1
|
Liuzzi GM, Petraglia T, Latronico T, Crescenzi A, Rossano R. Antioxidant Compounds from Edible Mushrooms as Potential Candidates for Treating Age-Related Neurodegenerative Diseases. Nutrients 2023; 15:nu15081913. [PMID: 37111131 PMCID: PMC10145943 DOI: 10.3390/nu15081913] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The last century has seen an increase in our life expectancy. As a result, various age-related diseases, such as neurodegenerative diseases (NDs), have emerged, representing new challenges to society. Oxidative stress (OS), a condition of redox imbalance resulting from excessive production of reactive oxygen species, represents a common feature that characterizes the brains of elderly people, thus contributing to NDs. Consequently, antioxidant supplementation or dietary intake of antioxidant-containing foods could represent an effective preventive and therapeutic intervention to maintain the integrity and survival of neurons and to counteract the neurodegenerative pathologies associated with aging. Food contains numerous bioactive molecules with beneficial actions for human health. To this purpose, a wide range of edible mushrooms have been reported to produce different antioxidant compounds such as phenolics, flavonoids, polysaccharides, vitamins, carotenoids, ergothioneine, and others, which might be used for dietary supplementation to enhance antioxidant defenses and, consequently, the prevention of age-related neurological diseases. In this review, we summarized the role of oxidative stress in age-related NDs, focusing on the current knowledge of the antioxidant compounds present in edible mushrooms, and highlighting their potential to preserve healthy aging by counteracting age-associated NDs.
Collapse
Affiliation(s)
- Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Tania Petraglia
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70126 Bari, Italy
| | - Aniello Crescenzi
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
2
|
Mai HN, Chung YH, Shin EJ, Kim DJ, Sharma N, Lee YJ, Jeong JH, Nah SY, Jang CG, Kim HC. Glutathione peroxidase-1 overexpressing transgenic mice are protected from cocaine-induced drug dependence. Neurochem Int 2019; 124:264-273. [DOI: 10.1016/j.neuint.2019.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/13/2019] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
|
3
|
Nazari QA, Mizuno K, Kume T, Takada-Takatori Y, Izumi Y, Akaike A. In Vivo Brain Oxidative Stress Model Induced by Microinjection of Sodium Nitroprusside in Mice. J Pharmacol Sci 2012; 120:105-11. [DOI: 10.1254/jphs.12143fp] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
4
|
Rodríguez VM, Limón-Pacheco JH, Carrizales L, Mendoza-Trejo MS, Giordano M. Chronic exposure to low levels of inorganic arsenic causes alterations in locomotor activity and in the expression of dopaminergic and antioxidant systems in the albino rat. Neurotoxicol Teratol 2010; 32:640-7. [PMID: 20699118 DOI: 10.1016/j.ntt.2010.07.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 07/30/2010] [Accepted: 07/30/2010] [Indexed: 12/21/2022]
Abstract
Several studies have associated chronic arsenicism with decreases in IQ and sensory and motor alterations in humans. Likewise, studies of rodents exposed to inorganic arsenic ((i)As) have found changes in locomotor activity, brain neurochemistry, behavioral tasks, oxidative stress, and in sensory and motor nerves. In the current study, male Sprague-Dawley rats were exposed to environmentally relevant doses of (i)As (0.05, 0.5 mg (i)As/L) and to a high dose (50 mg (i)As/L) in drinking water for one year. Hypoactivity and increases in the striatal dopamine content were found in the group treated with 50 mg (i)As/L. Exposure to 0.5 and 50 mg (i)As/L increased the total brain content of As. Furthermore, (i)As exposure produced a dose-dependent up-regulation of mRNA for Mn-SOD and Trx-1 and a down-regulation of DAR-D₂ mRNA levels in the nucleus accumbens. DAR-D₁ and Nrf2 mRNA expression were down-regulated in nucleus accumbens in the group exposed to 50 mg (i)As/L. Trx-1 mRNA levels were up-regulated in the cortex in an (i)As dose-dependent manner, while DAR-D₁ mRNA expression was increased in striatum in the 0.5 mg (i)As/L group. These results show that chronic exposure to low levels of arsenic causes subtle but region-specific changes in the nervous system, especially in antioxidant systems and dopaminergic elements. These changes became behaviorally evident only in the group exposed to 50 mg (i)As/L.
