1
|
Abu-Mahfouz A, Ali M, Elfiky A. Anti-breast cancer drugs targeting cell-surface glucose-regulated protein 78: a drug repositioning in silico study. J Biomol Struct Dyn 2023; 41:7794-7808. [PMID: 36129131 DOI: 10.1080/07391102.2022.2125076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
Breast cancer (BC) is prevalent worldwide and is a leading cause of death among women. However, cell-surface glucose-regulated protein 78 (cs-GRP78) is overexpressed in several types of cancer and during pathogen infections. This study examines two well-known BC drugs approved by the FDA as BC treatments to GRP78. The first type consists of inhibitors of cyclin-based kinases 4/6, including abemaciclib, palbociclib, ribociclib, and dinaciclib. In addition, tunicamycin, and doxorubicin, which are among the most effective anticancer drugs for early and late-stage BC, are tested against GRP78. As (-)-epiGallocatechin gallate inhibits GRP78, it is also being evaluated (used as positive control). Thus, using molecular dynamics simulation approaches, this study aims to examine the advantages of targeting GRP78, which represents a promising cancer therapy regime. In light of recent advances in computational drug response prediction models, this study aimed to examine the benefits of GRP78 targeting, which represents a promising cancer therapy regime, by utilizing combined molecular docking and molecular dynamics simulation approaches. The simulated protein (50 ns) was docked with the drugs, then a second round of dynamics simulation was performed for 100 ns. After that, the binding free energies were calculated from 30 to 100 ns for each complex during the simulation period. These findings demonstrate the efficacy of abemaciclib, ribociclib, and tunicamycin in binding to the nucleotide-binding domain of the GRP78, paving the way for elucidating the mode of interactions between these drugs and cancer (and other stressed) cells that overexpress GRP78.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Alaa Abu-Mahfouz
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Maha Ali
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Abdo Elfiky
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Wei J, Zhan J, Ji H, Xu Y, Xu Q, Zhu X, Liu Y. Fibroblast Upregulation of Vitamin D Receptor Represents a Self-Protective Response to Limit Fibroblast Proliferation and Activation during Pulmonary Fibrosis. Antioxidants (Basel) 2023; 12:1634. [PMID: 37627629 PMCID: PMC10451996 DOI: 10.3390/antiox12081634] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Dysregulation of vitamin D receptor (VDR) is implicated in chronic obstructive pulmonary disease. However, whether VDR dysregulation contributes to the development of pulmonary fibrosis remains largely unknown. Analysis of bulk and single-cell RNA profiling datasets revealed VDR upregulation in lung fibroblasts from patients with pulmonary fibrosis or fibrotic mice, which was validated in lung fibroblasts from bleomycin-exposed mice and bleomycin-treated fibroblasts. Stable VDR knockdown promoted, whereas the VDR agonist paricalcitol suppressed lung fibroblast proliferation and activation. Gene set enrichment analysis (GSEA) showed that the JAK/STAT pathway and unfolded protein response (UPR), a process related to endoplasmic reticulum (ER) stress, were enriched in lung fibroblasts of fibrotic lungs. Stable VDR knockdown stimulated, but paricalcitol suppressed ER stress and JAK1/STAT3 activation in lung fibroblasts. The STAT3 inhibitor blocked bleomycin- or stable VDR knockdown-induced ER stress. Paricalcitol inhibited the bleomycin-induced enrichment of STAT3 to the ATF6 promoter, thereby suppressing ATF6 expression in fibroblasts. Paricalcitol or intrapulmonary VDR overexpression inactivated JAK1/STAT3 and suppressed ER stress in bleomycin-treated mice, thus resulting in the inhibition of fibroblast proliferation and activation. Collectively, this study suggests that fibroblast VDR upregulation may be a self-protective response to limit fibroblast proliferation and activation during pulmonary fibrosis by suppressing the JAK1/STAT3/ER stress pathway.
Collapse
Affiliation(s)
- Juan Wei
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China
| | - Junhui Zhan
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Hui Ji
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Yitong Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Qingfeng Xu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, Shanghai 200433, China
| | - Yujian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; (J.W.); (J.Z.); (H.J.); (Y.X.); (Q.X.)
| |
Collapse
|
3
|
Endoplasmic Reticulum Stress in Hepatitis B Virus and Hepatitis C Virus Infection. Viruses 2022; 14:v14122630. [PMID: 36560634 PMCID: PMC9780809 DOI: 10.3390/v14122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Endoplasmic reticulum (ER) stress, a type of cellular stress, always occurs when unfolded or misfolded proteins accumulating in the ER exceed the protein folding capacity. Because of the demand for rapid viral protein synthesis after viral infection, viral infections become a risk factor for ER stress. The hepatocyte is a cell with large and well-developed ER, and hepatitis virus infection is widespread in the population, indicating the interaction between hepatitis viruses and ER stress may have significance for managing liver diseases. In this paper, we review the process that is initiated by the hepatocyte through ER stress against HBV and HCV infection and explain how this information can be helpful in the treatment of HBV/HCV-related diseases.
Collapse
|
4
|
Dios-Barbeito S, González R, Cadenas M, García LF, Victor VM, Padillo FJ, Muntané J. Impact of nitric oxide in liver cancer microenvironment. Nitric Oxide 2022; 128:1-11. [DOI: 10.1016/j.niox.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022]
|
5
|
Wang B, Zhu Y, Yu C, Zhang C, Tang Q, Huang H, Zhao Z. Hepatitis C virus induces oxidation and degradation of apolipoprotein B to enhance lipid accumulation and promote viral production. PLoS Pathog 2021; 17:e1009889. [PMID: 34492079 PMCID: PMC8448335 DOI: 10.1371/journal.ppat.1009889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/17/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection induces the degradation and decreases the secretion of apolipoprotein B (ApoB). Impaired production and secretion of ApoB-containing lipoprotein is associated with an increase in hepatic steatosis. Therefore, HCV infection-induced degradation of ApoB may contribute to hepatic steatosis and decreased lipoprotein secretion, but the mechanism of HCV infection-induced ApoB degradation has not been completely elucidated. In this study, we found that the ApoB level in HCV-infected cells was regulated by proteasome-associated degradation but not autophagic degradation. ApoB was degraded by the 20S proteasome in a ubiquitin-independent manner. HCV induced the oxidation of ApoB via oxidative stress, and oxidized ApoB was recognized by the PSMA5 and PSMA6 subunits of the 20S proteasome for degradation. Further study showed that ApoB was degraded at endoplasmic reticulum (ER)-associated lipid droplets (LDs) and that the retrotranslocation and degradation of ApoB required Derlin-1 but not gp78 or p97. Moreover, we found that knockdown of ApoB before infection increased the cellular lipid content and enhanced HCV assembly. Overexpression of ApoB-50 inhibited lipid accumulation and repressed viral assembly in HCV-infected cells. Our study reveals a novel mechanism of ApoB degradation and lipid accumulation during HCV infection and might suggest new therapeutic strategies for hepatic steatosis. Hepatitis C virus (HCV) infection induces the degradation of apolipoprotein B (ApoB), which is the primary apolipoprotein in low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL). Impaired production and secretion of ApoB-containing lipoprotein is associated with an increase in hepatic steatosis. Thus, ApoB degradation might contribute to HCV infection-induced fatty liver. Here, we found that ApoB was not degraded through endoplasmic reticulum-associated degradation (ERAD) or autophagy, as reported previously. Instead, HCV infection induced ApoB oxidation through oxidative stress, and oxidatively damaged ApoB could be recognized and directly degraded by the 20S proteasome. We also found that ApoB was retrotranslocated from the endoplasmic reticulum (ER) to lipid droplets (LDs) for degradation. Through overexpression of ApoB-50, which can mediate the assembly and secretion of LDL and VLDL, we confirmed that ApoB degradation contributed to hepatocellular lipid accumulation induced by HCV infection. Additionally, expression of ApoB-50 impaired HCV production due to the observed decrease in lipid accumulation. In this study, we identified new mechanisms of ApoB degradation and HCV-induced lipid accumulation, and our findings might facilitate the development of novel therapeutic strategies for HCV infection-induced fatty liver.
Collapse
Affiliation(s)
- Bei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congci Yu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chongyang Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Tang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - He Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- * E-mail:
| | - Zhendong Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Montero P, Milara J, Roger I, Cortijo J. Role of JAK/STAT in Interstitial Lung Diseases; Molecular and Cellular Mechanisms. Int J Mol Sci 2021; 22:6211. [PMID: 34207510 PMCID: PMC8226626 DOI: 10.3390/ijms22126211] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 02/07/2023] Open
Abstract
Interstitial lung diseases (ILDs) comprise different fibrotic lung disorders characterized by cellular proliferation, interstitial inflammation, and fibrosis. The JAK/STAT molecular pathway is activated under the interaction of a broad number of profibrotic/pro-inflammatory cytokines, such as IL-6, IL-11, and IL-13, among others, which are increased in different ILDs. Similarly, several growth factors over-expressed in ILDs, such as platelet-derived growth factor (PDGF), transforming growth factor β1 (TGF-β1), and fibroblast growth factor (FGF) activate JAK/STAT by canonical or non-canonical pathways, which indicates a predominant role of JAK/STAT in ILDs. Between the different JAK/STAT isoforms, it appears that JAK2/STAT3 are predominant, initiating cellular changes observed in ILDs. This review analyzes the expression and distribution of different JAK/STAT isoforms in ILDs lung tissue and different cell types related to ILDs, such as lung fibroblasts and alveolar epithelial type II cells and analyzes JAK/STAT activation. The effect of JAK/STAT phosphorylation on cellular fibrotic processes, such as proliferation, senescence, autophagy, endoplasmic reticulum stress, or epithelial/fibroblast to mesenchymal transition will be described. The small molecules directed to inhibit JAK/STAT activation were assayed in vitro and in in vivo models of pulmonary fibrosis, and different JAK inhibitors are currently approved for myeloproliferative disorders. Recent evidence indicates that JAK inhibitors or monoclonal antibodies directed to block IL-6 are used as compassionate use to attenuate the excessive inflammation and lung fibrosis related to SARS-CoV-2 virus. These altogether indicate that JAK/STAT pathway is an attractive target to be proven in future clinical trials of lung fibrotic disorders.
