucleobase-containing chiral peptides (both natural and artificial) and achiral pseudopeptides are reviewed. Their synthesis, structural features, DNA and RNA-binding ability, as well as some other interesting applications which make them promising diagnostic/therapeutic agents of great importance in many areas of biology and therapy are taken into critical consideration.
Collapse
Affiliation(s)
- Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134, Naples, Italy
| | | | | | | |
Collapse
|
34
|
Juliano RL, Alam R, Dixit V, Kang HM. Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 1:324-35. [PMID: 20049800 DOI: 10.1002/wnan.4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This review will discuss the basic concepts concerning the use of cell-targeting peptides (CTPs) and cell-penetrating peptides (CPPs) in the context of nanocarrier technology. It deals with the discovery and subsequent evolution of CTPs and CPPs, issues concerning their interactions with cells and their biodistribution in vivo, and their potential advantages and disadvantages as delivery agents. The article also briefly discusses several specific examples of the use of CTPs or CPPs to assist in the delivery of nanoparticles, liposomes, and other nanocarriers.
Collapse
Affiliation(s)
- Rudolph L Juliano
- Department of Pharmacology, University of North Carolina, Chapel Hill, USA.
| | | | | | | |
Collapse
|
35
|
Asai D, Kuramoto M, Shoji Y, Kang JH, Kodama KB, Kawamura K, Mori T, Miyoshi H, Niidome T, Nakashima H, Katayama Y. Specific transgene expression in HIV-infected cells using protease-cleavable transcription regulator. J Control Release 2009; 141:52-61. [PMID: 19733602 DOI: 10.1016/j.jconrel.2009.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 08/18/2009] [Accepted: 08/23/2009] [Indexed: 11/28/2022]
Abstract
Gene therapy is a promising strategy for the treatment of HIV infection, but cell specificity remains an issue. Recently we have developed a new concept for a drug or gene delivery system responding to cellular signals (D-RECS) to achieve cell-specific transgene expression using a non-viral polymer-based vehicle. According to this concept, intracellular signaling enzymes, which are activated specifically in target cells, are used to trigger transgene expression. We previously applied this concept to HIV-1 protease and showed that the recombinant protease could act as a suitable signal. Here we further developed this system to achieve highly specific transgene expression in HIV-infected cells. We prepared a polymeric gene regulator grafted with a cationic peptide containing the HIV-Tat peptide via a specific substrate for HIV-1 protease. The regulator formed a stable polyplex with the transgene, suppressing its transcription. HIV-1 protease cleaved the peptide and released the transgene, which was consequently expressed specifically in activated HIV-infected cells, but remained unreleased and inactive in uninfected cells. The validity of this approach was further confirmed by applying it to the CVB1 2A protease of coxsackievirus (Picornaviridae family). This strategy should be widely applicable for specific expression of a variety of therapeutic genes in virus-infected cells.
Collapse
Affiliation(s)
- Daisuke Asai
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aubry S, Burlina F, Dupont E, Delaroche D, Joliot A, Lavielle S, Chassaing G, Sagan S. Cell‐surface thiols affect cell entry of disulfide‐conjugated peptides. FASEB J 2009; 23:2956-67. [DOI: 10.1096/fj.08-127563] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Soline Aubry
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| | - Fabienne Burlina
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| | - Edmond Dupont
- Ecole Normale Superieure CNRS UMR 8542 Homeoprotein Cell Biology Paris France
| | - Diane Delaroche
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| | - Alain Joliot
- Ecole Normale Superieure CNRS UMR 8542 Homeoprotein Cell Biology Paris France
| | - Solange Lavielle
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| | - Gerard Chassaing
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| | - Sandrine Sagan
- UPMC Université Paris 06 UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
- CNRS UMR 7613, Synthesis, Structure, and Function of Bioactive Molecules Paris France
| |
Collapse
|
37
|
Patil ML, Zhang M, Taratula O, Garbuzenko OB, He H, Minko T. Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting. Biomacromolecules 2009; 10:258-66. [PMID: 19159248 DOI: 10.1021/bm8009973] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel cancer targeted, internally cationic and surface neutral polyamidoamine (PAMAM) dendrimer, was designed, synthesized, and evaluated as a nanocarrier for the targeted intracellular delivery of siRNA. The dendrimer contained a synthetic analog of Luteinizing hormone-releasing hormone as cancer targeting moiety. The proposed delivery system possesses the following advantages: (1) internal cationic charges for complexation with siRNA and enhanced siRNA protection; (2) low cytotoxicity; (3) lesser degree of quaternization offering free tertiary amines for potential proton sponge effect; and (4) targeting specifically to cancer cells for enhancing siRNA uptake and efficiency and potential limitation of adverse side effects of chemotherapy on healthy organs. Both nontargeted and targeted dendrimer-siRNA complexes formed compact nanometer size spherical particles, exhibited very low cytotoxicity even at the higher concentration, and efficiently penetrated cancer cells in vitro. However, only the targeted dendrimer-siRNA complex was able to substantially decrease the expression of a targeted BCL2 gene.
