1
|
López-Sánchez C, Lagoa R, Poejo J, García-López V, García-Martínez V, Gutierrez-Merino C. An Update of Kaempferol Protection against Brain Damage Induced by Ischemia-Reperfusion and by 3-Nitropropionic Acid. Molecules 2024; 29:776. [PMID: 38398528 PMCID: PMC10893315 DOI: 10.3390/molecules29040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Kaempferol, a flavonoid present in many food products, has chemical and cellular antioxidant properties that are beneficial for protection against the oxidative stress caused by reactive oxygen and nitrogen species. Kaempferol administration to model experimental animals can provide extensive protection against brain damage of the striatum and proximal cortical areas induced by transient brain cerebral ischemic stroke and by 3-nitropropionic acid. This article is an updated review of the molecular and cellular mechanisms of protection by kaempferol administration against brain damage induced by these insults, integrated with an overview of the contributions of the work performed in our laboratories during the past years. Kaempferol administration at doses that prevent neurological dysfunctions inhibit the critical molecular events that underlie the initial and delayed brain damage induced by ischemic stroke and by 3-nitropropionic acid. It is highlighted that the protection afforded by kaempferol against the initial mitochondrial dysfunction can largely account for its protection against the reported delayed spreading of brain damage, which can develop from many hours to several days. This allows us to conclude that kaempferol administration can be beneficial not only in preventive treatments, but also in post-insult therapeutic treatments.
Collapse
Affiliation(s)
- Carmen López-Sánchez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
| | - Joana Poejo
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| | - Virginio García-López
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Medical and Surgical Therapeutics, Pharmacology Area, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Virginio García-Martínez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Carlos Gutierrez-Merino
- Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain; (J.P.); (V.G.-L.); (V.G.-M.)
| |
Collapse
|
2
|
Luján-Méndez F, Roldán-Padrón O, Castro-Ruíz JE, López-Martínez J, García-Gasca T. Capsaicinoids and Their Effects on Cancer: The "Double-Edged Sword" Postulate from the Molecular Scale. Cells 2023; 12:2573. [PMID: 37947651 PMCID: PMC10650825 DOI: 10.3390/cells12212573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to their human consumption, numerous ethnopharmacological uses of chili have emerged throughout history. Today, more than 25 years of basic research accredit a multifaceted bioactivity mainly to capsaicin, highlighting its antitumor properties mediated by cytotoxicity and immunological adjuvancy against at least 74 varieties of cancer, while non-cancer cells tend to have greater tolerance. However, despite the progress regarding the understanding of its mechanisms of action, the benefit and safety of capsaicinoids' pharmacological use remain subjects of discussion, since CAP also promotes epithelial-mesenchymal transition, in an ambivalence that has been referred to as "the double-edge sword". Here, we update the comparative discussion of relevant reports about capsaicinoids' bioactivity in a plethora of experimental models of cancer in terms of selectivity, efficacy, and safety. Through an integration of the underlying mechanisms, as well as inherent aspects of cancer biology, we propose mechanistic models regarding the dichotomy of their effects. Finally, we discuss a selection of in vivo evidence concerning capsaicinoids' immunomodulatory properties against cancer.
Collapse
Affiliation(s)
- Francisco Luján-Méndez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Octavio Roldán-Padrón
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - J. Eduardo Castro-Ruíz
- Escuela de Odontología, Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro 76176, Querétaro, Mexico;
| | - Josué López-Martínez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| |
Collapse
|
3
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
4
|
Lin CY, Islam A, Su CJ, Tikhomirov AS, Shchekotikhin AE, Chuang SM, Chueh PJ, Chen YL. Engagement with tNOX (ENOX2) to Inhibit SIRT1 and Activate p53-Dependent and -Independent Apoptotic Pathways by Novel 4,11-Diaminoanthra[2,3- b]furan-5,10-diones in Hepatocellular Carcinoma Cells. Cancers (Basel) 2019; 11:cancers11030420. [PMID: 30909652 PMCID: PMC6468551 DOI: 10.3390/cancers11030420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary malignancy of the liver and is among the top three causes of cancer-associated death worldwide. However, the clinical use of chemotherapy for HCC has been limited by various challenges, emphasizing the urgent need for novel agents with improved anticancer properties. We recently synthesized and characterized a series of 4,11-diaminoanthra[2,3-b]furan-5,10-dione derivatives that exhibit potent apoptotic activity against an array of cancer cell lines, including variants with multidrug resistance. Their effect on liver cancer cells, however, was unknown. Here, we investigated three selected 4,11-diaminoanthra[2,3-b]furan-5,10-dione derivatives (compounds 1–3) for their cytotoxicity and the underlying molecular mechanisms in wild-type or p53-deficient HCC cells. Cytotoxicity was determined by WST-1 assays and cell impedance measurements and apoptosis was analyzed by flow cytometry. The interaction between compounds and tumor-associated NADH oxidase (tNOX, ENOX2) was studied by cellular thermal shift assay (CETSA). We found that compound 1 and 2 induced significant cytotoxicity in both HepG2 and Hep3B lines. CETSA revealed that compounds 1 and 2 directly engaged with tNOX, leading to a decrease in the cellular NAD+/NADH ratio. This decreased the NAD+-dependent activity of Sirtuin 1 (SIRT1) deacetylase. In p53-wild-type HepG2 cells, p53 acetylation/activation was enhanced, possibly due to the reduction in SIRT1 activity, and apoptosis was observed. In p53-deficient Hep3B cells, the reduction in SIRT1 activity increased the acetylation of c-Myc, thereby reactivating the TRAIL pathway and, ultimately leading to apoptosis. These compounds thus trigger apoptosis in both cell types, but via different pathways. Taken together, our data show that derivatives 1 and 2 of 4,11-diaminoanthra[2,3-b]furan-5,10-diones engage with tNOX and inhibit its oxidase activity. This results in cytotoxicity via apoptosis through tNOX-SIRT1 axis to enhance the acetylation of p53 or c-Myc in HCC cells, depending on their p53 status.
Collapse
Affiliation(s)
- Chia-Yang Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Claire J Su
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Morrison Academy in Taichung, 216 Si Ping Road, Taichung 40679, Taiwan.
| | - Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11B. Pirogovskaya Street, Moscow 119021, Russia.
- Department of Organic Chemistry, Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047, Russia.
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11B. Pirogovskaya Street, Moscow 119021, Russia.
- Department of Organic Chemistry, Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125047, Russia.
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Graduate Institute of Basic Medicine, China Medical University, Taichung 40402, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Yao Li Chen
- tian Hospital, Changhua 50008, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
5
|
Chen HY, Islam A, Yuan TM, Chen SW, Liu PF, Chueh PJ. Regulation of tNOX expression through the ROS-p53-POU3F2 axis contributes to cellular responses against oxaliplatin in human colon cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:161. [PMID: 30029680 PMCID: PMC6053734 DOI: 10.1186/s13046-018-0837-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Oxaliplatin belongs to the platinum-based drug family and has shown promise in treating cancer by binding to DNA to induce cytotoxicity. However, individual patients show diverse therapeutic responses toward oxaliplatin due to yet-unknown underlying mechanisms. We recently established that oxaliplatin also exert its anti-cancer activity in gastric cancer cell lines by targeting tumor-associated NADH oxidase (tNOX), attenuate NAD+ generation and reduce NAD+-dependent sirtuin 1 (SIRT1) deacetylase activity, which in turn enhances p53 acetylation and apoptosis. METHODS In this study, differential cellular outcomes in response to oxaliplatin exposure of p53-wild-type versus p53-null HCT116 human colon cancer cells were examined. Cell growth profile was determined by cell impedance measurements and apoptosis was analyzed by flow cytometry. The engagement between oxaliplatin and tNOX protein was studied by cellular thermal shift assay. Furthermore, western blot analysis revealed that p53 was important in regulating tNOX expression in these cell lines. RESULTS In p53-wild-type cells, we found that oxaliplatin inhibited cell growth by inducing apoptosis and concurrently down-regulating tNOX at both the transcriptional and translational levels. In p53-null cells, in contrast, oxaliplatin moderately up-regulated tNOX expression and yielded no apoptosis and much less cytotoxicity. Further experiments revealed that in p53-wild-type cells, oxaliplatin enhanced ROS generation and p53 transcriptional activation, leading to down-regulation of the transcriptional factor, POU3F2, which enhances the expression of tNOX. Moreover, the addition of a ROS scavenger reversed the p53 activation, POU3F2 down-regulation, and apoptosis induced by oxaliplatin in p53-wild-type cells. In the p53-null line, on the other hand, oxaliplatin treatment triggered less ROS generation and no p53 protein, such that POU3F2 and tNOX were not down-regulated and oxaliplatin-mediated cytotoxicity was attenuated. CONCLUSION Our results show that oxaliplatin mediates differential cellular responses in colon cancer cells depending on their p53 status, and demonstrate that the ROS-p53 axis is important for regulating POU3F2 and its downstream target, tNOX. Notably, the depletion of tNOX sensitizes p53-null cells to both spontaneous and oxaliplatin-induced apoptosis. Our work thus clearly shows a scenario in which targeting of tNOX may be a potential strategy for cancer therapy in a p53-inactivated system.