Collapse
Affiliation(s)
- Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (I.R.); (J.C.)
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (I.R.); (J.C.)
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium of Valencia, 46014 Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (I.R.); (J.C.)
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; (I.R.); (J.C.)
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, 28029 Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium, 46014 Valencia, Spain
| |
Collapse
|
7
|
Reungoat E, Grigorov B, Zoulim F, Pécheur EI. Molecular Crosstalk between the Hepatitis C Virus and the Extracellular Matrix in Liver Fibrogenesis and Early Carcinogenesis. Cancers (Basel) 2021; 13:cancers13092270. [PMID: 34065048 PMCID: PMC8125929 DOI: 10.3390/cancers13092270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary In the era of direct-acting antivirals against the hepatitis C virus (HCV), curing chronic hepatitis C has become a reality. However, while replicating chronically, HCV creates a peculiar state of inflammation and oxidative stress in the infected liver, which fuels DNA damage at the onset of HCV-induced hepatocellular carcinoma (HCC). This cancer, the second leading cause of death by cancer, remains of bad prognosis when diagnosed. This review aims to decipher how HCV durably alters elements of the extracellular matrix that compose the liver microenvironment, directly through its viral proteins or indirectly through the induction of cytokine secretion, thereby leading to liver fibrosis, cirrhosis, and, ultimately, HCC. Abstract Chronic infection by the hepatitis C virus (HCV) is a major cause of liver diseases, predisposing to fibrosis and hepatocellular carcinoma. Liver fibrosis is characterized by an overly abundant accumulation of components of the hepatic extracellular matrix, such as collagen and elastin, with consequences on the properties of this microenvironment and cancer initiation and growth. This review will provide an update on mechanistic concepts of HCV-related liver fibrosis/cirrhosis and early stages of carcinogenesis, with a dissection of the molecular details of the crosstalk during disease progression between hepatocytes, the extracellular matrix, and hepatic stellate cells.
Collapse
|
8
|
Chu JYK, Ou JHJ. Autophagy in HCV Replication and Protein Trafficking. Int J Mol Sci 2021; 22:ijms22031089. [PMID: 33499186 PMCID: PMC7865906 DOI: 10.3390/ijms22031089] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a catabolic process that is important for maintaining cellular homeostasis. It is also known to possess other functions including protein trafficking and anti-microbial activities. Hepatitis C virus (HCV) is known to co-opt cellular autophagy pathway to promote its own replication. HCV regulates autophagy through multiple mechanisms to control intracellular protein and membrane trafficking to enhance its replication and suppress host innate immune response. In this review, we discuss the current knowledge on the interplay between HCV and autophagy and the crosstalk between HCV-induced autophagy and host innate immune responses.
Collapse
|
9
|
Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3818196. [PMID: 32256950 PMCID: PMC7104326 DOI: 10.1155/2020/3818196] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
The advanced glycation end products (AGEs) are organic molecules formed in any living organisms with a great variety of structural and functional properties. They are considered organic markers of the glycation process. Due to their great heterogeneity, there is no specific test for their operational measurement. In this review, we have updated the most common chromatographic, colorimetric, spectroscopic, mass spectrometric, and serological methods, typically used for the determination of AGEs in biological samples. We have described their signaling and signal transduction mechanisms and cell epigenetic effects. Although mass spectrometric analysis is not widespread in the detection of AGEs at the clinical level, this technique is highly promising for the early diagnosis and therapeutics of diseases caused by AGEs. Protocols are available for high-resolution mass spectrometry of glycated proteins although they are characterized by complex machine management. Simpler procedures are available although much less precise than mass spectrometry. Among them, immunochemical tests are very common since they are able to detect AGEs in a simple and immediate way. In these years, new methodologies have been developed using an in vivo novel and noninvasive spectroscopic methods. These methods are based on the measurement of autofluorescence of AGEs. Another method consists of detecting AGEs in the human skin to detect chronic exposure, without the inconvenience of invasive methods. The aim of this review is to compare the different approaches of measuring AGEs at a clinical perspective due to their strict association with oxidative stress and inflammation.
Collapse
|
10
|
Shahid M, Idrees M, Butt AM, Raza SM, Amin I, Rasul A, Afzal S. Blood-based gene expression profile of oxidative stress and antioxidant genes for identifying surrogate markers of liver tissue injury in chronic hepatitis C patients. Arch Virol 2020; 165:809-822. [PMID: 32103340 DOI: 10.1007/s00705-020-04564-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Oxidative stress is the process by which reactive molecules and free radicals are formed in cells. In this study, we report the blood-based gene expression profile of oxidative stress and antioxidant genes for identifying surrogate markers of liver tissue in chronic hepatitis C (CHC) patients by using real-time PCR. A total of 144 untreated patients diagnosed with CHC having genotype 3a and 20 healthy controls were selected for the present study. Liver biopsy staging and grading of CHC patients were performed using the METAVIR score. Total RNA was extracted from liver tissue and blood samples, followed by cDNA synthesis and real-time PCR. The relative expression of genes was calculated using the ΔΔCt method. The expression profile of 84 genes associated with oxidative stress and antioxidants was determined in liver tissue and blood samples. In liver tissue, 46 differentially expressed genes (upregulated, 27; downregulated, 19) were identified in CHC patients compared to normal samples. In blood, 61 genes (upregulated, 51; downregulated; 10) were significantly expressed in CHC patients. A comparison of gene expression in liver and whole blood showed that 20 genes were expressed in a similar manner in the liver and blood. The expression levels of commonly expressed liver and blood-based genes were also correlated with clinical factors in CHC patients. A receiver operating curve (ROC) analysis of oxidative stress genes (ALB, CAT, DHCR24, GPX7, PRDX5, and MBL2) showed that infections in patients with CHC can be distinguished from healthy controls. In conclusion, blood-based gene expression can reflect the behavior of oxidative stress genes in liver tissue, and this blood-based gene expression study in CHC patients explores new blood-based non-invasive biomarkers that represent liver damage.
Collapse
Affiliation(s)
- Muhammad Shahid
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.
| | - Muhammad Idrees
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.,Hazara University, Mansehra, Pakistan
| | - Azeem Mehmood Butt
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.,Department of Bioscience, COMSATS University Islamabad, Islamabad, Pakistan
| | - Syed Mohsin Raza
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan.,Institute of Biomedical and Allied Health Sciences, University of Health Science, Lahore, Pakistan
| | - Iram Amin
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Afza Rasul
- Department of Statistic, Lahore College for Women University, Lahore, Pakistan
| | - Samia Afzal
- Divison of Molecular Virology, National Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
11
|
Shalapour S, Karin M. Cruel to Be Kind: Epithelial, Microbial, and Immune Cell Interactions in Gastrointestinal Cancers. Annu Rev Immunol 2020; 38:649-671. [PMID: 32040356 DOI: 10.1146/annurev-immunol-082019-081656] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A plethora of experimental and epidemiological evidence supports a critical role for inflammation and adaptive immunity in the onset of cancer and in shaping its response to therapy. These data are particularly robust for gastrointestinal (GI) cancers, such as those affecting the GI tract, liver, and pancreas, on which this review is focused. We propose a unifying hypothesis according to which intestinal barrier disruption is the origin of tumor-promoting inflammation that acts in conjunction with tissue-specific cancer-initiating mutations. The gut microbiota and its products impact tissue-resident and recruited myeloid cells that promote tumorigenesis through secretion of growth- and survival-promoting cytokines that act on epithelial cells, as well as fibrogenic and immunosuppressive cytokines that interfere with the proper function of adaptive antitumor immunity. Understanding these relationships should improve our ability to prevent cancer development and stimulate the immune system to eliminate existing malignancies.
Collapse
Affiliation(s)
- Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
12
|
Zheng XY, Lv YD, Jin FY, Wu XJ, Zhu J, Ruan Y. Kainic acid hyperphosphorylates tau via inflammasome activation in MAPT transgenic mice. Aging (Albany NY) 2019; 11:10923-10938. [PMID: 31789603 PMCID: PMC6932880 DOI: 10.18632/aging.102495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 11/17/2019] [Indexed: 01/26/2023]
Abstract
The excitotoxicity induced by kainic acid (KA) is thought to contribute to the development of Alzheimer’s disease (AD); however, the mechanisms underlying this excitotoxicity remain unknown. In the current study, we investigated the dynamic changes in tau phosphorylation and their associations with the excitotoxicity induced by intraperitoneal injection of KA in the mouse brain. We found that KA-induced excitotoxicity led to sustained hyperphosphorylation of tau in MAPT transgenic (Tg) mice. By using cultured microglia and mouse brains, we showed that KA treatment specifically induced endoplasmic reticulum (ER) stress, which was characterized by activation of the major biomarkers of ER, such as ATF6, GRP78, and IRE1, and resulted in stimulation of inflammasomes. KA receptors (KARs), such as Girk1, were determined to be involved in this KA-induced ER stress. ER stress was also shown to activate inflammasomes by stimulating the expression of the two major components of inflammasomes, nucleotide binding oligomerization domain (NOD)-like receptor (NLR) protein 3 (NLRP3) and nuclear factor (NF)-κB, and eventually causing the production of interleukin-1β (IL-1β). Inhibition of NLRP3 or NF-κB by Bay11-7082 resulted in reduction of KA-induced IL-1β production. Our results also revealed the positive effects of IL-1β on tau phosphorylation, which was blocked by Bay11-7082. Notably, the results indicate that Bay11-7082 acts against KA-induced neuronal degeneration, tau phosphorylation, and memory defects via inflammasomes, which further highlight the protective role of Bay11-7082 in KA-induced neuronal defects.