Collapse
Affiliation(s)
- Mahesh L Patil
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Antisense oligonucleotides as a therapeutic platform have been slow to progress since the approval of the first antisense drug in 1998. Recently, there have been several examples of convincing antisense interventions in animal models and promising clinical trial data. This review considers the factors determining the success of antisense oligonucleotides as therapeutic agents. In order to produce target knockdown after systemic delivery, antisense oligonucleotides must avoid nuclease degradation, reticuloendothelial-system uptake and rapid renal excretion, and extravasate to the target cell type outside the vasculature. They then must enter the target cell, and escape the endosome-lysosome pathway so as to be free to interact with the target mRNA. We consider the significance of these limiting factors based on the literature and our own experience using systemic administration of antisense oligonucleotides.
Collapse
|
39
|
Morcos PA, Li Y, Jiang S. Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. Biotechniques 2009; 45:613-4, 616, 618 passim. [PMID: 19238792 DOI: 10.2144/000113005] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have developed a new transporter structure that provides effective delivery of Morpholino antisense oligomers into a wide variety of tissues in living mice. This transporter comprises a dendritic structure assembled around a triazine core which serves to position eight guanidinium head groups in a conformation effective to penetrate cell membranes. This transporter structure is conjugated to a Morpholino oligomer to form a delivery-enabled product referred to as a Vivo-Morpholino. Vivo-Morpholinos are shown to effectively enter and function within cultured cells in the presence of 100% serum using a rigorous positive test system based on correction of a defined splicing error in a pre-messenger RNA. In addition, Vivo-Morpholinos are demonstrated to enter into a wide variety of tissues in a similar positive test system in transgenic mice, as evidenced by correction of the targeted splicing error in all tissues assessed, including near-complete splice correction in the small intestine, colon, stomach, liver kidney, and a number of muscles. Finally, Vivo-Morpholinos, which target the exon-skipping of exon 23 harboring a premature termination codon in the mdx mouse model, effectively restore the reading frame of dystrophin and restore expression of a functional dystrophin protein.
Collapse
|
40
|
Abstract
We have designed a heterofunctionalized nanoparticle conjugate consisting of a 13-nm gold nanoparticle (Au NP) containing both antisense oligonucleotides and synthetic peptides. The synthesis of this conjugate is accomplished by mixing thiolated oligonucleotides and cysteine-terminated peptides with gold nanoparticles in the presence of salt, which screens interactions between biomolecules, yielding a densely functionalized nanomaterial. By controlling the stoichiometry of the components in solution, we can control the surface loading of each biomolecule. The conjugates are prepared easily and show perinuclear localization and an enhanced gene regulation activity when tested in a cellular model. This heterofunctionalized structure represents a new strategy for preparing nanomaterials with potential therapeutic applications.
Collapse
|
41
|
Akita H, Harashima H. Advances in non-viral gene delivery: using multifunctional envelope-type nano-device. Expert Opin Drug Deliv 2008; 5:847-59. [PMID: 18712995 DOI: 10.1517/17425247.5.8.847] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Low transfection efficiency is an obstacle to the clinical use of non-viral gene vectors. Effective non-viral vectors require the ability to control intracellular trafficking of gene vectors for the delivery of exogenous DNA to the nucleus. OBJECTIVE To overcome multiple intracellular barriers, various types of devices must be integrated into one nano-particle so that each device performs its function at the appropriate location at the desired time. Such a strategy requires an understanding, based on quantitative information, of the rate-limiting processes that hinder intracellular trafficking. METHODS In this review, advancements in the development of multifunctional envelope-type nano-devices (MEND) are discussed. In particular, a novel method to quantitatively evaluate the rate-limiting steps in intracellular trafficking, based on a comparison of viral and non-viral gene-delivery systems, is described. CONCLUSION MENDs are useful to integrate various kinds of devices to overcome intracellular barriers into one particle. Comparison of intracellular trafficking between adenoviruses and non-viral vectors indicates that a postnuclear delivery process is an important rate-limiting step for efficient transfection with non-viral vectors.