Collapse
Affiliation(s)
- Huei-Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Atikul Islam
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tien-Ming Yuan
- Department of Surgery, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Shi-Wen Chen
- Department of Surgery, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - Pei-Fen Liu
- DDepartment of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist, Taichung City, 40227, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan. .,Graduate Institute of Basic Medicine, China Medical University, Taichung, 40402, Taiwan. .,Department of Medical Research, China Medical University Hospital, Taichung, 40402, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 41354, Taiwan.
| |
Collapse
|
6
|
Tumor-associated NADH oxidase (tNOX)-NAD+-sirtuin 1 axis contributes to oxaliplatin-induced apoptosis of gastric cancer cells. Oncotarget 2017; 8:15338-15348. [PMID: 28122359 PMCID: PMC5362489 DOI: 10.18632/oncotarget.14787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
Oxaliplatin belongs to the platinum-based drug family and has shown promise in cancer treatment. The major mechanism of action of platinum compounds is to form platinum–DNA adducts, leading to DNA damage and apoptosis. Accumulating evidence suggests that they might also target non-DNA molecules for their apoptotic activity. We explored the effects of oxaliplatin on a tumor-associated NADH oxidase (tNOX) in gastric cancer lines. In AGS cells, we found that the oxaliplatin-inhibited tNOX effectively attenuated the NAD+/NADH ratio and reduced the deacetylase activity of an NAD+-dependent sirtuin 1, thereby enhancing p53 acetylation and apoptosis. Similar results were also observed in tNOX-knockdown AGS cells. In the more aggressive MKN45 and TMK-1 lines, oxaliplatin did not inhibit tNOX, and induced only minimal apoptosis and cytotoxicity. However, the downregulation of either sirtuin 1 or tNOX sensitized TMK-1 cells to oxaliplatin-induced apoptosis. Moreover, tNOX-depletion in these resistant cells enhanced spontaneous apoptosis, reduced cyclin D expression and prolonged the cell cycle, resulting in diminished cancer cell growth. Together, our results demonstrate that oxaliplatin targets tNOX and SIRT1, and that the tNOX-NAD+-sirtuin 1 axis is essential for oxaliplatin-induced apoptosis.
Collapse
|
7
|
A catechin nanoformulation inhibits WM266 melanoma cell proliferation, migration and associated neo-angiogenesis. Eur J Pharm Biopharm 2017; 114:1-10. [DOI: 10.1016/j.ejpb.2016.12.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/25/2016] [Accepted: 12/14/2016] [Indexed: 01/01/2023]
|
8
|
Cheng HL, Lee YH, Yuan TM, Chen SW, Chueh PJ. Update on a tumor-associated NADH oxidase in gastric cancer cell growth. World J Gastroenterol 2016; 22:2900-2905. [PMID: 26973386 PMCID: PMC4779913 DOI: 10.3748/wjg.v22.i10.2900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/08/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common human malignancies, and its prevalence has been shown to be well-correlated with cancer-related deaths worldwide. Regrettably, the poor prognosis of this disease is mainly due to its late diagnosis at advanced stages after the cancer has already metastasized. Recent research has emphasized the identification of cancer biomarkers in the hope of diagnosing cancer early and designing targeted therapies to reverse cancer progression. One member of a family of growth-related nicotinamide adenine dinucleotide (NADH or hydroquinone) oxidases is tumor-associated NADH oxidase (tNOX; ENOX2). Unlike its counterpart CNOX (ENOX1), identified in normal rat liver plasma membranes and shown to be stimulated by growth factors and hormones, tNOX activity purified from rat hepatoma cells is constitutively active. Its activity is detectable in the sera of cancer patients but not in those of healthy volunteers, suggesting its clinical relevance. Interestingly, tNOX expression was shown to be present in an array of cancer cell lines. More importantly, inhibition of tNOX was well correlated with reduced cancer cell growth and induction of apoptosis. RNA interference targeting tNOX expression in cancer cells effectively restored non-cancerous phenotypes, further supporting the vital role of tNOX in cancer cells. Here, we review the regulatory role of tNOX in gastric cancer cell growth.
Collapse
|
9
|
Abstract
ME-143 (NV-143), a synthetic isoflavone under clinical evaluation for efficacy in the management of ovarian and other forms of human cancer, blocked the activity of a cancer-specific and growth-related cell surface ECTO-NOX protein with both oxidative (hydroquinone) and protein disulfide-thiol interchange activity designated ENOX2 (tNOX) and inhibited the growth of cultured cancer cells with EC50s in the range of 20–50 nM. Purified recombinant ENOX2 also bound ME-143 with a Kd of 43 (40–50) nM. Both the oxidative and protein disulfide-thiol interchange activities of ENOX proteins that alternate to generate a complex set of oscillations with a period length of 22 min compared to 24 min for the constitutive counterpart ENOX1 (CNOX) that characterizes ENOX proteins responded to ME-143. Oxidation of NADH or reduced coenzyme Q10 was rapidly blocked. In contrast, the protein disulfide-thiol interchange activity measured from the cleavage of dithiodipyridine (EC50 of ca. 50 nM) was inhibited progressively over an interval of 60 min that spanned three cycles of activity. Inhibition of the latter paralleled the inhibition of cell enlargement and the consequent inability of inhibited cells to initiate traverse of the cell cycle. Activities of constitutive ENOX1 (CNOX) forms of either cancer or noncancer cells were unaffected by ME-143 over the range of concentrations inhibiting ENOX2. Taken together, the findings show that ME-143 binds to ENOX2 with an affinity 4 to 10 times greater than that reported previously for the related anticancer isoflavone, phenoxodiol.
Collapse
|
10
|
Cancer prevention trial of a synergistic mixture of green tea concentrate plus Capsicum (CAPSOL-T) in a random population of subjects ages 40-84. Clin Proteomics 2014; 11:2. [PMID: 24393573 PMCID: PMC3901999 DOI: 10.1186/1559-0275-11-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/10/2013] [Indexed: 01/01/2023] Open
Abstract
Background Experts agree that one of the more promising strategies in cancer management is early detection coupled with early intervention. In this study, we evaluated an early cancer detection strategy of cancer presence based on serum levels of the cancer-specific transcript variants of ENOX2 in serum coupled with an ENOX2-targeted nutraceutical preparation of green tea concentrate plus Capsicum (Capsol-T®) as a strategy of Curative Prevention® involving early detection coupled with early intervention in early stage cancer when in its most susceptible and manageable stages. Experimental design One hundred ten (110) subjects were tested for cancer presence using the ONCOblot® Tissue of Origin 2-D gel/western blot protocol for detection of serum presence of transcript variants of the ENOX2 protein. Subjects testing positive for ENOX2 received 350 mg of Capsol-T® in capsule form every 4 h including during the night for periods of at least 3 to 6 months or longer after which they were again tested for ENOX2 presence using the ONCOblot® Tissue of Origin Cancer Test protocol. Results Of the 110 subjects, both male and female, ages 40 to 84, with no evidence of clinical symptoms of cancer, 40% were positive for ENOX2 presence in the ONCOblot® Tissue of Origin Cancer Test. After completion of 3 to 17 months of Capsol-T® use, 94% of subjects subsequently tested negative for ENOX2 presence. Conclusions Oral Capsol-T® is well tolerated and, for ENOX2 presence in serum in the absence of clinical cancer symptoms, is consistently effective in reducing the serum ENOX2 levels to below detectable limits.
Collapse
|
11
|
Bajerska J, Mildner-Szkudlarz S, Pruszynska-Oszmalek E. May rye bread enriched with green tea extract be useful in the prevention of obesity in rats? ACTA ALIMENTARIA 2013. [DOI: 10.1556/aalim.42.2013.1.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Chueh PJ. The Cancer-Suppressing and -Promoting Actions of Capsaicin. ROLE OF CAPSAICIN IN OXIDATIVE STRESS AND CANCER 2013:131-147. [DOI: 10.1007/978-94-007-6317-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
13
|
Phosphorylation of serine-504 of tNOX (ENOX2) modulates cell proliferation and migration in cancer cells. Exp Cell Res 2012; 318:1759-66. [DOI: 10.1016/j.yexcr.2012.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/25/2012] [Accepted: 04/29/2012] [Indexed: 12/15/2022]
|
14
|
Morre J, Morré DM, Brightmore R. Omega-3 but not omega-6 unsaturated fatty acids inhibit the cancer-specific ENOX2 of the HeLa cell surface with no effect on the constitutive ENOX1. J Diet Suppl 2012; 7:154-8. [PMID: 22435614 DOI: 10.3109/19390211003785702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidemiological and laboratory studies suggest that dietary fatty acids (oleic acid (in olive oil), eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) (in fish oil)) play important roles in carcinogenesis. The most potent antitumor effects of all fatty acids are given by fatty acid conjugated linoleic acid (CLA). The antitumor effects of CLA may be mediated through enhanced apoptosis. While CLA, EPA, and DHA (omega-3 polyunsaturated fatty acids) have inhibitory effects on cancer cells, omega-6 fatty acids have often shown negative or potentiating effects on cancer cells. Linoleic acid (an omega-6) is desaturated in the cell by delta 6 and 5 destaturases to form arachidonic acid. COX 1 and 2 isoforms then act on arachidonic acid to form prostaglandins and other related regulatory molecules. It is normally thought that what is important to the development of the cancerous phenotype is some balance of these various metabolites. In experiments with surface NOX proteins released from HeLa cells, spectrophotometric measurements of the oxidation of NADH revealed inhibition of the cancer-specific ENOX2 activity by CLA and the omega-3 fatty acids, eicosapentaenoic, docosahexaenoic, and α-linolenic acids. The constitutive ENOX1 activity was not inhibited. In contrast, the omega-6 fatty acids, linoleic acid, and arachidonic acid inhibited neither ENOX1 nor ENOX2. The findings indicate the possibility that a direct effect of CLA and omega-3 fatty acids on ENOX2 may be responsible for the potent activity of CLA and omega-3 fatty acids in cancer prevention and therapy.