Collapse
Affiliation(s)
- Xiang-Yu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu-Dan Lv
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Feng-Yan Jin
- Department of Hematology, Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiu-Juan Wu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm 141 86, Sweden
| | - Yang Ruan
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
13
|
Duvigneau JC, Luís A, Gorman AM, Samali A, Kaltenecker D, Moriggl R, Kozlov AV. Crosstalk between inflammatory mediators and endoplasmic reticulum stress in liver diseases. Cytokine 2019; 124:154577. [DOI: 10.1016/j.cyto.2018.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
14
|
Koumine Promotes ROS Production to Suppress Hepatocellular Carcinoma Cell Proliferation Via NF-κB and ERK/p38 MAPK Signaling. Biomolecules 2019; 9:biom9100559. [PMID: 31581704 PMCID: PMC6843837 DOI: 10.3390/biom9100559] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
In the past decades, hepatocellular carcinoma (HCC) has been receiving increased attention due to rising morbidity and mortality in both developing and developed countries. Koumine, one of the significant alkaloidal constituents of Gelsemium elegans Benth., has been regarded as a promising anti-inflammation, anxiolytic, and analgesic agent, as well as an anti-tumor agent. In the present study, we attempted to provide a novel mechanism by which koumine suppresses HCC cell proliferation. We demonstrated that koumine might suppress the proliferation of HCC cells and promote apoptosis in HCC cells dose-dependently. Under koumine treatment, the mitochondria membrane potential was significantly decreased while reactive oxygen species (ROS) production was increased in HCC cells; in the meantime, the phosphorylation of ERK, p38, p65, and IκBα could all be inhibited by koumine treatment dose-dependently. More importantly, the effects of koumine upon mitochondria membrane potential, ROS production, and the phosphorylation of ERK, p38, p65, and IκBα could be significantly reversed by ROS inhibitor, indicating that koumine affects HCC cell fate and ERK/p38 MAPK and NF-κB signaling activity through producing excess ROS. In conclusion, koumine could inhibit the proliferation of HCC cells and promote apoptosis in HCC cells; NF-κB and ERK/p38 MAPK pathways could contribute to koumine functions in a ROS-dependent manner.
Collapse
|
15
|
Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A, Schmid JA. Cell Type-Specific Roles of NF-κB Linking Inflammation and Thrombosis. Front Immunol 2019; 10:85. [PMID: 30778349 PMCID: PMC6369217 DOI: 10.3389/fimmu.2019.00085] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor NF-κB is a central mediator of inflammation with multiple links to thrombotic processes. In this review, we focus on the role of NF-κB signaling in cell types within the vasculature and the circulation that are involved in thrombo-inflammatory processes. All these cells express NF-κB, which mediates important functions in cellular interactions, cell survival and differentiation, as well as expression of cytokines, chemokines, and coagulation factors. Even platelets, as anucleated cells, contain NF-κB family members and their corresponding signaling molecules, which are involved in platelet activation, as well as secondary feedback circuits. The response of endothelial cells to inflammation and NF-κB activation is characterized by the induction of adhesion molecules promoting binding and transmigration of leukocytes, while simultaneously increasing their thrombogenic potential. Paracrine signaling from endothelial cells activates NF-κB in vascular smooth muscle cells and causes a phenotypic switch to a “synthetic” state associated with a decrease in contractile proteins. Monocytes react to inflammatory situations with enforced expression of tissue factor and after differentiation to macrophages with altered polarization. Neutrophils respond with an extension of their life span—and upon full activation they can expel their DNA thereby forming so-called neutrophil extracellular traps (NETs), which exert antibacterial functions, but also induce a strong coagulatory response. This may cause formation of microthrombi that are important for the immobilization of pathogens, a process designated as immunothrombosis. However, deregulation of the complex cellular links between inflammation and thrombosis by unrestrained NET formation or the loss of the endothelial layer due to mechanical rupture or erosion can result in rapid activation and aggregation of platelets and the manifestation of thrombo-inflammatory diseases. Sepsis is an important example of such a disorder caused by a dysregulated host response to infection finally leading to severe coagulopathies. NF-κB is critically involved in these pathophysiological processes as it induces both inflammatory and thrombotic responses.
Collapse
Affiliation(s)
- Marion Mussbacher
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Manuel Salzmann
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria
| | - Bastian Hoesel
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Datler
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Philipp Hohensinner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - José Basílio
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Skin and Endothelial Research Division, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Johannes A Schmid
- Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Li H, Huang MH, Jiang JD, Peng ZG. Hepatitis C: From inflammatory pathogenesis to anti-inflammatory/hepatoprotective therapy. World J Gastroenterol 2018; 24:5297-5311. [PMID: 30598575 PMCID: PMC6305530 DOI: 10.3748/wjg.v24.i47.5297] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection commonly causes progressive liver diseases that deteriorate from chronic inflammation to fibrosis, cirrhosis and even to hepatocellular carcinoma. A long-term, persistent and uncontrolled inflammatory response is a hallmark of these diseases and further leads to hepatic injury and more severe disease progression. The levels of inflammatory cytokines and chemokines change with the states of infection and treatment, and therefore, they may serve as candidate biomarkers for disease progression and therapeutic effects. The mechanisms of HCV-induced inflammation involve classic pathogen pattern recognition, inflammasome activation, intrahepatic inflammatory cascade response, and oxidative and endoplasmic reticulum stress. Direct-acting antivirals (DAAs) are the first-choice therapy for effectively eliminating HCV, but DAAs alone are not sufficient to block the uncontrolled inflammation and severe liver injury in HCV-infected individuals. Some patients who achieve a sustained virologic response after DAA therapy are still at a long-term risk for progression to liver cirrhosis and hepatocellular carcinoma. Therefore, coupling with anti-inflammatory/hepatoprotective agents with anti-HCV effects is a promising therapeutic regimen for these patients during or after treatment with DAAs. In this review, we discuss the relationship between inflammatory mediators and HCV infection, summarize the mechanisms of HCV-induced inflammation, and describe the potential roles of anti-inflammatory/hepatoprotective drugs with anti-HCV activity in the treatment of advanced HCV infection.
Collapse
Affiliation(s)
- Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Hao Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
17
|
Khan M, Imam H, Siddiqui A. Subversion of cellular autophagy during virus infection: Insights from hepatitis B and hepatitis C viruses. LIVER RESEARCH 2018; 2:146-156. [PMID: 31803515 PMCID: PMC6892584 DOI: 10.1016/j.livres.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autophagy is a self-eating process, in which the damaged or excessed cell organelles and misfolded protein aggregates are removed from the cellular microenvironment. Autophagy is generally thought of as a pro-survival mechanism which is not only important for balancing energy supply at times of nutrient deprivation but also in the removal of various stress stimuli to ensure homeostasis. In addition to the target materials of "self" origin, autophagy can also eliminate intracellular pathogens and acts as a defense mechanism to curb infections. In addition, autophagy is linked to the host cell's innate immune response. However, viruses have evolved various strategies to manipulate and overtake host cell machinery to establish productive replication and maintain infectious process. In fact, replication of many viruses has been found to be autophagy-dependent and suppression of autophagy can potentially affect the viral replication. Thus, autophagy can either serve as an anti-viral defense mechanism or a pro-viral process that supports viral replication. Hepatitis B virus (HBV) and hepatitis C virus (HCV) are known to co-opt cellular autophagy process as a pro-viral tool. Both viruses also induce mitophagy, which contributes to the establishment of chronic hepatitis. This review focuses on the roles of autophagy and mitophagy in the chronic liver disease pathogenesis associated with HBV and HCV infections.
Collapse
|
18
|
Li L, Sun B, Gao Y, Niu H, Yuan H, Lou H. STAT3 contributes to lysosomal-mediated cell death in a novel derivative of riccardin D-treated breast cancer cells in association with TFEB. Biochem Pharmacol 2018; 150:267-279. [PMID: 29476714 DOI: 10.1016/j.bcp.2018.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/19/2018] [Indexed: 12/24/2022]
Abstract
RDD648, a novel derivative of a natural molecule riccardin D, exhibited potent anticancer activity by targeting lysosomes in vitro and in vivo. Mechanistic studies revealed that RDD648 facilitated STAT3 to translocate into the nucleus, and this activity was involved in lysosome-mediated cell death as evidenced by our finding that inhibition of STAT3 alleviated lysosomal membrane permeabilization. Further investigation indicated that nuclear STAT3 directly interacted with transcription factor TFEB, leading to the partial loss of function of TFEB, which is essential for lysosome turnover. The present study first uncovers that STAT3 contributes to lysosomal-mediated cell death in RDD648-treated breast cancer cells though interacting with TFEB, and the findings may be significant in the design of treatments for breast cancers where STAT3 is constitutively expressed.