Collapse
|
42
|
Affiliation(s)
| | - Eric E. Simanek
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
43
|
Hervé F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. AAPS J 2008; 10:455-72. [PMID: 18726697 PMCID: PMC2761699 DOI: 10.1208/s12248-008-9055-2] [Citation(s) in RCA: 399] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 06/30/2008] [Indexed: 11/30/2022] Open
Abstract
Adsorptive-mediated transcytosis (AMT) provides a means for brain delivery of medicines across the blood-brain barrier (BBB). The BBB is readily equipped for the AMT process: it provides both the potential for binding and uptake of cationic molecules to the luminal surface of endothelial cells, and then for exocytosis at the abluminal surface. The transcytotic pathways present at the BBB and its morphological and enzymatic properties provide the means for movement of the molecules through the endothelial cytoplasm. AMT-based drug delivery to the brain was performed using cationic proteins and cell-penetrating peptides (CPPs). Protein cationization using either synthetic or natural polyamines is discussed and some examples of diamine/polyamine modified proteins that cross BBB are described. Two main families of CPPs belonging to the Tat-derived peptides and Syn-B vectors have been extensively used in CPP vector-mediated strategies allowing delivery of a large variety of small molecules as well as proteins across cell membranes in vitro and the BBB in vivo. CPP strategy suffers from several limitations such as toxicity and immunogenicity--like the cationization strategy--as well as the instability of peptide vectors in biological media. The review concludes by stressing the need to improve the understanding of AMT mechanisms at BBB and the effectiveness of cationized proteins and CPP-vectorized proteins as neurotherapeutics.
Collapse
Affiliation(s)
- Françoise Hervé
- UFR Biomédicale, Université Paris Descartes, CNRS, UPR2228, 45 rue des Saints-Pères, 75270 Paris, France.
| | | | | |
Collapse
|
44
|
Turner JJ, Williams D, Owen D, Gait MJ. Disulfide conjugation of peptides to oligonucleotides and their analogs. ACTA ACUST UNITED AC 2008; Chapter 4:Unit 4.28. [PMID: 18428958 DOI: 10.1002/0471142700.nc0428s24] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peptide conjugation of oligonucleotides and their analogs is being studied widely towards improving the delivery of oligonucleotides into cells. Amongst the many possible routes of conjugation, the disulfide linkage has proved to be the most popular. This reversible linkage may have advantages for cell delivery, since it is likely to be cleaved within cells, thus releasing the oligonucleotide cargo. It is straightforward to introduce thiol functionalities into both oligonucleotide and peptide components suitable for disulfide conjugation. However, severe difficulties have been encountered in carrying out conjugations between highly cationic peptides and negatively charged oligonucleotides because of aggregation and precipitation. Presented here are reliable protocols for disulfide conjugation that have been verified for both cationic and hydrophobic peptides as well as oligonucleotides containing deoxyribonucleosides, ribonucleosides, 2'-O-methylribonucleosides, locked nucleic acid (LNA) units, as well as phosphorothioate backbones. Also presented are reliable protocols for disulfide conjugation of peptide nucleic acids (PNAs) with peptides.
Collapse
Affiliation(s)
- John J Turner
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
45
|
Veldhoen S, Laufer SD, Restle T. Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci 2008; 9:1276-1320. [PMID: 19325804 PMCID: PMC2635728 DOI: 10.3390/ijms9071276] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 06/04/2008] [Accepted: 07/14/2008] [Indexed: 12/20/2022] Open
Abstract
Despite the fact that non-viral nucleic acid delivery systems are generally considered to be less efficient than viral vectors, they have gained much interest in recent years due to their superior safety profile compared to their viral counterpart. Among these synthetic vectors are cationic polymers, branched dendrimers, cationic liposomes and cell-penetrating peptides (CPPs). The latter represent an assortment of fairly unrelated sequences essentially characterised by a high content of basic amino acids and a length of 10–30 residues. CPPs are capable of mediating the cellular uptake of hydrophilic macromolecules like peptides and nucleic acids (e.g. siRNAs, aptamers and antisense-oligonucleotides), which are internalised by cells at a very low rate when applied alone. Up to now, numerous sequences have been reported to show cell-penetrating properties and many of them have been used to successfully transport a variety of different cargos into mammalian cells. In recent years, it has become apparent that endocytosis is a major route of internalisation even though the mechanisms underlying the cellular translocation of CPPs are poorly understood and still subject to controversial discussions. In this review, we will summarise the latest developments in peptide-based cellular delivery of nucleic acid cargos. We will discuss different mechanisms of entry, the intracellular fate of the cargo, correlation studies of uptake versus biological activity of the cargo as well as technical problems and pitfalls.