Collapse
Affiliation(s)
- James Morre
- Purdue University, West Lafayette, Indiana 47906, USA.
| | | | | |
Collapse
|
15
|
Su YC, Lin YH, Zeng ZM, Shao KN, Chueh PJ. Chemotherapeutic agents enhance cell migration and epithelial-to-mesenchymal transition through transient up-regulation of tNOX (ENOX2) protein. Biochim Biophys Acta Gen Subj 2012; 1820:1744-52. [PMID: 22846226 DOI: 10.1016/j.bbagen.2012.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 07/06/2012] [Accepted: 07/22/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tumor-associated NADH oxidase (tNOX; ENOX2) is a growth-related protein expressed in transformed cells. High concentrations of numerous chemotherapeutic agents have shown to inhibit tNOX activity and protein levels leading to a reduction in cell growth while little is known for the effects of low concentrations of chemotherapeutic agents on tNOX expression. METHODS Effects of chemotherapeutic agents on cell function were evaluated with traditional in vitro assays and the xCELLigence System. Western blot analyses were used to study protein expression profiles of the epithelial-to-mesenchymal transition. RESULTS We showed that doxorubicin treatment transiently up-regulates tNOX expression in human lung carcinoma A549 cells in association with enhanced cell migration. Similar results were observed in tamoxifen-exposed A549 cells. Furthermore, protein marker analyses revealed that the enhanced migration induced by tamoxifen was correlated with epithelial-to-mesenchymal transition, as evidenced by down-regulation of epithelial markers and up-regulation of mesenchymal markers. Importantly, tNOX overexpression enhanced cell migration, confirming the essential role of tNOX in cell migration. CONCLUSIONS Based on these findings, we conclude that doxorubicin and tamoxifen induce a transient up-regulation of tNOX expression, leading to enhanced cell migration and EMT. GENERAL SIGNIFICANCE These findings establish an essential role for tNOX in cell migration and survival and may provide a rational framework for the further development of tNOX inhibitors as a novel class of antitumor agents.
Collapse
Affiliation(s)
- Yu-Ching Su
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
16
|
Liu NC, Hsieh PF, Hsieh MK, Zeng ZM, Cheng HL, Liao JW, Chueh PJ. Capsaicin-mediated tNOX (ENOX2) up-regulation enhances cell proliferation and migration in vitro and in vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2758-2765. [PMID: 22353011 DOI: 10.1021/jf204869w] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cancer chemoprevention is employed to block or reverse the progression of malignancies. To date, several thousands of agents have been found to possess chemopreventative activity, one of which is capsaicin, a component of chili peppers that exhibits antigrowth activity against various cancer cell lines. However, the role of capsaicin in tumorigenesis remains controversial because both cancer prevention and promotion have been proposed. Here, we made the unexpected discovery that treatment with low concentrations of capsaicin up-regulates tNOX (tumor-associated NADH oxidase) expression in HCT116 human colon carcinoma cells in association with enhanced cell proliferation and migration, as evidenced by down-regulation of epithelial markers and up-regulation of mesenchymal markers. Importantly, tNOX-knockdown in HCT116 cells by RNA interference reversed capsaicin-induced cell proliferation and migration in vitro and decreased tumor growth in vivo. Collectively, these findings provide a basis for explaining the tumor-promoting effect of capsaicin and might imply that caution should be taken when using capsaicin as a chemopreventive agent.
Collapse
Affiliation(s)
- Nei-Chi Liu
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang HM, Chuang SM, Su YC, Li YH, Chueh PJ. Down-regulation of tumor-associated NADH oxidase, tNOX (ENOX2), enhances capsaicin-induced inhibition of gastric cancer cell growth. Cell Biochem Biophys 2012; 61:355-66. [PMID: 21735133 DOI: 10.1007/s12013-011-9218-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gastric cancer is a common human malignancy and a major contributor to cancer-related deaths worldwide. Unfortunately, the prognosis of most gastric cancer patients is poor because they are generally diagnosed at a late stage after the cancer has already metastasized. Most current research, therefore, emphasizes selective targeting of cancer cells by apoptosis-inducing agents. One such therapeutic agent is capsaicin, a component of chili peppers that has been shown to possess anti-growth activity against various cancer cell lines. Here, we examined the effect of capsaicin on SNU-1 and TMC-1 gastric cancer cells and found differing outcomes between the two cell lines. Our results show that capsaicin induced significant cytotoxicity with increases in oxidative stress, PARP cleavage, and apoptosis in sensitive SNU-1 cells. In contrast, TMC-1 cells were much less sensitive to capsaicin, exhibiting low cytotoxicity and very little apoptosis in response to capsaicin treatment. Capsaicin-induced apoptosis in SNU-1 cells was associated with down-regulation of tumor-associated NADH oxidase (tNOX) mRNA and protein. On the contrary, tNOX expression was scarcely affected by capsaicin in TMC-1 cells. We further showed that tNOX-knockdown sensitized TMC-1 cells to capsaicin-induced apoptosis and G1 phase accumulation, and led to decreased cell growth, demonstrating that tNOX is essential for cancer cell growth. Collectively, these results indicate that capsaicin induces divergent effects of the growth of gastric cancer cells that parallel its effects on tNOX expression, and demonstrate that forced tNOX down-regulation restored capsaicin-induced growth inhibition in TMC-1 cells.
Collapse
Affiliation(s)
- His-Ming Wang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
18
|
Nakae Y, Dorchies OM, Stoward PJ, Zimmermann BF, Ritter C, Ruegg UT. Quantitative evaluation of the beneficial effects in the mdx mouse of epigallocatechin gallate, an antioxidant polyphenol from green tea. Histochem Cell Biol 2012; 137:811-27. [PMID: 22331205 PMCID: PMC3353109 DOI: 10.1007/s00418-012-0926-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2012] [Indexed: 12/17/2022]
Abstract
In two separate previous studies, we reported that subcutaneous (sc) or oral administration of (−)-epigallocatechin-3-gallate (EGCG) limited the development of muscle degeneration of mdx mice, a mild phenotype model for Duchenne muscular dystrophy (DMD). However, it was not possible to conclude which was the more efficient route of EGCG administration because different strains of mdx mice, periods of treatment and methods of assessment were used. In this study, we investigated which administration routes and dosages of EGCG are the most effective for limiting the onset of dystrophic lesions in the same strain of mdx mice and applying the same methods of assessment. Three-week-old mdx mice were injected sc for 5 weeks with either saline or a daily average of 3 or 6 mg/kg EGCG. For comparison, age-matched mdx mice were fed for 5 weeks with either a diet containing 0.1% EGCG or a control diet. The effects of EGCG were assessed quantitatively by determining the activities of serum muscle-derived creatine kinase, isometric contractions of triceps surae muscles, integrated spontaneous locomotor activities, and oxidative stress and fibrosis in selected muscles. Oral administration of 180 mg/kg/day EGCG in the diet was found the most effective for significantly improving several parameters associated with muscular dystrophy. However, the improvements were slightly less than those observed previously for sc injection started immediately after birth. The efficacy of EGCG for limiting the development of dystrophic muscle lesions in mice suggests that EGCG may be of benefit for DMD patients.
Collapse
Affiliation(s)
- Yoshiko Nakae
- Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, 30 Quai Ernest Ansermet, 1211, Geneva 4, Switzerland.
| | | | | | | | | | | |
Collapse
|
19
|
Peng A, Ye T, Rakheja D, Tu Y, Wang T, Du Y, Zhou JK, Vaziri ND, Hu Z, Mohan C, Zhou XJ. The green tea polyphenol (-)-epigallocatechin-3-gallate ameliorates experimental immune-mediated glomerulonephritis. Kidney Int 2011; 80:601-611. [PMID: 21544063 DOI: 10.1038/ki.2011.121] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The unchecked overproduction of reactive oxygen and nitrogen species by inflammatory cells can cause tissue damage, intensify inflammation, promote apoptosis, and accelerate the progression of immune-mediated glomerulonephritis (GN). Here we tested whether the anti-inflammatory and antioxidant properties of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) favorably affect the development of immune-mediated GN. Pretreatment of 129/svJ mice with EGCG from 2 days before to 2 weeks after the induction of GN led to reduced proteinuria and serum creatinine, and marked improvement in renal histology when compared with vehicle-pretreated diseased mice. This pretreatment reduced oxidative stress, and normalized osteopontin, p65/nuclear factor-κB, inducible nitric oxide synthase, nitric oxide metabolites, p-Akt, phosphorylated extracellular signal-regulated kinases 1 and 2, p47phox, and myeloperoxidase, all of which were elevated in vehicle-pretreated diseased mice. Levels of glutathione peroxidase and peroxisome proliferator-activated receptor-γ (PPARγ), both reduced in the vehicle-pretreated diseased mice, were normalized. This renoprotective effect was reversed by concomitant administration of the PPARγ antagonist GW9662 throughout the EGCG pretreatment period. Importantly, mortality and renal dysfunction were significantly attenuated even when the polyphenol treatment was initiated 1 week after the onset of GN. Thus, EGCG reversed the progression of immune-mediated GN in mice by targeting redox and inflammatory pathways.