Collapse
Affiliation(s)
- Lin Li
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012, China
| | - Bin Sun
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, China
| | - Yun Gao
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012, China
| | - Huanmin Niu
- Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan 250012, China
| | - Huiqing Yuan
- Department of Biochemistry and Molecular Biology, Shandong University, School of Medicine, Jinan 250012, China.
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of MOE (Ministry of Education), Shandong University, Jinan 250012, China.
| |
Collapse
|
19
|
Vegna S, Gregoire D, Moreau M, Lassus P, Durantel D, Assenat E, Hibner U, Simonin Y. NOD1 Participates in the Innate Immune Response Triggered by Hepatitis C Virus Polymerase. J Virol 2016; 90:6022-6035. [PMID: 27099311 PMCID: PMC4907226 DOI: 10.1128/jvi.03230-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Hepatitis C virus (HCV) triggers innate immunity signaling in the infected cell. Replication of the viral genome is dispensable for this phenotype, and we along with others have recently shown that NS5B, the viral RNA-dependent RNA polymerase, synthesizes double-stranded RNA (dsRNA) from cellular templates, thus eliciting an inflammatory response, notably via activation of type I interferon and lymphotoxin β. Here, we investigated intracellular signal transduction pathways involved in this process. Using HepaRG cells, a model that largely recapitulates the in vivo complexities of the innate immunity receptor signaling, we have confirmed that NS5B triggered increased expression of the canonical pattern recognition receptors (PRRs) specific for dsRNA, namely, RIG-I, MDA5, and Toll-like receptor 3 (TLR3). Unexpectedly, intracellular dsRNA also led to accumulation of NOD1, a receptor classically involved in recognition of bacterial peptidoglycans. NOD1 activation, confirmed by analysis of its downstream targets, was likely due to its interaction with dsRNA and was independent of RIG-I and mitochondrial antiviral signaling protein (MAVS/IPS-1/Cardif/VISA) signaling. It is likely to have a functional significance in the cellular response in the context of HCV infection since interference with the NOD1 pathway severely reduced the inflammatory response elicited by NS5B. IMPORTANCE In this study, we show that NOD1, a PRR that normally senses bacterial peptidoglycans, is activated by HCV viral polymerase, probably through an interaction with dsRNA, suggesting that NOD1 acts as an RNA ligand recognition receptor. In consequence, interference with NOD1-mediated signaling significantly weakens the inflammatory response to dsRNA. These results add a new level of complexity to the understanding of the cross talk between different classes of pattern recognition receptors and may be related to certain complications of chronic hepatitis C virus infection.
Collapse
Affiliation(s)
- Serena Vegna
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Damien Gregoire
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Marie Moreau
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Patrice Lassus
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon, University of Lyon, Lyon, France
| | - Eric Assenat
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
- Service d'Oncologie Médicale, CHU St. Eloi, Montpellier, France
| | - Urszula Hibner
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| | - Yannick Simonin
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
| |
Collapse
|
20
|
Intrinsic, extrinsic and endoplasmic reticulum stress-induced apoptosis in RK13 cells infected with equine arteritis virus. Virus Res 2016; 213:219-223. [PMID: 26732484 DOI: 10.1016/j.virusres.2015.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 11/21/2022]
Abstract
The modulation of the expression of caspases by viruses influences the cell survival of different cell types. Equine arteritis virus (EAV) induces apoptosis of BHK21 and Vero cell lines, but it is not known whether EAV induces apoptosis in RK13 cells, a common cell line routinely used in EAV diagnosis and research. In this study, we determined that caspase-3 expression was triggered after infection of RK13 cells with EAV in a time- and dose-dependent manner. We also detected caspase-8 and caspase-9 activation, indicating the stimulation of both extrinsic and intrinsic apoptosis pathways. Finally, we found caspase-12 activation, an indicator of endoplasmic reticulum stress-induced apoptosis. The variability observed in the apoptotic response in the different cell lines demonstrates that apoptosis depends on the distinctive sensitivity of each cell line used for investigation.
Collapse
|
21
|
Abstract
Although discussion of the obesity epidemic had become a cocktail party cliché, its impact on public health cannot be dismissed. In the past decade, cancer had joined the list of chronic debilitating diseases whose risk is substantially increased by hypernutrition. Here we discuss recent advances in understanding how obesity increases cancer risk and propose a unifying hypothesis according to which the major tumor-promoting mechanism triggered by hypernutrition is the indolent inflammation that takes place at particular organ sites, including liver, pancreas, and gastrointestinal tract. The mechanisms by which excessive fat deposition feeds this tumor-promoting inflammatory flame are diverse and tissue specific.
Collapse
Affiliation(s)
- Joan Font-Burgada
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093-0723, USA
| | - Beicheng Sun
- Liver Transplantation Center of the First Affiliated Hospital and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093-0723, USA.
| |
Collapse
|
22
|
Khachatoorian R, French SW. Chaperones in hepatitis C virus infection. World J Hepatol 2016; 8:9-35. [PMID: 26783419 PMCID: PMC4705456 DOI: 10.4254/wjh.v8.i1.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/01/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The hepatitis C virus (HCV) infects approximately 3% of the world population or more than 185 million people worldwide. Each year, an estimated 350000-500000 deaths occur worldwide due to HCV-associated diseases including cirrhosis and hepatocellular carcinoma. HCV is the most common indication for liver transplantation in patients with cirrhosis worldwide. HCV is an enveloped RNA virus classified in the genus Hepacivirus in the Flaviviridae family. The HCV viral life cycle in a cell can be divided into six phases: (1) binding and internalization; (2) cytoplasmic release and uncoating; (3) viral polyprotein translation and processing; (4) RNA genome replication; (5) encapsidation (packaging) and assembly; and (6) virus morphogenesis (maturation) and secretion. Many host factors are involved in the HCV life cycle. Chaperones are an important group of host cytoprotective molecules that coordinate numerous cellular processes including protein folding, multimeric protein assembly, protein trafficking, and protein degradation. All phases of the viral life cycle require chaperone activity and the interaction of viral proteins with chaperones. This review will present our current knowledge and understanding of the role of chaperones in the HCV life cycle. Analysis of chaperones in HCV infection will provide further insights into viral/host interactions and potential therapeutic targets for both HCV and other viruses.
Collapse
|
23
|
Kavaliauskis A, Arnemo M, Rishovd AL, Gjøen T. Activation of unfolded protein response pathway during infectious salmon anemia virus (ISAV) infection in vitro an in vivo. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 54:46-54. [PMID: 26303456 DOI: 10.1016/j.dci.2015.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 06/04/2023]
Abstract
Infectious salmon anemia virus (ISAV) is a salmon pathogen causing serious outbreaks in fish farms world-wide. There is currently no effective commercially available vaccine and there is a need for better understanding of host pathogen interactions with this virus. Various strains can cause both acute and persistent infections and therefore establish a balance with the host immune responses. We have studied host responses to this infection by analyzing the main branches of the unfolded protein response (UPR) in salmon cells in vitro and in tissues from infected fish to gain a better understanding of virus-host interactions. ISAV induce the main symptoms and signaling pathways of UPR (ATF6, PERK and IRE1) without inducing translational attenuation. This may be due to concomitant induction of an important negative feedback loop via the phosphatase regulator GADD34. The host cells can therefore respond with translation of cytokine and antiviral proteins to curb or control infection.
Collapse
Affiliation(s)
- Arturas Kavaliauskis
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, NO-0316 Oslo, Norway.
| | - Marianne Arnemo
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, NO-0316 Oslo, Norway.
| | - Anne-Lise Rishovd
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, NO-0316 Oslo, Norway.
| | - Tor Gjøen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, NO-0316 Oslo, Norway.
| |
Collapse
|
24
|
Abouzied MM, Eltahir HM, Taye A, Abdelrahman MS. Experimental evidence for the therapeutic potential of tempol in the treatment of acute liver injury. Mol Cell Biochem 2015; 411:107-15. [DOI: 10.1007/s11010-015-2572-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/26/2015] [Indexed: 01/04/2023]
|
25
|
Khan M, Syed GH, Kim SJ, Siddiqui A. Mitochondrial dynamics and viral infections: A close nexus. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:2822-33. [PMID: 25595529 PMCID: PMC4500740 DOI: 10.1016/j.bbamcr.2014.12.040] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 12/09/2014] [Accepted: 12/25/2014] [Indexed: 12/17/2022]
Abstract
Viruses manipulate cellular machinery and functions to subvert intracellular environment conducive for viral proliferation. They strategically alter functions of the multitasking mitochondria to influence energy production, metabolism, survival, and immune signaling. Mitochondria either occur as heterogeneous population of individual organelles or large interconnected tubular network. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections, and is dynamically maintained by mitochondrial fission and fusion. Mitochondrial dynamics in tandem with mitochondria-selective autophagy 'mitophagy' coordinates mitochondrial quality control and homeostasis. Mitochondrial dynamics impacts cellular homeostasis, metabolism, and innate-immune signaling, and thus can be major determinant of the outcome of viral infections. Herein, we review how mitochondrial dynamics is affected during viral infections and how this complex interplay benefits the viral infectious process and associated diseases.
