Effects of endothelin-1 on the relaxation of rat coronary arteries.
J Cardiovasc Pharmacol 2009;
54:445-50. [PMID:
19730389 DOI:
10.1097/fjc.0b013e3181bae3f0]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To analyze the effects of endothelin-1 on the b-adrenergic response of the coronary circulation, 2-mm-long segments of coronary arteries from rats were prepared for isometric tension recording in organ baths. The relaxation to isoproterenol (3 x 10(-8) M), field electrical stimulation (4 Hz, 0.1-millisecond duration, 10 seconds), acetylcholine (3 x 10(-8) M), and sodium nitroprusside (10(-9) M) was recorded in arteries precontracted with U46619 (10(-7) to 5 x 10(-7) M) before and after treatment with endothelin-1 (3 3 10210 and 1029 M). The relaxation to isoproterenol was increased by treatment with endothelin-1 and with the endothelin ET(B) antagonist BQ788 (10(-6) M) but not with the endothelin ET(A) antagonist BQ123 (10(-6) M) or with the blocker of protein kinase C chelerythrine (10(-5) M). In the presence of BQ788, BQ123, or chelerythrine, endothelin-1 did not modify the relaxation to isoproterenol. Treatment with endothelin-1 did not modify the relaxation to electrical stimulation, acetylcholine, or sodium nitroprusside. These results suggest that endothelin-1 may potentiate coronary beta-adrenergic vasodilatation, at least in part due to stimulation of endothelin ET(A) receptors and activation of protein kinase C.
Collapse