Collapse
Affiliation(s)
- Ai Peng
- Department of Nephrology, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
hnRNP F directs formation of an exon 4 minus variant of tumor-associated NADH oxidase (ENOX2). Mol Cell Biochem 2011; 357:55-63. [PMID: 21625959 DOI: 10.1007/s11010-011-0875-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/06/2011] [Indexed: 12/27/2022]
Abstract
HUVEC or mouse 3T3 cells infected with SV-40 generate within 3 to 5 days post-infection an ENOX2 species corresponding to the exon-4 minus splice variant of a tumor-associated NADH oxidase (ENOX2 or tNOX) expressed at the cancer cell surface. This study was to seek evidence for splicing factors that might direct formation of the exon 4 minus ENOX2 splice variant. To determine if silencing of ENOX2 exon 4 occurs because of motifs located in exon 4, transfections were performed on MCF-10A (mammary non-cancer), BT-20 (mammary cancer), and HeLa (cervical cancer) cells using a GFP minigene construct containing either a constitutively spliced exon (albumin exon 2) or the alternatively spliced ENOX2 exon 4 between the two GFP halves. Removal of exon 4 from the processed RNA of the GFP minigene construct occurred with HeLa and to a lesser extent with BT-20 but not in non-cancer MCF-10A cells. The Splicing Rainbow Program was used to identify all of the possible hnRNPs binding sites of exon 4 of ENOX2. There are 8 Exonic Splicing Silencers (ESSs) for hnRNP binding in the exon 4 sequences. Each of these sites were mutated by site-directed mutagenesis to test if any were responsible for the splicing skip. Results showed MutG75 ESS mutation changed the GFP expression which is a sign of splicing silence, while other mutations did not. As MutG75 changed the ESS binding site for hnRNP F, this result suggests that hnRNP F directs formation of the exon 4 minus variant of ENOX2.
Collapse
|
21
|
Wu LY, De Luca T, Watanabe T, Morré DM, Morré DJ. Metabolite modulation of HeLa cell response to ENOX2 inhibitors EGCG and phenoxodiol. Biochim Biophys Acta Gen Subj 2011; 1810:784-9. [PMID: 21571040 DOI: 10.1016/j.bbagen.2011.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/30/2011] [Accepted: 04/21/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND Constituents and inhibitors of intermediary metabolism resulting in alterations in levels of cytosolic NADH, stimulation of sphingomyelinase and inhibition of sphingosine kinase were evaluated for effects on growth inhibition and induction of apoptosis by the ENOX2 inhibitors EGCG, the principal catechin of green tea, and phenoxodiol, a naturally occurring isoflavone. METHODS Responses were evaluated from dose-response curves of the metabolites and metabolic inhibitors in which growth of HeLa cells, apoptosis based on DAPI fluorescence and cytosolic NADH levels were correlated with sphingomyelinase and spingosine kinase activities and levels of ceramide and sphingosine1-phosphate. RESULTS Growth inhibition correlated with the modulation of localized cytosolic NADH levels by metabolites and metabolic inhibitors, the response of sphingomyelinase and sphingosine kinase located near the inner surface of the plasma membrane, and apoptosis. CONCLUSIONS Based on findings with metabolites, we conclude that apoptosis in cancer cell lines caused by ENOX2 inhibitors such as EGCG and phenoxodiol is a direct response to elevated levels of cytosolic NADH that result from ENOX2 inhibition. GENERAL SIGNIFICANCE The findings help to explain why increased NADH levels resulting from ENOX2 inhibition result in decreased prosurvival sphingosine-1-phosphate and increased proapoptotic ceramide, both of which may be important to initiation of the ENOX2 inhibitor-induced apoptotic cascade.
Collapse
Affiliation(s)
- Lian-Ying Wu
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
22
|
De Luca T, Morré DM, Morré DJ. Reciprocal relationship between cytosolic NADH and ENOX2 inhibition triggers sphingolipid-induced apoptosis in HeLa cells. J Cell Biochem 2010; 110:1504-11. [PMID: 20518072 DOI: 10.1002/jcb.22724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ENOX2 (tNOX), a tumor-associated cell surface ubiquinol (NADH) oxidase, functions as an alternative terminal oxidase for plasma membrane electron transport. Ubiquitous in all cancer cell lines studied thus far, ENOX2 expression correlates with the abnormal growth and division associated with the malignant phenotype. ENOX2 has been proposed as the cellular target for various quinone site inhibitors that demonstrate anticancer activity such as the green tea constituent epigallocatechin-3-gallate (EGCg) and the isoflavone phenoxodiol (PXD). Here we present a possible mechanism that explains how these substances result in apoptosis in cancer cells by ENOX2-mediated alterations of cytosolic amounts of NAD(+) and NADH. When ENOX2 is inhibited, plasma membrane electron transport is diminished, and cytosolic NADH accumulates. We show in HeLa cells that NADH levels modulate the activities of two pivotal enzymes of sphingolipid metabolism: sphingosine kinase 1 (SK1) and neutral sphingomyelinase (nSMase). Their respective products sphingosine 1-phosphate (S1P) and ceramide (Cer) are key determinants of cell fate. S1P promotes cell survival and Cer promotes apoptosis. Using plasma membranes isolated from cervical adenocarcinoma (HeLa) cells as well as purified proteins of both bacterial and human origin, we demonstrate that NADH inhibits SK1 and stimulates nSMase, while NAD(+) inhibits nSMase and has no effect on SK1. Additionally, intact HeLa cells treated with ENOX2 inhibitors exhibit an increase in Cer and a decrease in S1P. Treatments that stimulate cytosolic NADH production potentiate the antiproliferative effects of ENOX2 inhibitors while those that attenuate NADH production or stimulate plasma membrane electron transport confer a survival advantage.
Collapse
Affiliation(s)
- Thomas De Luca
- Department of Foods and Nutrition, Purdue University, Stone Hall, 700 W. State Street, West Lafayette, Indiana 47907-2059, USA
| | | | | |
Collapse
|
23
|
Wang HM, Chueh PJ, Chang SP, Yang CL, Shao KN. Effect of Ccapsaicin on tNOX (ENOX2) protein expression in stomach cancer cells. Biofactors 2010. [PMID: 19734122 DOI: 10.1002/biof.5520340305] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor-associated NADH oxidase (tNOX, also known as ENOX2) is a growth-related protein expressed in transformed cells. Previous reports have revealed that the inhibition of tNOX activity by the anti-cancer drug, capsaicin, correlates with a reduction in growth of cancer cells, indicating a close relationship between tNOX activity and cell growth. Moreover, the study of depleted tNOX expression by RNA interference in HeLa cells suggests that it may be associated with the ability of tumor cells to acquire an aggressive phenotype, particularly in relation to cell proliferation. A key role for tNOX in regulating cell growth is further supported by the observation that the growth rate of MEF cells from tNOX-overexpressing transgenic mice is approximately two-fold greater than that of wild-type cells. The purpose of this study was to investigate the anti-proliferative effect of capsaicin on tNOX expression level in stomach cancer cells. We showed that capsaicin induced cytotoxicity in SCM cells concomitantly with apoptosis, PARP cleavage, and down-regulation of tNOX protein.
Collapse
Affiliation(s)
- Hsi-Ming Wang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
24
|
James Morré D, Geilen CC, Welch AM, Morré DM. Response of Carcinoma In Situ (Actinic Keratosis) to Green Tea Concentrate PlusCapsicum. J Diet Suppl 2009; 6:385-9. [DOI: 10.3109/19390210903280322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
25
|
Weaver CM, Barnes S, Wyss JM, Kim H, Morré DM, Morré DJ, Simon JE, Lila MA, Janle EM, Ferruzzi MG. Research Highlights from the Purdue-UAB Botanicals Research Center for Age Related Diseases. PHARMACEUTICAL BIOLOGY 2009; 47:768-773. [PMID: 19890436 PMCID: PMC2772071 DOI: 10.1080/13880200902988603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Purdue-UAB Botanicals Research Center for Age Related Disease uses multidisciplinary and innovative technologies to investigate the bioavailability of bioactive polyphenolic constituents from botanicals and their relationship to human health. Many age-related diseases are associated with oxidative stress and tissue damage. One of the research goals of the Purdue-UAB Center is to investigate the bioavailability of bioactive natural compounds from a complex botanical mixture to the organ affected by the disease, determine the uptake and metabolism of these compounds and relate these data to a protective mechanism. Equally important is to screen commercially available botanicals for their safety and efficacy. The central aims of the Center include the investigation of botanicals and their relationship to bone antiresorptive capacity, cognitive function, vascular effects, and cancer prevention.