Collapse
Affiliation(s)
- Verónica Mireya Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, México.
| | | | | | | | | |
Collapse
|
5
|
3,4-Methylenedioxy-N-methamphetamine (ecstasy) promotes the survival of fetal dopamine neurons in culture. Neuropharmacology 2008; 55:851-9. [PMID: 18655796 DOI: 10.1016/j.neuropharm.2008.06.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/10/2008] [Accepted: 06/24/2008] [Indexed: 11/20/2022]
Abstract
The current study examined whether modest concentrations of MDMA could increase the survival and/or neurite outgrowth of fetal midbrain dopamine (DA) neurons in vitro since increased DA neurite outgrowth has been previously observed in vivo from prenatal exposure. MDMA concentrations in fetal brain were quantified to determine relevant in vivo concentrations to employ in vitro. A dose response study in vitro demonstrated that MDMA, at concentrations observed in vivo, resulted in increased, DA-specific, neuron survival. Higher doses resulted in non-specific neurotoxicity. MDMA application immediately after culture establishment resulted in greater survival than delayed application, however both were superior to control. MDMA significantly increased the expression of the slc6a3 gene (dopamine transporter; DAT) in culture. Co-application of the DAT reuptake inhibitor methylphenidate (MPH) with MDMA attenuated this effect. Progressive reductions in MPH concentrations restored the MDMA-induced survival effect. This suggests that MDMA's action at DAT mediates the survival effect. Neurite density per neuron was unaffected by MDMA in vitro suggesting that MDMA promotes DA neuron survival but not neurite outgrowth in culture. Finally, animals prenatally exposed to MDMA and examined on postnatal day 35 showed an increase in tyrosine hydroxylase-positive (TH+) neurons in the substantia nigra but not in the ventral tegmental area. These data suggest that during development, MDMA can increase the survival of DA neurons through its action at its transporter. Understanding how MDMA increases DA neuron survival may provide insight into normal DA neuron loss during development.
Collapse
|
6
|
Tripanichkul W, Sripanichkulchai K, Duce JA, Finkelstein DI. 17β-Estradiol reduces nitrotyrosine immunoreactivity and increases SOD1 and SOD2 immunoreactivity in nigral neurons in male mice following MPTP insult. Brain Res 2007; 1164:24-31. [PMID: 17640623 DOI: 10.1016/j.brainres.2007.05.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 05/15/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Emerging evidence suggests the beneficial effects of estrogen on Parkinson's disease (PD), yet the mechanisms of action implicated remain elusive. While experimental evidence suggests that estrogen possesses potent antioxidative properties, it is still unknown whether the hormone exhibits a neuroprotection in a PD animal model through its antioxidant activities. This study therefore investigated the effects of 17beta-estradiol (E2) on the immunoreactivity of nigral neurons and glia for nitrotyrosine (NT, a stable marker for oxidative stress), Cu/Zn superoxide dismutase (SOD1) and Mn superoxide dismutase (SOD2) in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. Adult male mice were treated with E2 or vehicle for 11 days during which they were injected with MPTP or saline on the sixth day. The brains were collected on day 11 and quantitative immunohistochemistry was used to assess the number of NT-, SOD1- and SOD2-immunoreactive (IR) cells in the substantia nigra pars compacta (SNpc). In saline-treated group, E2 decreased NT-IR neuronal number and raised SOD1 and SOD2 expression in neurons and glia in the SNpc. MPTP induced a significant increase in the number of NT- and SOD2-IR neurons, but decreased the number of SOD1-IR neurons. MPTP also triggered a significant increase of SOD2- and SOD1-IR glial number. E2 pretreatment in MPTP mice reduced the number of NT-IR neurons, increased the number of SOD1- and SOD2-IR neurons, but did not alter the MPTP effect on glia immunoreactive to either SOD. Stimulation of SOD1 and SOD2 expression in nigral neurons suggests that E2 provides neuroprotection against MPTP-induced oxidative stress, partly through its ability to act as an antioxidant.