Collapse
Affiliation(s)
- Mohsin Khan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gulam Hussain Syed
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Seong-Jun Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Jiang X, Kanda T, Wu S, Nakamoto S, Nakamura M, Sasaki R, Haga Y, Wakita T, Shirasawa H, Yokosuka O. Hepatitis C Virus Nonstructural Protein 5A Inhibits MG132-Induced Apoptosis of Hepatocytes in Line with NF-κB-Nuclear Translocation. PLoS One 2015; 10:e0131973. [PMID: 26133378 PMCID: PMC4489642 DOI: 10.1371/journal.pone.0131973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
Background Hepatitis C virus (HCV) infection is one of the major causes of cirrhosis and hepatocellular carcinoma. HCV nonstructural protein 5A (NS5A) is an attractive antiviral target and plays an important role in HCV replication as well as hepatocarcinogenesis. The aim of this study was to assess the effect of HCV NS5A protein in the abrogation of apoptotic cell death induced by the proteasome inhibitor MG132. Methods Apoptotic responses to MG132 and the expression of molecules involved in NF-κB signaling pathways in human hepatocytes were investigated with or without the expression of HCV NS5A. Results HCV NS5A protected HepG2 cells against MG132-induced apoptosis, in line with NF-κB-nuclear translocation. A similar NF-κB-nuclear translocation was observed in Huh7 cells infected with HCV JFH1. In agreement with this, after treatment with MG132, HCV NS5A could elevate the transcription of several NF-κB target genes such as BCL2 and BCLXL to inhibit MG132-induced apoptosis in hepatocytes. HCV HCV NS5A also enhanced phosphorylation of IκBα. Consistent with a conferred prosurvival advantage, HCV NS5A reduced MG132-induced poly(adenosine diphosphate-ribose) polymerase cleavage. Conclusions HCV NS5A expression enhances phosphorylation of IκBα, liberates NF-κB for nuclear translocation and downregulates MG132-induced apoptotic pathways in human hepatocytes. It is possible that the disruption of proteasome-associated apoptosis plays a role in the pathogenesis of HCV infection.
Collapse
Affiliation(s)
- Xia Jiang
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Tatsuo Kanda
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
- * E-mail:
| | - Shuang Wu
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Shingo Nakamoto
- Departments of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Masato Nakamura
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Reina Sasaki
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Yuki Haga
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Shirasawa
- Departments of Molecular Virology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Osamu Yokosuka
- Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
27
|
Abbas Z, Abbas M, Abbas S, Shazi L. Hepatitis D and hepatocellular carcinoma. World J Hepatol 2015; 7:777-786. [PMID: 25914778 PMCID: PMC4404383 DOI: 10.4254/wjh.v7.i5.777] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 10/05/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis D virus (HDV) is a defective circular shape single stranded HDV RNA virus with two types of viral proteins, small and large hepatitis D antigens, surrounded by hepatitis B surface antigen. Superinfection with HDV in chronic hepatitis B is associated with a more threatening form of liver disease leading to rapid progression to cirrhosis. In spite of some controversy in the epidemiological studies, HDV infection does increase the risk of hepatocellular carcinoma (HCC) compared to hepatitis B virus (HBV) monoinfection. Hepatic decompensation, rather than development of HCC, is the first usual clinical endpoint during the course of HDV infection. Oxidative stress as a result of severe necroinflammation may progress to HCC. The large hepatitis D antigen is a regulator of various cellular functions and an activator of signal transducer and activator of transcription (STAT)3 and the nuclear factor kappa B pathway. Another proposed epigenetic mechanism by which HCC may form is the aberrant silencing of tumor suppressor genes by DNA Methyltransferases. HDV antigens have also been associated with increased histone H3 acetylation of the clusterin promoter. This enhances the expression of clusterin in infected cells, increasing cell survival potential. Any contribution of HBV DNA integration with chromosomes of infected hepatocytes is not clear at this stage. The targeted inhibition of STAT3 and cyclophilin, and augmentation of peroxisome proliferator-activated receptor γ have a potential therapeutic role in HCC.
Collapse
|
28
|
Pu X, Guo QX, Long HA, Yang CW. Effects of mTOR-STAT3 on the migration and invasion abilities of hepatoma cell and mTOR-STAT3 expression in liver cancer. ASIAN PAC J TROP MED 2015; 7:368-72. [PMID: 25063062 DOI: 10.1016/s1995-7645(14)60057-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 03/15/2014] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate the effects of mTOR-STAT3 pathway on the invasion and migration of hepatoma cell. METHODS mTOR and STAT3 expression in the hepatocellular carcinoma cell line HepG2 and normal liver cell line L02 were detected by reverse transcription PCR (RT-PCR) and western blotting. The migration and invasion abilities of cells and expression of STAT3 were detected by scratch adhesion test and transwell migration assays, after siRNA transfection blocking mTOR expression of HepG2 cells. RESULTS The HepG2 cells expression is higher compared with normal cells L02 expression. Western blotting assay showed the mTOR expression was blocked, while STAT3 expression was also decreased, after the siRNA transfection of HepG2 cells. The migration (scratch adhesion test) and invasion (transwell assays) abilities of HepG2 cells which the mTOR expression was blocked by siRNA interference were significantly decreased (P<0.05). CONCLUSION mTORSTAT3 expression in hepatoma cells HepG2 was significantly higher than that in normal liver cells. mTOR blocking can reduce the expression of STAT3, which is also closely related to the invasion and metastasis of liver cancer cells.
Collapse
Affiliation(s)
- Xia Pu
- Department of Pathology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China.
| | - Qing-Xi Guo
- Department of Pathology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Han-An Long
- Department of Pathology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| | - Cheng-Wan Yang
- Department of Pathology, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, China
| |
Collapse
|
29
|
Cellular stress responses in hepatitis C virus infection: Mastering a two-edged sword. Virus Res 2015; 209:100-17. [PMID: 25836277 DOI: 10.1016/j.virusres.2015.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects chronically more than 150 million humans worldwide. Chronic HCV infection causes severe liver disease and hepatocellular carcinoma. While immune response-mediated events are major players in HCV pathogenesis, the impact that viral replication has on cellular homeostasis is increasingly recognized as a necessary contributor to pathological manifestations of HCV infection such as steatosis, insulin-resistance or liver cancer. In this review, we will briefly overview the different cellular stress pathways that are induced by hepatitis C virus infection, the response that the cell promotes to attempt regaining homeostasis or to induce dysfunctional cell death, and how the virus co-opts these response mechanisms to promote both viral replication and survival of the infected cell. We will review the role of unfolded protein and oxidative stress responses as well as the role of auto- and mitophagy in HCV infection. Finally, we will discuss the recent discovery of a cellular chaperone involved in stress responses, the sigma-1 receptor, as a cellular factor required at the onset of HCV infection and the potential molecular events underlying the proviral role of this cellular factor in HCV infection.
Collapse
|
30
|
Hepatitis C virus nonstructural protein 5A inhibits thapsigargin-induced apoptosis. PLoS One 2014; 9:e113499. [PMID: 25409163 PMCID: PMC4237446 DOI: 10.1371/journal.pone.0113499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/24/2014] [Indexed: 12/17/2022] Open
Abstract
Background We previously reported that the hepatitis C virus (HCV) nonstructural protein 5A (NS5A) down-regulates TLR4 signaling and lipopolysaccharide-induced apoptosis of hepatocytes. There have been several reports regarding the association between HCV infection and endoplasmic reticulum (ER) stress. Here, we examined the regulation of HCV NS5A on the apoptosis of hepatocytes induced by thapsigargin, an inducer of ER stress. Methods The apoptotic response to thapsigargin and the expression of molecules involved in human hepatocyte apoptotic pathways were examined in the presence or absence of HCV NS5A expression. Results HCV JFH1 infection induced ER stress in the Huh7 cell line. HCV NS5A protected HepG2 cells against thapsigargin-induced apoptosis, the effect of which was linked to the enhanced expression of the 78-kDa glucose-regulated protein/immunoglobulin heavy-chain binding protein (GRP78). Consistent with a conferred pro-survival advantage, HCV NS5A reduced poly(adenosine diphosphate-ribose) polymerase cleavage and activation of caspases-3, -7 and -9, and Bax expression, while increasing the expressions of the anti-apoptotic molecules XIAP and c-FLIP. HCV NS5A weakly interacts with GRP78 and enhances GRP78 expression in hepatocytes. Conclusion HCV NS5A enhances GRP78 expression, resulting in the inhibition of apoptotic properties, and inhibits thapsigargin-induced apoptotic pathways in human hepatocytes, suggesting that disruption of ER stress-mediated apoptosis may have a role in the pathogenesis of HCV infection. Thus, HCV NS5A might engender the survival of HCV-infected hepatocytes contributing to the establishment of persistent infection.