Collapse
Affiliation(s)
- Connie M Weaver
- Foods and Nutrition (CMW, DMM, EMJ), Medicinal Chemistry and Molecular Pharmacology (DJM), and Food Science (MGF) Purdue University, West Lafayette, IN
| | - Stephen Barnes
- Pharmacology and Toxicology (SB, HK, JMW), University of Alabama, Birmingham, AL
| | - J Michael Wyss
- Pharmacology and Toxicology (SB, HK, JMW), University of Alabama, Birmingham, AL
| | - Helen Kim
- Pharmacology and Toxicology (SB, HK, JMW), University of Alabama, Birmingham, AL
| | - Dorothy M Morré
- Foods and Nutrition (CMW, DMM, EMJ), Medicinal Chemistry and Molecular Pharmacology (DJM), and Food Science (MGF) Purdue University, West Lafayette, IN
| | - D James Morré
- Foods and Nutrition (CMW, DMM, EMJ), Medicinal Chemistry and Molecular Pharmacology (DJM), and Food Science (MGF) Purdue University, West Lafayette, IN
| | - James E Simon
- Plant Biology and Pathology (JES), Rutgers University, New Brunswick, NJ
| | - Mary Ann Lila
- Natural Resources and Environmental Sciences (MAL), University of Illinois, Urbana, IL
| | - Elsa M Janle
- Foods and Nutrition (CMW, DMM, EMJ), Medicinal Chemistry and Molecular Pharmacology (DJM), and Food Science (MGF) Purdue University, West Lafayette, IN
| | - Mario G Ferruzzi
- Foods and Nutrition (CMW, DMM, EMJ), Medicinal Chemistry and Molecular Pharmacology (DJM), and Food Science (MGF) Purdue University, West Lafayette, IN
| |
Collapse
|
26
|
Dorchies OM, Wagner S, Buetler TM, Ruegg UT. Protection of dystrophic muscle cells with polyphenols from green tea correlates with improved glutathione balance and increased expression of 67LR, a receptor for (-)-epigallocatechin gallate. Biofactors 2009; 35:279-94. [PMID: 19322813 DOI: 10.1002/biof.34] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by the absence of the protein dystrophin. Because oxidative stress contributes to the pathogenesis of DMD, we investigated if a green tea polyphenol blend (GTP) and its major polyphenol (-)-epigallocatechin gallate (EGCg), could protect muscle cell primary cultures from oxidative damage induced by hydrogen peroxide (H(2)O(2)) in the widely used mdx mouse model. On-line fluorimetric measurements using an H(2)O(2)-sensitive probe indicated that GTP and EGCg scavenged peroxide in a concentration-dependent manner. A 48 h exposure to EGCg increased glutathione content but did not alter the expression of proteins involved in membrane stabilization and repair. Pretreatment of dystrophic cultures with GTP or EGCg 48 h before exposure to H(2)O(2) improved cell survival. Normal cultures were protected by GTP but not by EGCg. 67LR, a receptor for EGCg, was seven times more abundant in dystrophic compared with normal cultures. Altogether our results demonstrate that GTP and EGCg protect muscle cells by scavenging H(2)O(2) and by improving the glutathione balance. In addition, the higher levels of 67LR in dystrophic muscle cells compared with normal ones likely contribute to EGCg-mediated survival.
Collapse
Affiliation(s)
- Olivier M Dorchies
- Laboratory of Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
27
|
Phenoxodiol treatment alters the subsequent response of ENOX2 (tNOX) and growth of hela cells to paclitaxel and cisplatin. Mol Biotechnol 2009; 42:100-9. [PMID: 19156549 DOI: 10.1007/s12033-008-9132-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
Abstract
Phenoxodiol is an experimental anticancer drug under development as a chemosensitizer intended to reverse multidrug resistance mechanisms in ovarian and prostate cancer cells to most standard cytotoxics. The putative molecular target of phenoxodiol is a cell-surface, tumor-specific NADH oxidase, ENOX2 (tNOX), with phenoxodiol having no apparent effect on the constitutive form of this enzyme ENOX1 (CNOX). Using ENOX2 as the target, this study was conducted to explore the temporal relationship between phenoxodiol and paclitaxel or cisplatin in achieving chemosensitization in HeLa cells which are relatively resistant to both paclitaxel and cisplatin. Sequential addition of phenoxodiol and paclitaxel or phenoxodiol and cisplatin showed greater inhibition of HeLa cell ENOX1 activity and growth compared to adding the drugs simultaneously or individually. In parallel, a similar chemosensitizing response of phenoxodiol for cisplatin was observed. ENOX1 was not affected and trans-platinum had no effect. With spent media from phenoxodiol-treated cells sensitivity was enhanced to both paclitaxel and cisplatin if the cells were first pretreated with phenoxodiol. Similar results were obtained with ENOX2-enriched preparations stripped from the surfaces of phenoxodiol-treated cells. In keeping with a speculative prion model, it seems as though the ENOX2 "remembers" the phenoxodiol and "teaches" other ENOX2 molecules to respond to paclitaxel and cisplatin as if phenoxodiol were still present.
Collapse
|
28
|
Cell size increased in tissues from transgenic mice overexpressing a cell surface growth-related and cancer-specific hydroquinone oxidase, tNOX, with protein disulfide-thiol interchange activity. J Cell Biochem 2008; 105:1437-42. [DOI: 10.1002/jcb.21962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Mao LC, Wang HM, Lin YY, Chang TK, Hsin YH, Chueh PJ. Stress-induced down-regulation of tumor-associated NADH oxidase during apoptosis in transformed cells. FEBS Lett 2008; 582:3445-50. [PMID: 18789934 DOI: 10.1016/j.febslet.2008.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/22/2008] [Accepted: 09/03/2008] [Indexed: 12/11/2022]
Abstract
Tumor-associated NADH oxidase (tNOX) is a growth-related protein expressed in transformed cells. tNOX knockdown using RNA interference leads to a significant reduction in HeLa cell proliferation and migration, indicating an important role for tNOX in growth regulation and the cancer phenotype. Here, we show that tNOX is down-regulated during apoptosis in HCT116 cells. Treatment with diverse stresses induced a dose- and time-dependent decrease in tNOX expression that was concurrent with apoptosis. Moreover, shRNA-mediated tNOX knockdown rendered cells susceptible to apoptosis, whereas re-expression of tNOX partially recovered cell proliferation. Our results indicate that tNOX is suppressed during apoptosis and demonstrate that tNOX down-regulation sensitizes cells to stress-induced growth reduction, suggesting that tNOX is required for transformed cell growth.
Collapse
Affiliation(s)
- Liang-Chi Mao
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
30
|
Kuo YC, Yu CL, Liu CY, Wang SF, Pan PC, Wu MT, Ho CK, Lo YS, Li Y, Christiani DC. A population-based, case-control study of green tea consumption and leukemia risk in southwestern Taiwan. Cancer Causes Control 2008; 20:57-65. [PMID: 18752033 DOI: 10.1007/s10552-008-9217-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE This study investigated the association between green tea consumption and leukemia. METHODS A total of 252 cases (90.3% response) and 637 controls (53.4% response) were enrolled. Controls were matched for cases on age and gender. Information was collected on participants' living habits, including tea consumption. Green tea was used as a standard to estimate the total amount of individual catechin consumption. We stratified individual consumption of catechins into four levels. Conditional logistic regression models were fit to subjects aged 0-15 and 16-29 years to evaluate separate associations between leukemia and catechin consumption. RESULTS A significant inverse association between green tea consumption and leukemia risk was found in individuals aged 16-29 years, whereas no significant association was found in the younger age groups. For the older group with higher amounts of tea consumption (>550 units of catechins), the adjusted odds ratio (OR) compared with the group without tea consumption was 0.47 [95% confidence interval (CI) = 0.23-0.97]. After we adjusted for smoking status and medical irradiation exposure, the overall OR for all participants was 0.49 (95% CI = 0.27-0.91), indicating an inverse relation between large amounts of catechins and leukemia. CONCLUSION Drinking sufficient amounts of tea, especially green tea, which contains more catechins than oolong tea and black tea, may reduce the risk of leukemia.
Collapse
Affiliation(s)
- Yau-Chang Kuo
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
The combination of raloxifene and epigallocatechin gallate suppresses growth and induces apoptosis in MDA-MB-231 cells. Life Sci 2008; 82:943-8. [DOI: 10.1016/j.lfs.2008.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/24/2008] [Accepted: 02/19/2008] [Indexed: 11/21/2022]
|
32
|
Weaver CM, Barnes S, Wyss JM, Kim H, Morré DM, Morré DJ, Simon JE, Lila MA, Janle EM, Ferruzzi MG. Botanicals for age-related diseases: from field to practice. Am J Clin Nutr 2008; 87:493S-7S. [PMID: 18258645 PMCID: PMC2683623 DOI: 10.1093/ajcn/87.2.493s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Purdue-University of Alabama Botanicals Research Center for Age Related Disease joins novel technologies to study the bioavailability of bioactive polyphenolic constituents and their relation to health. Many diseases that manifest with age relate to oxidative stress and tissue damage. Our goal is to follow the fate of bioactive constituents from a complex mixture to the organ affected by the disease and relate that to a protective mechanism. Equally important is to screen commercially available botanicals for their efficacy and safety. Botanicals and their relation to bone antiresorptive capacity, cognitive function, vascular effects, and cancer are principal themes in our center.