Collapse
Affiliation(s)
- Wanida Tripanichkul
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok, 10110, Thailand
| | | | | | | |
Collapse
|
7
|
Gigineishvili TV, Gegenava LG, Machavariani NA, Magradze NM. Variations in the content of some trace elements and macroelements in the hippocampus of rats during learning and memory retrieval after destruction of the entorhinal cortex. Bull Exp Biol Med 2007; 143:667-9. [DOI: 10.1007/s10517-007-0209-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Youdim MBH, Grünblatt E, Mandel S. The copper chelator, D-penicillamine, does not attenuate MPTP induced dopamine depletion in mice. J Neural Transm (Vienna) 2006; 114:205-9. [PMID: 16736232 DOI: 10.1007/s00702-006-0499-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 03/14/2006] [Indexed: 11/24/2022]
Abstract
In MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and 6-hydroxydopamine induced dopaminergic neurotoxicity and Parkinson's disease iron accumulates in substantia nigra pars compacta which has been suggested to participate in oxidative stress induced neurodegeneration. Pretreatment with iron chelators desferal, clioquinol, VK-28 and M30 are neuroprotective in both models. To determine the specificity of chelation neuroprotective activity we have examined the effect of D-penicillamine, a relatively specific copper chelator, in the mice model of MPTP-induced dopamine depletion. Our studies show that D-penicillamine, employed for removal of copper in Wilson disease is relatively weak in preventing dopaminergic neurotoxicity induced by MPTP, as compared to iron chelators previously studied. The results indicate that for prevention of MPTP-induced dopamine depletion and dopamine neurodegeneration, iron rather than copper chelation may be more effective and specific.
Collapse
Affiliation(s)
- M B H Youdim
- Eve Topf and US National Parkinson Foundation, Centers of Excellence For Neurodegenerative Diseases Research, Technion-Rappaport Family Faculty of Medicine, Haifa, Israel.
| | | | | |
Collapse
|
9
|
Choi JY, Jang EH, Park CS, Kang JH. Enhanced susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in high-fat diet-induced obesity. Free Radic Biol Med 2005; 38:806-16. [PMID: 15721991 DOI: 10.1016/j.freeradbiomed.2004.12.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 11/16/2004] [Accepted: 12/08/2004] [Indexed: 01/22/2023]
Abstract
Currently, obesity is considered a systemic inflammation; however, the effects of obesity on the vulnerability of dopaminergic neurons to oxidative stress are not fully defined. We evaluated the effects of high-fat diet-induced obesity (HF DIO) on neurotoxicity in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Eight weeks after a HF or matched normal diet, a severe decrease in the levels of striatal dopamine and of nigral microtubule-associated protein 2, manganese superoxide dismutase, and tyrosine hydroxylase was observed in obese mice treated with subtoxic doses of MPTP (20 mg/kg) compared with the matched lean group. In addition, the levels of nitrate/nitrite and thiobarbituric acid-malondialdehyde adducts in the substantia nigra of obese mice were reciprocally elevated or suppressed by MPTP. Interestingly, striatal nNOS phosphorylation and dopamine turnover were elevated in obese mice after MPTP treatment, but were not observed in lean mice. The nitrotyrosine immunoreactivity for evaluation of nigral nitrogenous stress in obese mice with MPTP was higher than that in matched lean mice. At higher doses of MPTP (60 mg/kg), the mortality was higher in obese mice than in lean mice. These results suggest that DIO may increase the vulnerability of dopaminergic neurons to MPTP via increased levels of reactive oxygen and nitrogen species, and the role of nNOS phosphorylation in the MPTP toxicities and dopamine homeostasis should be further evaluated.