Collapse
Key Words
- CLSM, confocal laser scanning microscopy
- CPP, cell-penetrating peptide
- EIPA, ethylisopropylamiloride
- FCS, fetal calf serum
- GFP, green fluorescent protein
- HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- HIV, human immunodeficiency virus
- IFN, interferon
- IL, interleukin
- LF, Lipofectamine™
- LF2000, Lipofectamine™ 2000
- MAP, model amphipathic peptide
- MEND, multifunctional envelope-type nano device
- NLS, nuclear localisation sequence
- OMe, O-methyl
- PAMAM, polyamidoamine
- PEG, polyethylene glycol
- PEI, polyethyleneimine
- PMO, phosphorodiamidate morpholino oligomer
- PNA, peptide nucleic acid
- PTD, protein transduction domains
- RNAi, RNA interference
- SAP, Sweet Arrow Peptide
- STR-R8, stearyl-R8
- TAR, transactivator responsive region
- TFO, triplex forming oligonucleotide
- TLR9, toll-like receptor 9
- TNF, tumour necrosis factor
- TP10, transportan 10
- bPrPp, bovine prion protein derived peptide
- cell-penetrating peptides
- endocytosis
- hCT, human calcitonin
- mPrPp, murine prion protein derived peptide
- miRNA, microRNA
- nucleic acid delivery
- nucleic acid drugs
- siRNA, small inhibitory RNA
Collapse
Affiliation(s)
- Sandra Veldhoen
- Department of Metabolomics, ISAS - Institute for Analytical Sciences, Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany
- Author to whom correspondence should be addressed; E-mail:
| | - Sandra D. Laufer
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Tobias Restle
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
46
|
Juliano R, Alam MR, Dixit V, Kang H. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 2008; 36:4158-71. [PMID: 18558618 PMCID: PMC2475625 DOI: 10.1093/nar/gkn342] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The potential use of antisense and siRNA oligonucleotides as therapeutic agents has elicited a great deal of interest. However, a major issue for oligonucleotide-based therapeutics involves effective intracellular delivery of the active molecules. In this Survey and Summary, we review recent reports on delivery strategies, including conjugates of oligonucleotides with various ligands, as well as use of nanocarrier approaches. These are discussed in the context of intracellular trafficking pathways and issues regarding in vivo biodistribution of molecules and nanoparticles. Molecular-sized chemical conjugates and supramolecular nanocarriers each display advantages and disadvantages in terms of effective and nontoxic delivery. Thus, choice of an optimal delivery modality will likely depend on the therapeutic context.
Collapse
Affiliation(s)
- Rudy Juliano
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
47
|
Ren Y, Wang Y, Zhang Y, Wei D. Overcoming multidrug resistance in human carcinoma cells by an antisense oligodeoxynucleotide--doxorubicin conjugate in vitro and in vivo. Mol Pharm 2008; 5:579-87. [PMID: 18461970 DOI: 10.1021/mp800001j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multidrug resistance (MDR), a major obstacle to successful cancer chemotherapy, may be induced by amplification of the MDR1 gene and overexpression of the P-glycoprotein (P-gp), which acts as drug efflux pump decreasing intracellular drug accumulation. In this study, an antisense oligodeoxynucleotide--doxorubicin conjugate was used to overcome MDR in a human carcinoma-resistant cell line, both in vitro and in vivo, through downregulation of P-gp expression and mRNA levels. Compared with the unmodified antisense-oligodeoxynucleotide (AS-ODN), the conjugate markedly inhibited P-gp expression and mRNA levels. With in vitro treatment with the conjugate, the intracellular accumulation of doxorubicin (DOX) was increased 4.4-fold compared to treatment with DOX alone; by contrast, a 2.2-fold increase was observed when treated with AS-ODN alone. In the in vivo studies, it was approximately 3.5-fold higher compared to the control group treatment with DOX alone and 2.1-fold higher than found with AS-ODN. The weight of tumors formed was markedly decreased after conjugate treatment as compared to either treatments with AS-ODN or DOX alone. Furthermore, treatment with combinations of the agents appeared to be well tolerated. These results suggest that a strategy using the conjugate in combination with antitumor drugs may comprise a powerful treatment for MDR.