Collapse
Affiliation(s)
- Connie M Weaver
- Foods and Nutrition, Rutgers University, New Brunswick, NJ, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Janle EM, Morré DM, Morré DJ, Zhou Q, Zhu Y. Pharmacokinetics of green tea catechins in extract and sustained-release preparations. J Diet Suppl 2008; 5:248-63. [PMID: 19885387 PMCID: PMC2747776 DOI: 10.1080/19390210802414279] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Catechins are a major constituent of green tea. For green tea to have cancer therapeutic benefit, catechin concentrations in the range of 100 nM are required continuously until apoptosis (programmed cell death) is induced. To prolong elevated plasma and interstitial concentrations of catechins, a sustained-release formulation of green tea extract was tested and compared to a commercial green tea extract (Tegreen97®). Sustained-release formulations are usually developed in the pharmaceutical industry to slowly deliver the compound over a period of time and increase the dosing interval. Plasma and interstitial fluid (ISF) pharmacokinetics of catechins were determined following an oral dose in the rat. The sustained-release formulation profile included multiple smaller peaks of total catechins in both plasma and ISF. Interstitial fluid profiles of green tea extract indicate that higher catechins concentration and longer duration in tissue than in blood may make a sustained-release form unnecessary.
Collapse
Affiliation(s)
- Elsa M Janle
- Botanical Center In Vivo Core, Purdue University, Department of Foods and Nutrition, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
34
|
Miyamoto Y, Sano M, Haylor JL, El Nahas AM. (-)-Epigallocatechin 3-O-gallate (EGCG) -induced apoptosis in normal rat kidney interstitial fibroblast (NRK-49F) cells. J Toxicol Sci 2008; 33:367-70. [DOI: 10.2131/jts.33.367] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yohei Miyamoto
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc
- Sheffield Kidney Institute, Northern General Hospital NHS Trust, The University of Sheffield
| | - Mariko Sano
- Toxicology and Pharmacokinetics Laboratories, Pharmaceutical Research Laboratories, Toray Industries, Inc
| | - John L. Haylor
- Sheffield Kidney Institute, Northern General Hospital NHS Trust, The University of Sheffield
| | - A. Meguid El Nahas
- Sheffield Kidney Institute, Northern General Hospital NHS Trust, The University of Sheffield
| |
Collapse
|
35
|
Liu SC, Yang JJ, Shao KN, Chueh PJ. RNA interference targeting tNOX attenuates cell migration via a mechanism that involves membrane association of Rac. Biochem Biophys Res Commun 2007; 365:672-7. [PMID: 18023414 DOI: 10.1016/j.bbrc.2007.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 11/06/2007] [Indexed: 12/11/2022]
Abstract
tNOX, a tumor-associated NADH oxidase, is a growth-related protein present in transformed cells. In this study, we employed RNA interference (RNAi)-mediated down-regulation of tNOX protein expression to explore the role of tNOX in regulating cell growth in human cervical adenocarcinoma (HeLa) cells. In this first reported use of RNAi to decrease tNOX expression, we found that HeLa cell growth was significantly inhibited by shRNA-knockdown of tNOX. Furthermore, cell migration and membrane association of Rac were decreased concomitantly with the reduction in tNOX protein expression. These results indicate that shRNA targeting of tNOX inhibits the growth of cervical cancer cells, and reduces cell migration via a decrease in the membrane association of Rac. We propose that tNOX is a potential upstream mediator of Rho activation that plays a role in regulating cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Shan-Chi Liu
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | | | | | | |
Collapse
|
36
|
Griffaut B, Debiton E, Madelmont JC, Maurizis JC, Ledoigt G. Stressed Jerusalem artichoke tubers (Helianthus tuberosus L.) excrete a protein fraction with specific cytotoxicity on plant and animal tumour cell. Biochim Biophys Acta Gen Subj 2007; 1770:1324-30. [PMID: 17662535 DOI: 10.1016/j.bbagen.2007.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 11/15/2022]
Abstract
Wounds from Jerusalem artichoke (Helianthus tuberosus L.) tubers excrete bioactive metabolites from a variety of structural classes, including proteins. Here we describe a protein specifically active against tumour cells arising either from human, animal or plant tissues. The non-tumour animal cells or the plant callus cells are not sensitive to these excreta. The active product was only obtained after a wound-drought stress of plant tubers. The cytotoxicity varies according to the tumour cell type. For instance, some human tumour cell lines and especially the human mammary tumour cells MDA-MB-231 were shown to be very susceptible to the active product. The active agent is shown to contain an 18-kDa polypeptide with homology to a superoxide dismutase (SOD). A 28-kDa polypeptide, related to an alkaline phosphatase (AP), was shown to be tightly linked to this 18-kDa polypeptide. The excreted 28-kDa polypeptide also displayed a consensus sequence similar to the group of DING proteins, but with a smaller molecular weight. The superoxide dismutase polypeptide was shown to be involved in the antitumour activity, but the presence of smaller factors (MW<10 kDa), such as salicylic acid, can enhance this activity.
Collapse
Affiliation(s)
- B Griffaut
- EA 3296 ERTAC, "Tumeurs et Autosurveillance Cellulaire", Université Blaise-Pascal (Clermont-Ferrand II), Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubière cedex, France
| | | | | | | | | |
Collapse
|
37
|
Yagiz K, Wu LY, Kuntz CP, James Morré D, Morré DM. Mouse embryonic fibroblast cells from transgenic mice overexpressing tNOX exhibit an altered growth and drug response phenotype. J Cell Biochem 2007; 101:295-306. [PMID: 17115410 DOI: 10.1002/jcb.21184] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mouse embryonic fibroblast (MEF) cells prepared from transgenic mice overexpressing a cancer-specific and growth-related cell surface NADH oxidase with protein disulfide-thiol interchange activity grew at rates approximately twice those of wild-type embryonic fibroblast cells. Growth of transgenic MEF cells overexpressing tNOX was inhibited by low concentrations of the green tea catechin (-)-epigallocatechin-3-gallate (EGCg) or the synthetic isoflavene phenoxodiol. Both are putative tNOX-targeted inhibitors with anti-cancer activity. With both EGCg and phenoxodiol, growth inhibition was followed after about 48 h by apoptosis. Growth of wild-type mouse fibroblast cells from the same strain was unaffected by EGCg and phenoxodiol and neither compound induced apoptosis even at concentrations 100-1,000-fold higher than those that resulted in apoptotic death in the transgenic MEF cells. The findings validate earlier reports of evidence for tNOX presence as contributing to unregulated growth of cancer cells as well as the previous identification of the tNOX protein as the molecular target for the anti-cancer activities attributed to both EGCg and phenoxodiol. The expression of tNOX emerges as both necessary and sufficient to account for the cancer cell-specific growth inhibitions by both EGCg and phenoxodiol.
Collapse
Affiliation(s)
- Kader Yagiz
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
38
|
Yagiz K, Morré DJ, Morré DM. Transgenic mouse line overexpressing the cancer-specific tNOX protein has an enhanced growth and acquired drug-response phenotype. J Nutr Biochem 2006; 17:750-9. [PMID: 16517149 DOI: 10.1016/j.jnutbio.2005.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 12/21/2005] [Accepted: 12/22/2005] [Indexed: 12/29/2022]
Abstract
tNOX, a novel cell surface protein related to unregulated growth and drug response of cancer cells, has been proposed as the cellular target for the anticancer action of various quinone site inhibitors with anticancer activity including the polyphenol (-)-epigallocatechin-3-gallate (EGCg). A transgenic mouse line overexpressing tNOX was generated to determine its overall growth phenotype and susceptibility to EGCg. Cultured noncancer cells lack tNOX and are unresponsive to EGCg. Overexpression of tNOX in cultured noncancer cells through transfection resulted in both enhanced growth and an acquired inhibitory response to EGCg. The tNOX transgenic mouse line was developed using a phCMV2 vector with the hemagglutinin (HA) tag. Transgenic mice exhibited both an enhanced growth rate and a response to EGCg not observed with wild-type mice. Female transgenic mice grew twice as fast as wild type, and growth was reflected in an overall increased carcass weight. Administration of EGCg in the drinking water [500 mg/kg body weight (BW)] reduced the growth rate of the transgenic mice to that of wild-type mice. The findings provide in situ validation of the hypothesis that tNOX represents a necessary and sufficient molecular target as the basis for the protective and potential cancer therapeutic benefits of EGCg.
Collapse
Affiliation(s)
- Kader Yagiz
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907-2059, USA
| | | | | |
Collapse
|
39
|
Stuart EC, Scandlyn MJ, Rosengren RJ. Role of epigallocatechin gallate (EGCG) in the treatment of breast and prostate cancer. Life Sci 2006; 79:2329-36. [PMID: 16945390 DOI: 10.1016/j.lfs.2006.07.036] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 07/18/2006] [Accepted: 07/31/2006] [Indexed: 01/01/2023]
Abstract
Green tea and its major constituent epigallocatechin gallate (EGCG) have been extensively studied as a potential treatment for a variety of diseases, including cancer. Epidemiological data have suggested that EGCG may provide protective effects against hormone related cancers, namely breast or prostate cancer. Extensive in vitro investigations using both hormone responsive and non-responsive cell lines have shown that EGCG induces apoptosis and alters the expression of cell cycle regulatory proteins that are critical for cell survival and apoptosis. This review will highlight the important in vitro mechanistic actions elicited by EGCG in various breast and prostate cancer cell lines. Additionally, the actions of green tea/EGCG in in vivo models for these cancers as well as in clinical trials will be discussed.