Collapse
Affiliation(s)
- Ji-Young Choi
- Department of Pharmacology, Medicinal Toxicology Research Center, CDIR, Inha University, Incheon 400-712, South Korea
| | | | | | | |
Collapse
|
10
|
Kunikowska G, Jenner P. Alterations in m-RNA expression for Cu,Zn-superoxide dismutase and glutathione peroxidase in the basal ganglia of MPTP-treated marmosets and patients with Parkinson's disease. Brain Res 2003; 968:206-18. [PMID: 12663090 DOI: 10.1016/s0006-8993(03)02240-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alterations occurring in the antioxidant enzymes, copper, zinc-dependent superoxide dismutase (Cu,Zn-SOD) and glutathione peroxidase (GPX) following nigral dopaminergic denervation are unclear. We now report on the distribution and levels of m-RNA for Cu,Zn-SOD and GPX in basal ganglia of normal and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets, and in normal individuals and patients with Parkinson's disease (PD) using in situ hybridization histochemistry and oligodeoxynucleotide (single-stranded DNA) probes. Cu,Zn-SOD and GPX m-RNA was present throughout basal ganglia (nucleus accumbens, caudate-putamen, globus pallidus, substantia nigra) in the common marmoset, with the highest levels being in substantia nigra (SN). Following MPTP induced nigral cell loss, Cu,Zn-SOD m-RNA levels were decreased in all areas but the SNr, and particularly in SNc (71%, P<0.001). MPTP-treatment had no effect on GPX m-RNA expression in any area of basal ganglia. Cu,Zn-SOD and GPX m-RNA was also present in the normal human SN. In PD, however, Cu,Zn-SOD m-RNA was significantly decreased (89%, P<0.005) in SNc, and there was a near-complete loss of GPX m-RNA in both SNc (100%, P<0.005) and SNr (88%, P<0.005). The loss of Cu,Zn-SOD m-RNA in SNc in MPTP-treated marmosets and patients with PD suggests that it is primarily located in dopaminergic neuronal cell bodies. The loss of GPX m-RNA in SNc in PD also suggests a localisation to dopaminergic cell bodies, but the similar change in SNr may indicate its presence in dopaminergic neurites. In contrast, the absence of change in GPX m-RNA in MPTP-treated primates appears to rule out its presence in dopaminergic cells in this species, but this may only be apparent and may reflect increased expression in glial cells following acute toxin treatment.
Collapse
Affiliation(s)
- Grazyna Kunikowska
- Neurodegenerative Diseases Research Centre, Guy's, King's and St Thomas' School of Biomedical Sciences, King's College, London, UK
| | | |
Collapse
|
11
|
Kunikowska G, Gallagher I, Glover V, Clow A, Jenner P. Effects of short- and long-term (--)-deprenyl administration on mRNA for copper, zinc- and manganese-superoxide dismutase and glutathione peroxidase in rat brain. Brain Res 2002; 953:1-11. [PMID: 12384232 DOI: 10.1016/s0006-8993(02)03187-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of short-term (3 weeks, 2 mg/kg day) and long-term (12 and 20 months, 0.5 mg/kg day) administration of (-)-deprenyl on the mRNA expression of three neuroprotective enzymes in subdivisions of rat basal ganglia was investigated. In situ hybridisation histochemistry with oligodeoxynucleotide probes was used to measure levels of copper, zinc superoxide dismutase (Cu,Zn-SOD), manganese superoxide dismutase (Mn-SOD), and glutathione peroxidase (GPX) mRNA. The 3-week administration of (-)-deprenyl caused a significant increase in Cu,Zn-SOD mRNA in the nucleus accumbens (NA) (P<0.05), striatum (CP) (P<0.01), and globus pallidus (GP) (P<0.05), but had no effect on Mn-SOD or GPX mRNA levels throughout basal ganglia. In rats which received (-)-deprenyl for 12 months, there was a significant increase in Mn-SOD mRNA in the NA, CP, GP, and substantia nigra (SN) (all P<0.05); there were no changes in either Cu,Zn-SOD or GPX mRNA. Except for the significant increase in Cu,Zn-SOD mRNA in SN pars compacta (SC) (P<0.05), by 20 months there were almost no differences between (-)-deprenyl-treated and age-matched control animals that had received equivalent injections of saline. We conclude that (-)-deprenyl administration can induce mRNA expression for both forms of SOD, but the effects are variable and not sustained over 20 months.
Collapse
Affiliation(s)
- Grazyna Kunikowska
- Neurodegenerative Diseases Research Centre, Division of Pharmacology & Therapeutics, Guy's, King's and St. Thomas School of Biomedical Sciences, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|