Collapse
|
31
|
Razzaq Z, Malik A. Viral load is associated with abnormal serum levels of micronutrients and glutathione and glutathione-dependent enzymes in genotype 3 HCV patients. BBA CLINICAL 2014; 2:72-8. [PMID: 26674880 PMCID: PMC4633942 DOI: 10.1016/j.bbacli.2014.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/12/2014] [Accepted: 09/24/2014] [Indexed: 01/03/2023]
Abstract
Background Oxidative stress in hepatitis C patients has been linked to hepatitis C virus. We verified this assumption in HCV genotype 3 patients by detecting the relationship between viral load and certain specific oxidative stress markers like Cu, Mn, Fe, Se, Zn and glutathione and glutathione-dependent enzymes. Method Subjects (n = 200, average age 24 years) with quantitative HCV RNA polymerase chain reaction-proven genotype 3 hepatitis C were simultaneously evaluated. Cu, Mn, Fe, Se and Zn serum levels were by using atomic absorption spectrophotometer. Internationally accepted methods were used for viral load quantification of glutathione, GR and Gpx serum levels. Result There was a significant correlation between HCV viral load and studied parameters. With the increase of viral load from mild group (200,000–1,000,000 copies/ml) to severe group (5,000,000–25,000,000 copies/ml) the serum levels of Cu, Mn, Zn, and Fe and glutathione reductase were found to be abnormally high. However, in severe viral load group serum concentration of Se and glutathione was less than the healthy controls. Conclusion As a significant correlation was detected between the study parameters in genotype 3 HCV patients, it is concluded that the studied micronutrients and glutathione and glutathione-dependent enzymes are the biomolecular targets of HCV to induce oxidative stress. General significance Constant monitoring and regulation of the recommended biomolecular targets of HCV can improve the plight of more than 170 million patients suffering from hepatitis C virus around the globe. Viral load, micronutrients, antioxidants are key factors involved in oxidative stress. We investigated viral load GSH, GPx, GR, Cu, Mn, Zn, Se, and Fe in genotype 3 HCV patients. Abnormal levels of GSH, GPx, Gr and micronutrients are linked with the progression of hepatitis C. These parameters are associated to immune response, mitochondrial damage and inflammation.
Collapse
|
32
|
ZHANG YIMIN, LIAO SHICHONG, FAN WEI, WEI WEN, WANG CHANGHUA, SUN SHENGRONG. Tunicamycin-induced ER stress regulates chemokine CCL5 expression and secretion via STAT3 followed by decreased transmigration of MCF-7 breast cancer cells. Oncol Rep 2014; 32:2769-76. [DOI: 10.3892/or.2014.3479] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/17/2014] [Indexed: 11/05/2022] Open
|
33
|
Simonin Y, Vegna S, Akkari L, Grégoire D, Antoine E, Piette J, Floc'h N, Lassus P, Yu GY, Rosenberg AR, Karin M, Durantel D, Hibner U. Lymphotoxin signaling is initiated by the viral polymerase in HCV-linked tumorigenesis. PLoS Pathog 2013; 9:e1003234. [PMID: 23555249 PMCID: PMC3605200 DOI: 10.1371/journal.ppat.1003234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 01/20/2013] [Indexed: 12/23/2022] Open
Abstract
Exposure to hepatitis C virus (HCV) typically results in chronic infection that leads to progressive liver disease ranging from mild inflammation to severe fibrosis and cirrhosis as well as primary liver cancer. HCV triggers innate immune signaling within the infected hepatocyte, a first step in mounting of the adaptive response against HCV infection. Persistent inflammation is strongly associated with liver tumorigenesis. The goal of our work was to investigate the initiation of the inflammatory processes triggered by HCV viral proteins in their host cell and their possible link with HCV-related liver cancer. We report a dramatic upregulation of the lymphotoxin signaling pathway and more specifically of lymphotoxin-β in tumors of the FL-N/35 HCV-transgenic mice. Lymphotoxin expression is accompanied by activation of NF-κB, neosynthesis of chemokines and intra-tumoral recruitment of mononuclear cells. Spectacularly, IKKβ inactivation in FL-N/35 mice drastically reduces tumor incidence. Activation of lymphotoxin-β pathway can be reproduced in several cellular models, including the full length replicon and HCV-infected primary human hepatocytes. We have identified NS5B, the HCV RNA dependent RNA polymerase, as the viral protein responsible for this phenotype and shown that pharmacological inhibition of its activity alleviates activation of the pro-inflammatory pathway. These results open new perspectives in understanding the inflammatory mechanisms linked to HCV infection and tumorigenesis. Hepatitis C affects nearly 200 million people worldwide. It results from the failure of the immune system to control the hepatitis C virus (HCV) replication and spread, leading to progressive liver disease that can culminate in fibrosis, cirrhosis and cancer. The inflammatory cells that infiltrate the diseased liver functionally contribute to fibrotic disease and cancer development by the release of potent soluble mediators that regulate cell survival and proliferation, angiogenesis, tissue remodelling, metabolism and genomic integrity. The goal of our work was to study the mechanisms of the initiation of the inflammatory process linked to HCV infection. We have shown that the presence of a single viral protein, namely NS5B, the RNA dependent RNA polymerase, promotes pro-inflammatory signaling. Moreover, inhibition of this pathway in HCV transgenic mice fully protects the animals from HCV-linked liver cancer. Our study contributes to a better understanding of the inflammatory mechanisms linked to HCV infection and thereby to tumorigenesis.
Collapse
Affiliation(s)
- Yannick Simonin
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
- * E-mail: (YS); (UH)
| | - Serena Vegna
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Leila Akkari
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Damien Grégoire
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Etienne Antoine
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Jacques Piette
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Nicolas Floc'h
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Patrice Lassus
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
| | - Guann-Yi Yu
- National Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli, Taiwan
| | | | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - David Durantel
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), University of Lyon, Lyon, France
| | - Urszula Hibner
- CNRS, UMR 5535, Institut de Génétique Moléculaire de Montpellier, Montpellier, France
- Université de Montpellier 2, Place Eugène Bataillon, Université Montpellier 1, 5 Bd Henry IV, Montpellier, France
- * E-mail: (YS); (UH)
| |
Collapse
|
34
|
Presser LD, McRae S, Waris G. Activation of TGF-β1 promoter by hepatitis C virus-induced AP-1 and Sp1: role of TGF-β1 in hepatic stellate cell activation and invasion. PLoS One 2013; 8:e56367. [PMID: 23437118 DOI: 10.1371/journal.pone.0056367] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/14/2013] [Indexed: 12/17/2022] Open
Abstract
Our previous studies have shown the induction and maturation of transforming growth factor-beta 1 (TGF-β1) in HCV-infected human hepatoma cells. In this study, we have investigated the molecular mechanism of TGF-β1 gene expression in response to HCV infection. We demonstrate that HCV-induced transcription factors AP-1, Sp1, NF-κB and STAT-3 are involved in TGF-β1 gene expression. Using chromatin immunoprecipitation (ChIP) assay, we further show that AP-1 and Sp1 interact with TGF-b1 promoter in vivo in HCV-infected cells. In addition, we demonstrate that HCV-induced TGF-β1 gene expression is mediated by the activation of cellular kinases such as p38 MAPK, Src, JNK, and MEK1/2. Next, we determined the role of secreted bioactive TGF-β1 in human hepatic stellate cells (HSCs) activation and invasion. Using siRNA approach, we show that HCV-induced bioactive TGF-β1 is critical for the induction of alpha smooth muscle actin (α-SMA) and type 1 collagen, the markers of HSCs activation and proliferation. We further demonstrate the potential role of HCV-induced bioactive TGF-β1 in HSCs invasion/cell migration using a transwell Boyden chamber. Our results also suggest the role of HCV-induced TGF-β1 in HCV replication and release. Collectively, these observations provide insight into the mechanism of TGF-β1 promoter activation, as well as HSCs activation and invasion, which likely manifests in liver fibrosis associated with HCV infection.
Collapse
Affiliation(s)
- Lance D Presser
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Rosalind Franklin University of Medicine and Science, Chicago Medical School, Chicago, Illinois, USA
| | | | | |
Collapse
|
35
|
Xu X, Zhang H, Zhang Q, Huang Y, Dong J, Liang Y, Liu HJ, Tong D. Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression. Vet Microbiol 2013; 164:212-21. [PMID: 23562137 PMCID: PMC7117426 DOI: 10.1016/j.vetmic.2013.01.034] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/14/2013] [Accepted: 01/21/2013] [Indexed: 01/07/2023]
Abstract
Porcine epidemic diarrhea (PED) is an acute and highly contagious enteric disease of swine caused by porcine epidemic diarrhea virus (PEDV). The porcine intestinal epithelial cell is the PEDV target cell. In this study, we established a porcine intestinal epithelial cell (IEC) line which can stably express PEDV N protein. We also investigate the subcellular localization and function of PEDV N protein by examining its effects on cell growth, cycle progression, interleukin-8 (IL-8) expression, and survival. The results show that the PEDV N protein localizes in the endoplasmic reticulum (ER), inhibits the IEC growth and prolongs S-phase cell cycle. The S-phase is prolonged which is associated with a decrease of cyclin A transcription level and an increase of cyclin A degradation. The IEC expressing PEDV N protein can express higher levels of IL-8 than control cells. Further studies show that PEDV N protein induces ER stress and activates NF-κB, which is responsible for the up-regulation of IL-8 and Bcl-2 expression. This is the first report to demonstrate that PEDV N protein can induce cell cycle prolongation at the S-phase, ER stress and up-regulation interleukin-8 expression. These findings provide novel information on the function of the PEDV N protein and are likely to be very useful in understanding the molecular mechanisms responsible for PEDV pathogenesis.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hepatitis C virus and hepatocellular carcinoma. BIOLOGY 2013; 2:304-16. [PMID: 24832662 PMCID: PMC4009856 DOI: 10.3390/biology2010304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 12/28/2022]
Abstract
Hepatitis C virus (HCV), a hepatotropic virus, is a single stranded-positive RNA virus of ~9,600 nt. length belonging to the Flaviviridae family. HCV infection causes acute hepatitis, chronic hepatitis, cirrhosis and hepatocellular carcinoma (HCC). It has been reported that HCV-coding proteins interact with host-cell factors that are involved in cell cycle regulation, transcriptional regulation, cell proliferation and apoptosis. Severe inflammation and advanced liver fibrosis in the liver background are also associated with the incidence of HCV-related HCC. In this review, we discuss the mechanism of hepatocarcinogenesis in HCV-related liver diseases.