Collapse
Affiliation(s)
- Emma C Stuart
- Department of Pharmacology and Toxicology, 18 Frederick Street, Adams Building, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
40
|
Morré DJ, Morré DM. Aging-Related Cell Surface ECTO-NOX Protein, arNOX, a Preventive Target to Reduce Atherogenic Risk in the Elderly. Rejuvenation Res 2006; 9:231-6. [PMID: 16706650 DOI: 10.1089/rej.2006.9.231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A family of constitutive cell surface ECTO-NOX proteins capable of oxidizing reduced quinones, initially described as NADH oxidases, has offered an opportunity to formulate, for the first time, a complete electron transport chain from the cytosol to oxygen at the cell surface with the ECTO-NOX proteins acting as the terminal oxidases. The ECTO-NOX proteins of the cell surface have been postulated as well to link the accumulation of lesions in mitochondrial DNA to cell surface accumulations of reactive oxygen species as one consequence of their role as a terminal oxidase in a plasma membrane electron transport chain. Of the several ECTO-NOX proteins now known, one is a novel cell surface form (arNOX) associated with lymphocytes, sera, saliva and perspiration of patients of age 50 or older and is capable of directly reducing ferric cytochrome c through the generation of superoxide. Because of their cell surface location, ECTO-NOX proteins capable of superoxide generation in response to aging would serve to propagate the aging cascade both to adjacent cells and to oxidize circulating lipoproteins. The generation of superoxide associated with aging is inhibited by coenzyme Q10. As such, the findings provide a rational basis for the antiaging activity of circulating coenzyme Q10 in the prevention of atherosclerosis and other aging-related oxidative changes in cell membranes and circulating lipoproteins.
Collapse
Affiliation(s)
- D James Morré
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA.
| | | |
Collapse
|
41
|
Morré DM, Morré DJ. Catechin-vanilloid synergies with potential clinical applications in cancer. Rejuvenation Res 2006; 9:45-55. [PMID: 16608395 DOI: 10.1089/rej.2006.9.45] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A cancer-specific cell surface protein, tNOX, has been identified as a target for low-dose cell killing (apoptosis) of cancer cells by green tea catechins and Capsicum vanilloid combinations. This protein is uniquely associated with all forms of cancer and is absent from normal cells and tissues. Its activity is correlated with cancer growth. When blocked, cancer cells fail to enlarge after division and eventually die. Among the most potent and effective inhibitors of tNOX are naturally occurring polyphenols exemplified by the principal green tea catechin (-)-epigallocatechin gallate (EGCg) and the vanilloid capsaicin. Catechin-vanilloid combinations are 10 to 100 times more effective than either catechins or vanilloids alone. Vector-forced overexpression of tNOX cDNA and antisense has demonstrated that the tNOX target is both necessary and sufficient to explain the anticancer properties of green tea catechins alone and in vanilloid-containing combinations. The necessity and sufficiency of tNOX was validated as the catechin target with transgenic mice overexpressing the processed form of tNOX. Transgenic mice grew faster and the increased growth caused by tNOX overexpression was blocked by EGCg in the drinking water. A catechin-vanilloid mixture where one 350-mg capsule is equivalent to 16 cups of green tea in its ability to inhibit tNOX and growth of cancer cells in culture is undergoing clinical evaluation as a therapeutic aid for cancer patients.
Collapse
Affiliation(s)
- Dorothy M Morré
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana 47907-2059, USA.
| | | |
Collapse
|
42
|
Morré DJ, Morre DM. tNOX, an alternative target to COX-2 to explain the anticancer activities of non-steroidal anti-inflammatory drugs (NSAIDS). Mol Cell Biochem 2006; 283:159-67. [PMID: 16444599 DOI: 10.1007/s11010-006-2568-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 08/30/2005] [Indexed: 01/19/2023]
Abstract
Our work has identified a cancer-specific, cell surface and growth-related quinol oxidase with both NADH oxidase and protein disulfide-thiol interchange activities, a member of the ECTO-NOX protein family designated tNOX. We provide evidence for tNOX as an alternative drug target to COX-2 to explain the anticancer activity of COX inhibitors. Non-steroidal anti-inflammatory drugs (NSAIDS), piroxicam, aspirin, ibuprofen, naproxen and celecoxib all specifically inhibited tNOX activity of HeLa (human cervical carcinoma) and BT-20 (human mammary carcinoma) cells (IC(50) in the nanomolar range) without effect on ECTO-NOX activities of non-cancer MCF-10A mammary epithelial cells. With cancer cells, rofecoxib was less effective and two NSAIDS selective for COX-1 were without effect in inhibiting NOX activity. The IC(50) for inhibition of tNOX activity of HeLa cells and the IC(50) for inhibition of growth of HeLa cells in culture were closely correlated. The findings provide evidence for a new drug target to account for anticancer effects of NSAIDS that occur independent of COX-2.
Collapse
Affiliation(s)
- D James Morré
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
43
|
Chen CF, Huang S, Liu SC, Chueh PJ. Effect of polyclonal antisera to recombinant tNOX protein on the growth of transformed cells. Biofactors 2006; 28:119-33. [PMID: 17379942 DOI: 10.1002/biof.5520280206] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previous reports have described a tumor-associated NADH oxidase (tNOX) and its continuous activation in transformed culture cells. Certain anticancer drugs have been shown to inhibit preferentially both the tNOX activity and the growth of transformed culture cells and the cytotoxicity is associated with the induction of apoptosis. To investigate the biological function of tNOX protein, we have raised polyclonal antisera against bacterial expressed tNOX protein and the antisera are able to recognize protein bands in transformed cells but not the non-transformed cells tested. With tNOX antisera treatment, the survival in transformed cell lines is decreased but not the non-transformed cells. In addition, tNOX antisera-induced cytotoxicity is accompanied by the induction of apoptosis. However, slightly higher amount of PARP cleavage and activation of caspase-9 are observed in tNOX antisera treated HCT116 cells. Further experiments have demonstrated the activation of JNK and phosphorylation of p53 by treatment. In addition, tNOX antisera treatment leads to an impressive increase in reactive oxygen species in COS cells but not the control sera. Our data suggest that (a) tNOX antisera treatment may inhibit the growth of transformed cells by inducing apoptosis and (b) the apoptotic mechanism might be through modulating ROS production and JNK pathway.
Collapse
Affiliation(s)
- Chun-Feng Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, 40227, Taiwan, Republic of China
| | | | | | | |
Collapse
|
44
|
Morré DM, Morré DJ. Anticancer activity of grape and grape skin extracts alone and combined with green tea infusions. Cancer Lett 2005; 238:202-9. [PMID: 16129553 DOI: 10.1016/j.canlet.2005.07.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 05/16/2005] [Accepted: 07/05/2005] [Indexed: 11/20/2022]
Abstract
Grapes and grape extracts were compared for inhibition of a growth-related and cancer-specific form of cell surface NADH oxidase with protein disulfide-thiol interchange activity designated tNOX from human cervical carcinoma (HeLa) cells and growth of HeLa and mouse mammary 4T1 cells in culture and transplanted tumors in mice. Grapes and grape extracts of several varieties had activity. With an extracted grape preparation provided by the California Table Grape Commission, an active fraction was eluted with methanol from a Diaion HP-20 column after removal of inactive water-soluble materials. Grape skins were a much more potent source than either grape pulp, juice or seeds. Ethanol extracts of the ground freeze-dried pomace was an excellent source. The grape extracts interacted, often synergistically, with decaffeinated green tea extracts both in the inhibition of tNOX activity and in the inhibition of cancer cell growth. Intratumoral injections of a 25:1 mixture of a green tea extract plus ground freeze-dried pomace was nearly as effective as standard synergistic green tea-Capsicum mixtures in inhibiting growth of 4T1 mammary tumors in situ in mice.
Collapse
Affiliation(s)
- Dorothy M Morré
- Department of Foods and Nutrition, Purdue University, 700 W. State Street, West Lafayette, IN 47907-2059, USA.
| | | |
Collapse
|
45
|
Cooper R, Morré DJ, Morré DM. Medicinal Benefits of Green Tea: Part II. Review of Anticancer Properties. J Altern Complement Med 2005; 11:639-52. [PMID: 16131288 DOI: 10.1089/acm.2005.11.639] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Currently there is wide interest in the medicinal benefits of green tea (Camellia sinensis). Tea is one of the most widely consumed beverages in the world, and extracts of tea leaves are also sold as dietary supplements. Green tea extracts contain a unique set of catechins that possess biologic activity in antioxidant, antiangiogenesis, and antiproliferative assays that are potentially relevant to the prevention and treatment of various forms of cancer. With the increasing interest in the health properties of tea and a significant rise in their scientific investigation, it is the aim of this review to summarize recent findings on the anticancer and medicinal properties of green tea, focusing on the biologic properties of the major tea catechin, (-)-epigallocatechin and its antitumor properties.