Collapse
Affiliation(s)
- Yuhong Ren
- State Key Laboratory of Bioreactor Engineering, Institute of Biochemistry, East China University of Science and Technology, Shanghai, China.
| | | | | | | |
Collapse
|
48
|
Guanidinium group: A versatile moiety inducing transport and multicompartmentalization in complementary membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:811-23. [DOI: 10.1016/j.bbamem.2007.12.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 12/06/2007] [Accepted: 12/07/2007] [Indexed: 11/20/2022]
|
49
|
Alam MR, Dixit V, Kang H, Li ZB, Chen X, Trejo J, Fisher M, Juliano RL. Intracellular delivery of an anionic antisense oligonucleotide via receptor-mediated endocytosis. Nucleic Acids Res 2008; 36:2764-76. [PMID: 18367474 PMCID: PMC2377441 DOI: 10.1093/nar/gkn115] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We describe the synthesis and characterization of a 5' conjugate between a 2'-O-Me phosphorothioate antisense oligonucleotide and a bivalent RGD (arginine-glycine-aspartic acid) peptide that is a high-affinity ligand for the alphavbeta3 integrin. We used alphavbeta3-positive melanoma cells transfected with a reporter comprised of the firefly luciferase gene interrupted by an abnormally spliced intron. Intranuclear delivery of a specific antisense oligonucleotide (termed 623) corrects splicing and allows luciferase expression in these cells. The RGD-623 conjugate or a cationic lipid-623 complex produced significant increases in luciferase expression, while 'free' 623 did not. However, the kinetics of luciferase expression was distinct; the RGD-623 conjugate produced a gradual increase followed by a gradual decline, while the cationic lipid-623 complex caused a rapid increase followed by a monotonic decline. The subcellular distribution of the oligonucleotide delivered using cationic lipids included both cytoplasmic vesicles and the nucleus, while the RGD-623 conjugate was primarily found in cytoplasmic vesicles that partially co-localized with a marker for caveolae. Both the cellular uptake and the biological effect of the RGD-623 conjugate were blocked by excess RGD peptide. These observations suggest that the bivalent RGD peptide-oligonucleotide conjugate enters cells via a process of receptor-mediated endocytosis mediated by the alphavbeta3 integrin.
Collapse
Affiliation(s)
- Md Rowshon Alam
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ye Z, Houssein HSH, Mahato RI. Bioconjugation of oligonucleotides for treating liver fibrosis. Oligonucleotides 2008; 17:349-404. [PMID: 18154454 DOI: 10.1089/oli.2007.0097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Liver fibrosis results from chronic liver injury due to hepatitis B and C, excessive alcohol ingestion, and metal ion overload. Fibrosis culminates in cirrhosis and results in liver failure. Therefore, a potent antifibrotic therapy is urgently needed to reverse scarring and eliminate progression to cirrhosis. Although activated hepatic stellate cells (HSCs) remain the principle cell type responsible for liver fibrosis, perivascular fibroblasts of portal and central veins as well as periductular fibroblasts are other sources of fibrogenic cells. This review will critically discuss various treatment strategies for liver fibrosis, including prevention of liver injury, reduction of inflammation, inhibition of HSC activation, degradation of scar matrix, and inhibition of aberrant collagen synthesis. Oligonucleotides (ODNs) are short, single-stranded nucleic acids, which disrupt expression of target protein by binding to complementary mRNA or forming triplex with genomic DNA. Triplex forming oligonucleotides (TFOs) provide an attractive strategy for treating liver fibrosis. A series of TFOs have been developed for inhibiting the transcription of alpha1(I) collagen gene, which opens a new area for antifibrotic drugs. There will be in-depth discussion on the use of TFOs and how different bioconjugation strategies can be utilized for their site-specific delivery to HSCs or hepatocytes for enhanced antifibrotic activities. Various insights developed in individual strategy and the need for multipronged approaches will also be discussed.
Collapse
Affiliation(s)
- Zhaoyang Ye
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | |
Collapse
|