Collapse
|
37
|
Xu X, Zhang H, Zhang Q, Dong J, Liang Y, Huang Y, Liu HJ, Tong D. Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression. Virol J 2013; 10:26. [PMID: 23332027 PMCID: PMC3560205 DOI: 10.1186/1743-422x-10-26] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/16/2013] [Indexed: 11/13/2022] Open
Abstract
Background Porcine epidemic diarrhea virus (PEDV) is an important pathogen in swine and is responsible for substantial economic losses. Previous studies suggest that the PEDV E protein plays an important role in the viral assembly process. However, the subcellular localization and other functions of PEDV E protein still require more research. Methods The subcellular localization and function of PEDV E protein were investigated by examining its effects on cell growth, cell cycle progression, interleukin-8 (IL-8) expression and cell survival. Results The results show that plenty of PEDV E protein is localized in the ER, with small quantities localized in the nucleus. The PEDV E protein has no effect on the intestinal epithelial cells (IEC) growth, cell cycle and cyclin A expression. The cells expressing PEDV E protein express higher levels of IL-8 than control cells. Further studies show that PEDV E protein induced endoplasmic reticulum (ER) stress and activated NF-κB which is responsible for the up-regulation of IL-8 and Bcl-2 expression. Conclusions This study shows that the PEDV E protein is localized in the ER and the nucleus and it can cause ER stress. The PEDV E protein had no effect on the IEC growth and cell cycle. In addition, the PEDV E protein is able to up-regulate IL-8 and Bcl-2 expression.
Collapse
Affiliation(s)
- Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Bhandary B, Marahatta A, Kim HR, Chae HJ. An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 2012; 14:434-56. [PMID: 23263672 PMCID: PMC3565273 DOI: 10.3390/ijms14010434] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/01/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the major site of calcium storage and protein folding. It has a unique oxidizing-folding environment due to the predominant disulfide bond formation during the process of protein folding. Alterations in the oxidative environment of the ER and also intra-ER Ca2+ cause the production of ER stress-induced reactive oxygen species (ROS). Protein disulfide isomerases, endoplasmic reticulum oxidoreductin-1, reduced glutathione and mitochondrial electron transport chain proteins also play crucial roles in ER stress-induced production of ROS. In this article, we discuss ER stress-associated ROS and related diseases, and the current understanding of the signaling transduction involved in ER stress.
Collapse
Affiliation(s)
- Bidur Bhandary
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
| | - Anu Marahatta
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, Dental School, Wonkwang University, Iksan 570-749, South Korea
- Authors to whom correspondence should be addressed; E-Mails: (H.-R.K.); (H.-J.C.); Tel.: +82-63-850-6640 (H.-R.K.); +82-63-270-3092 (H.-J.C.); Fax: +82-63-854-0285 (H.-R.K.); +82-63-275-8799 (H.-J.C.)
| | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Chonbuk National Univeristy, Jeonju 561-180, South Korea; E-Mails: (B.B.); (A.M.)
- Authors to whom correspondence should be addressed; E-Mails: (H.-R.K.); (H.-J.C.); Tel.: +82-63-850-6640 (H.-R.K.); +82-63-270-3092 (H.-J.C.); Fax: +82-63-854-0285 (H.-R.K.); +82-63-275-8799 (H.-J.C.)
| |
Collapse
|
40
|
Schönthal AH. Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. SCIENTIFICA 2012; 2012:857516. [PMID: 24278747 PMCID: PMC3820435 DOI: 10.6064/2012/857516] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/12/2012] [Indexed: 05/19/2023]
Abstract
The endoplasmic reticulum (ER) is a multifunctional organelle required for lipid biosynthesis, calcium storage, and protein folding and processing. A number of physiological and pathological conditions, as well as a variety of pharmacological agents, are able to disturb proper ER function and thereby cause ER stress, which severely impairs protein folding and therefore poses the risk of proteotoxicity. Specific triggers for ER stress include, for example, particular intracellular alterations (e.g., calcium or redox imbalances), certain microenvironmental conditions (e.g., hypoglycemia, hypoxia, and acidosis), high-fat and high-sugar diet, a variety of natural compounds (e.g., thapsigargin, tunicamycin, and geldanamycin), and several prescription drugs (e.g., bortezomib/Velcade, celecoxib/Celebrex, and nelfinavir/Viracept). The cell reacts to ER stress by initiating a defensive process, called the unfolded protein response (UPR), which is comprised of cellular mechanisms aimed at adaptation and safeguarding cellular survival or, in cases of excessively severe stress, at initiation of apoptosis and elimination of the faulty cell. In recent years, this dichotomic stress response system has been linked to several human diseases, and efforts are underway to develop approaches to exploit ER stress mechanisms for therapy. For example, obesity and type 2 diabetes have been linked to ER stress-induced failure of insulin-producing pancreatic beta cells, and current research efforts are aimed at developing drugs that ameliorate cellular stress and thereby protect beta cell function. Other studies seek to pharmacologically aggravate chronic ER stress in cancer cells in order to enhance apoptosis and achieve tumor cell death. In the following, these principles will be presented and discussed.
Collapse
Affiliation(s)
- Axel H. Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR-405, Los Angeles, CA 90033, USA
| |
Collapse
|
41
|
Williams V, Brichler S, Khan E, Chami M, Dény P, Kremsdorf D, Gordien E. Large hepatitis delta antigen activates STAT-3 and NF-κB via oxidative stress. J Viral Hepat 2012; 19:744-53. [PMID: 22967106 DOI: 10.1111/j.1365-2893.2012.01597.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatitis delta virus (HDV) coinfection or superinfection in hepatitis B virus (HBV)-infected patients results in a more aggressive liver disease, with more often fulminant forms and more rapid progression to cirrhosis and hepatocellular carcinoma. The mechanism(s) for this pejorative evolution remains unclear. To explore a specific HDV pathogenesis, we used a model of transient transfection of plasmids expressing the small (sHDAg or p24) or the large (LHDAg or p27) delta antigen in hepatocyte cell lines. We found that the production of reactive oxygen species was significantly higher in cells expressing p27. Consequently, p27 activated the signal transducer and activator of transcription-3 (STAT-3) and the nuclear factor kappa B (NF-κB) via the oxidative stress pathway. Moreover in the presence of antioxidants (PDTC, NAC) or calcium inhibitors (TMB-8, BAPTA-AM, Ruthenium Red), p27-induced activation of STAT-3 and NF-κB was dramatically reduced. Similarly, using a mutated form of p27, where the cysteine 211-isoprenylation residue was replaced by a serine, a significant reduction of STAT-3 and NF-κB activation was seen, suggesting the involvement of isoprenylation in this process. Additionally, we show that p27 is able to induce oxidative stress through activation of NADPH oxidase-4. These results provide insight into the mechanisms by which p27 can alter intracellular events relevant to HDV-related liver pathogenesis.
Collapse
Affiliation(s)
- V Williams
- Service de bactériologie, virologie - hygiène, hôpital Avicenne, Assistance Publique des Hôpitaux de Paris, Laboratoire associé au Centre National de Référence des Hépatites B, C et Delta, Université Paris Nord, Paris
| | | | | | | | | | | | | |
Collapse
|
42
|
Abdalla MA, Haj-Ahmad Y. Promising Urinary Protein Biomarkers for the Early Detection of Hepatocellular Carcinoma among High-Risk Hepatitis C Virus Egyptian Patients. J Cancer 2012; 3:390-403. [PMID: 23074380 PMCID: PMC3471080 DOI: 10.7150/jca.4280] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 06/19/2012] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular Carcinoma is a major healthcare problem, representing the third most common cause of cancer-related mortality worldwide. There are 130 million Hepatitis C virus infected patients worldwide who are at a high-risk for developing Hepatocellular Carcinoma. Due to the fact that reliable parameters and/or tools for the early detection of Hepatocellular Carcinoma among high-risk individuals are severely lacking, Hepatocellular Carcinoma patients are always diagnosed at a late stage where surgical solutions or effective treatment are not possible. Urine was collected from 106 Hepatitis C infected patients patients, 32 of whom had already developed Hepatocellular Carcinoma and 74 patients who were diagnosed as Hepatocellular Carcinoma -free at the time of initial sample collection. In addition to these patients, urine samples were also collected from 12 healthy control individuals. Total urinary proteins were isolated from the urine samples and LC-MS/MS was used to identify potential protein HCC biomarker candidates. This was followed by validating relative expression levels of proteins present in urine among all the patients using quantitative real time-PCR. This approach revealed that significant over-expression of three proteins: DJ-1, Chromatin Assembly Factor-1 (CAF-1) and Heat Shock Protein 60 (HSP60), was a characteristic event among Hepatocellular Carcinoma - post Hepatitis C virus infected patients. As a single-based Hepatocellular Carcinoma biomarker, CAF-1 over-expression identified Hepatocellular Carcinoma among Hepatitis C virus infected patients with a specificity of 90%, sensitivity of 66% and with an overall diagnostic accuracy of 78%. Moreover, the CAF-1/HSP60 tandem identified Hepatocellular Carcinoma among Hepatitis C virus infected patients with a specificity of 92%, sensitivity of 61% and with an overall diagnostic accuracy of 77%.