Collapse
|
46
|
Encío I, Morré DJ, Villar R, Gil MJ, Martínez-Merino V. Benzo[b]thiophenesulphonamide 1,1-dioxide derivatives inhibit tNOX activity in a redox state-dependent manner. Br J Cancer 2005; 92:690-5. [PMID: 15685230 PMCID: PMC2361890 DOI: 10.1038/sj.bjc.6602383] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Benzo[b]thiophenesulphonamide 1,1-dioxide (BTS) derivatives are strong cytotoxic agents that induce reactive oxygen species (ROS) overproduction and apoptosis in tumour cells. Although the precise origin of BTS-induced ROS is not known, a clear correlation between their cytotoxic effect and ability to inhibit a tumour-associated NADH oxidase (tNOX) activity of the plasma membrane has been described. To analyse the putative implication of tNOX in BTS-induced ROS generation, in this work we have synthesised and tested a new BTS derivative, the 6-[N-(2-phenylethyl)]benzo[b]thiophenesulphonamide 1,1-dioxide. According to its high lipophilicity, this compound showed a strong cytotoxic activity against a panel of six human tumour cell lines, including two human leukaemia (K-562 and CCRF-CEM) and four human solid tumours (HT-29, HTB54, HeLa and MEL-AC). We also tested the ability of this compound to inhibit the tNOX activity and we found an absolute dependence of this inhibition on the redox state of the tNOX: while under reducing conditions, that is, 100 mM GSH, the drug inhibits strongly the NOX activity with an EC50 of about 0.1 nM, under oxidising conditions, there is no effect of the drug or just a slight stimulation of activity.
Collapse
Affiliation(s)
- I Encío
- Department of Health Sciences, Universidad Pública de Navarra, Avda. Barañain, 31008 Pamplona, Spain
| | - D J Morré
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - R Villar
- Department of Applied Chemistry, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | - M J Gil
- Department of Applied Chemistry, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
| | - V Martínez-Merino
- Department of Applied Chemistry, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain
- Department of Applied Chemistry, Universidad Pública de Navarra, Campus Arrosadía, 31006 Pamplona, Spain. E-mail:
| |
Collapse
|
47
|
De Luca T, Morré DM, Zhao H, Morré DJ. NAD+/NADH and/or CoQ/CoQH2 ratios from plasma membrane electron transport may determine ceramide and sphingosine-1-phosphate levels accompanying G1 arrest and apoptosis. Biofactors 2005; 25:43-60. [PMID: 16873929 DOI: 10.1002/biof.5520250106] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To elucidate possible biochemical links between growth arrest from antiproliferative chemotherapeutic agents and apoptosis, our work has focused on agents (EGCg, capsaicin, cis platinum, adriamycin, anti-tumor sulfonylureas, phenoxodiol) that target tNOX. tNOX is a cancer-specific cell surface NADH oxidase (ECTO-NOX protein), that functions in cancer cells as the terminal oxidase for plasma membrane electron transport. When tNOX is active, coenzyme Q(10) (ubiquinone) of the plasma membrane is oxidized and NADH is oxidized at the cytosolic surface of the plasma membrane. However, when tNOX is inhibited and plasma membrane electron transport is diminished, both reduced coenzyme Q(10) (ubiquinol) and NADH would be expected to accumulate. To relate inhibition of plasma membrane redox to increased ceramide levels and arrest of cell proliferation in G(1) and apoptosis, we show that neutral sphingomyelinase, a major contributor to plasma membrane ceramide, is inhibited by reduced glutathione and ubiquinone. Ubiquinol is without effect or stimulates. In contrast, sphingosine kinase, which generates anti-apoptotic sphingosine-1-phosphate, is stimulated by ubiquinone but inhibited by ubiquinol and NADH. Thus, the quinone and pyridine nucleotide products of plasma membrane redox, ubiquinone and ubiquinol, as well as NAD(+) and NADH, may directly modulate in a reciprocal manner two key plasma membrane enzymes, sphingomyelinase and sphingosine kinase, potentially leading to G(1) arrest (increase in ceramide) and apoptosis (loss of sphingosine-1-phosphate). As such, the findings provide potential links between coenzyme Q(10)-mediated plasma membrane electron transport and the anticancer action of several clinically-relevant anticancer agents.
Collapse
Affiliation(s)
- Thomas De Luca
- Department of Foods and Nutrition, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
48
|
Axanova L, Morré DJ, Morré DM. Growth of LNCaP cells in monoculture and coculture with osteoblasts and response to tNOX inhibitors. Cancer Lett 2004; 225:35-40. [PMID: 15922855 DOI: 10.1016/j.canlet.2004.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 10/12/2004] [Accepted: 11/01/2004] [Indexed: 01/24/2023]
Abstract
An in vitro coculture model of prostate cancer cells (LNCaP) with human osteoblasts (hFOB) was utilized to define the efficacy of the tNOX inhibitors EGCg, capsaicin, Capsibiol-T and phenoxodiol against bone metastasis of prostate cancer alone and in combination with Taxol and cisplatin. In general, the LNCaP cells were more resistant to treatment with EGCg, capsaicin, phenoxodiol and Taxol when grown in coculture than when grown in monoculture. Only with Capsibiol-T (50 microM) was growth of LNCaP cells in coculture inhibited comparable with monoculture. Pretreatment with Capsibiol-T followed by the treatment with Taxol had an additive effect on reduction of viability of LNCaP cells in monoculture. In contrast, an antagonistic effect of cisplatin was observed following capsaicin pretreatment.
Collapse
Affiliation(s)
- Linara Axanova
- Department of Foods and Nutrition, Purdue University, 700 W. State Street, West Lafayette, IN 47907-205, USA
| | | | | |
Collapse
|
49
|
Chisholm K, Bray BJ, Rosengren RJ. Tamoxifen and epigallocatechin gallate are synergistically cytotoxic to MDA-MB-231 human breast cancer cells. Anticancer Drugs 2004; 15:889-97. [PMID: 15457130 DOI: 10.1097/00001813-200410000-00010] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
High concentrations of specific catechins [epigallocatechin gallate (EGCG), epigallocatechin (EGC) and epicatechin gallate (ECG)] inhibit the proliferation of many different cancer cell lines. The aim of this work was to determine if low concentrations of catechins with and without 4-hydroxytamoxifen (4-OHT) co-treatment would cause significant cytotoxicity in estrogen receptor-positive (ERalpha+) and -negative (ERalpha-) human breast cancer cells. Therefore, MCF-7, T47D, MDA-MB-231 and HS578T cells were incubated with EGCG, EGC or ECG (5-25 microM) individually and in combination with 4-OHT for 7 days. Cell number was determined by the sulforhodamine B cell proliferation assay. As single agents, none of the catechins were cytotoxic to T47D cells, while only EGCG (20 microM) elicited cytotoxicity in MCF-7 cells. Additionally, no benefit was gained by combination treatment with 4-OHT. ERalpha- human breast cancer cells were more susceptible as all three catechins were significantly cytotoxic to HS578T cells at concentrations of 10 microM. In this cell line, combination with 4-OHT did not increase cytotoxicity. However, the most striking results were produced in MDA-MB-231 cells. In this cell line, EGCG (25 microM) produced a greater cytotoxic effect than 4-OHT (1 microM) and the combination of the two resulted in synergistic cytotoxicity. In conclusion, low concentrations of catechins are cytotoxic to ERalpha- human breast cancer cells, and the combination of EGCG and 4-OHT elicits synergistic cytotoxicity in MDA-MB-231 cells.
Collapse
Affiliation(s)
- K Chisholm
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
50
|
Samhan-Arias AK, Martín-Romero FJ, Gutiérrez-Merino C. Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis. Free Radic Biol Med 2004; 37:48-61. [PMID: 15183194 DOI: 10.1016/j.freeradbiomed.2004.04.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Revised: 03/24/2004] [Accepted: 04/02/2004] [Indexed: 11/21/2022]
Abstract
Micromolar concentrations of the flavonoid kaempferol were found to efficiently block cerebellar granule cell (CGC) death through low K+-induced apoptosis, as demonstrated by prevention of the activation of caspase-3, internucleosomal DNA fragmentation, and chromatin condensation, without a significant rise in intracellular free Ca2+ concentration. Half of the maximum protection against CGC apoptosis was attained with 8 +/- 2 microM kaempferol. Reactive oxygen species (ROS) were monitored with 2',7'-dichlorodihydrofluorescein diacetate. Quantitative analysis of intracellularly and extracellularly oriented ROS production up to 3 h from the onset of low K+-induced CGC apoptosis was carried out with acquired digital fluorescence microscopy images of CGC in culture plates using a CCD camera, and also with fluorescence measurements of resuspended CGCs. In both cases, nearly 90% of ROS production by CGCs during the early stages (up to 3 h) after induction of low-K+ apoptosis occurs at the plasma membrane. Kaempferol, at concentrations that blocked CGC apoptosis, has been found to be a particularly potent blocker of extracellularly oriented ROS production by CGCs, and to inhibit the ascorbate-dependent NADH oxidase and superoxide anion production activities of the neuronal plasma membrane redox chain.
Collapse
Affiliation(s)
- Alejandro Khalil Samhan-Arias
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias and Escuela de Ingenierías Agrarias, Universidad de Extremadura, Badajoz, Spain
| | | | | |
Collapse
|