Collapse
Affiliation(s)
- Moemen Ak Abdalla
- Centre for Biotechnology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | | |
Collapse
|
43
|
Rasheed Z, Haqqi TM. Endoplasmic reticulum stress induces the expression of COX-2 through activation of eIF2α, p38-MAPK and NF-κB in advanced glycation end products stimulated human chondrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2179-89. [PMID: 22982228 DOI: 10.1016/j.bbamcr.2012.08.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/11/2012] [Accepted: 08/29/2012] [Indexed: 11/25/2022]
Abstract
INTRODUCTION During aging, advanced glycation end products (AGEs) accumulate in articular cartilage. In this study we determined whether AGEs induce endoplasmic reticulum (ER) stress and studied the ER stress-activated pathways that stimulate cyclooxygenase-2 (COX-2) expression in human chondrocytes. METHODS Chondrocytes were stimulated with AGE-BSA. Gene expression was determined by quantitative PCR and protein expression was studied by immunoblotting. Studies to elucidate involved pathways were executed using siRNAs and specific inhibitors of eukaryotic initiation factor-2α (eIF2α), MAPKs and NF-κB. RESULTS AGE-BSA induced expression of GRP78 with concomitant increase in COX-2 expression was observed in human chondrocytes. In addition, expression of Bag-1, an ER stress marker was also increased by AGE-BSA. RAGE knockdown inhibited AGE-BSA-induced expression of GRP78 and COX-2. Treatment with eIF2α inhibitor or eIF2α knockdown inhibited AGE-BSA-induced expression of GRP78 and COX-2 with decreased PGE(2) production. Treatment with SB202190 inhibited AGE-BSA-induced expression of GRP78 and COX-2, while treatment with PD98051 inhibited AGE-BSA-induced GRP78 protein expression but had no effect on COX-2 protein expression. SP600125 had no effect on either GRP78 or COX-2 protein expression. Bay 11-7082 suppressed AGE-BSA-induced GRP78 and COX-2 expression. AGE-BSA-induced activation of NF-κB was inhibited by treatment with SB202190 and by eIF2α knockdown, but was not inhibited when chondrocytes were treated with SP600125 or PD98059. CONCLUSION This study demonstrates that AGEs induce ER stress and stimulate the expression of COX-2 through eIF2α, p38-MAPK and NF-κB pathways in human chondrocytes. Our results provide important insights into cartilage degradation in osteoarthritis associated with latent ER stress.
Collapse
Affiliation(s)
- Zafar Rasheed
- Department of Medicine, Division of Rheumatology, MetroHealth Medical Center, Cleveland, OH 44109, United States.
| | | |
Collapse
|
44
|
Fiorino S, Lorenzini S, Masetti M, Deleonardi G, Grondona AG, Silvestri T, Chili E, Del Prete P, Bacchi-Reggiani L, Cuppini A, Jovine E. Hepatitis B and C virus infections as possible risk factor for pancreatic adenocarcinoma. Med Hypotheses 2012; 79:678-97. [PMID: 22959312 DOI: 10.1016/j.mehy.2012.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 12/14/2022]
Abstract
Pancreatic adenocarcinoma (PAC) is a very aggressive and lethal cancer, with a very poor prognosis, because of absence of early symptoms, advanced stage at presentation, early metastatic dissemination and lack of both specific tests to detect its growth in the initial phases and effective systemic therapies. To date, the causes of PAC still remain largely unknown, but multiple lines of evidence from epidemiological and laboratory researches suggest that about 15-20% of all cancers are linked in some way to chronic infection, in particular it has been shown that several viruses have a role in human carcinogenesis. The purpose of this report is to discuss the hypothesis that two well-known oncogenic viruses, Human B hepatitis (HBV) and Human C hepatitis (HCV) are a possible risk factor for this cancer. Therefore, with the aim to examine the potential link between these viruses and PAC, we performed a selection of observational studies evaluating this association and we hypothesized that some pathogenetic mechanisms involved in liver carcinogenesis might be in common with pancreatic cancer development in patients with serum markers of present or past HBV and HCV infections. To date the available observational studies performed are few, heterogeneous in design as well as in end-points and with not univocal results, nevertheless they might represent the starting-point for future larger and better designed clinical trials to define this hypothesized relationship. Should these further studies confirm an association between HBV/HCV infection and PAC, screening programs might be justified in patients with active or previous hepatitis B and C viral infection.
Collapse
Affiliation(s)
- S Fiorino
- Unità Operativa di Medicina Interna, Ospedale di Budrio, Budrio, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Akla N, Pratt J, Annabi B. Concanavalin-A triggers inflammatory response through JAK/STAT3 signalling and modulates MT1-MMP regulation of COX-2 in mesenchymal stromal cells. Exp Cell Res 2012; 318:2498-506. [PMID: 22971618 DOI: 10.1016/j.yexcr.2012.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/02/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022]
Abstract
Pharmacological targeting of inflammation through STAT3 and NF-κB signaling pathways is, among other inflammatory biomarkers, associated with cyclooxygenase (COX)-2 inhibition and is believed to play a crucial role in prevention and therapy of cancer. Recently, inflammatory factors were found to impact on mesenchymal stromal cells (MSC) contribution to tumor angiogenesis. Given MSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in transducing NF-κB intracellular signaling pathways, we tested whether STAT3 regulation by MT1-MMP may also contribute to the expression balance of COX-2 in MSC. We demonstrate that STAT3 phosphorylation was triggered in MSC treated with the MT1-MMP inducer lectin Concanavalin-A (ConA), and that this phosphorylation was abrogated by the JAK2 inhibitor AG490. MT1-MMP gene silencing significantly inhibited ConA-induced STAT3 phosphorylation and this was correlated with reduced proMMP-2 activation and COX-2 expression. On the other hand, STAT3 gene silencing potentiated ConA-induced COX-2 expression, providing evidence for a new MT1-MMP/JAK/STAT3 signaling axis that may, in part, explain how MT1-MMP contributes to proinflammatory intracellular signaling. Given that MSC are avidly recruited within inflammatory microenvironments and within experimental vascularizing tumors, these mechanistic observations support a possible dual control of cell adaptation to inflammation by MT1-MMP and that may enable MSC to be active participants within inflamed tissues.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, Quebec, Canada H3C 3P8
| | | | | |
Collapse
|
46
|
Quarato G, Scrima R, Agriesti F, Moradpour D, Capitanio N, Piccoli C. Targeting mitochondria in the infection strategy of the hepatitis C virus. Int J Biochem Cell Biol 2012; 45:156-66. [PMID: 22710347 DOI: 10.1016/j.biocel.2012.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) infection induces a state of oxidative stress more pronounced than that observed in many other inflammatory diseases. Here, we propose a temporal sequence of events in the HCV-infected cell whereby the primary alteration consists of a release of Ca(2+) from the endoplasmic reticulum, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen species and a progressive metabolic adaptive response. Evidence is provided for a positive feed-back mechanism between alterations of calcium and redox homeostasis. This likely involves deregulation of the mitochondrial permeability transition and induces progressive dysfunction of cellular bioenergetics. Pathogenetic implications of the model and new opportunities for therapeutic intervention are discussed. This article is part of a Directed Issue entitled: Bioenergetic dysfunction, adaptation and therapy.
Collapse
Affiliation(s)
- Giovanni Quarato
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | |
Collapse
|
47
|
The oncogenic role of NS5A of hepatitis C virus is mediated by up-regulation of survivin gene expression in the hepatocellular cell through p53 and NF-κB pathways. Cell Biol Int 2012; 35:1225-32. [PMID: 21612579 DOI: 10.1042/cbi20110102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Approx. 4% of patients experiencing chronic infection of human HCV (hepatitis C virus) ultimately develop HCC (hepatocellular carcinoma). The NS5A (non-structural protein 5A) encoded by HCV has been reported to have an oncogenic role during HCV infection, but the precise mechanism remains largely unclear. The aim of this study is to investigate the signal transduction pathways that mediate the role of NS5A in hepatocarcinogenesis. HepG2 cells were transfected with a plasmid expressing HCV NS5A protein. Subsequently, cell proliferation was analysed by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay and cell counting, apoptosis was analysed by Hoechst 33342 staining, and the gene expression profile was identified by microarray and subsequently validated by RT-PCR (reverse transcription-PCR). The protein levels of survivin, p53, NOS2A (nitric oxide synthase 2A), cyclin D1 and NF-κB (nuclear factor κB) were monitored by Western blotting. Our results showed that transfection of HCV NS5A expression plasmid significantly down-regulated the expression of nine genes and up-regulated the expression of ten genes among the 104 genes detectable by the microarray associated with signalling transduction. The increased expression of survivin mRNA and protein, down-regulated p53 protein levels and increased NOS2A, cyclin D1 and NF-κB protein levels were further identified. Our results suggested that HCV NS5A protein can enhance survivin transcription by increasing p53 degradation and stimulating NOS2A expression as well as NF-κB relocation to the nucleus. The functions of survivin in anti-apoptosis and regulation of cell division might mediate the role of NS5A in HCV-induced HCC.
Collapse
|
48
|
Toll-like receptor signalling in liver disease: ER stress the missing link? Cytokine 2012; 59:195-202. [PMID: 22579700 DOI: 10.1016/j.cyto.2012.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/04/2012] [Accepted: 04/06/2012] [Indexed: 12/20/2022]
Abstract
Toll-like receptors induce a complex inflammatory response that can function to alert the body to infection, neutralize pathogens and repair damaged tissues. Toll-like receptors are expressed on kupffer, endothelial, dendritic, biliary epithelial, hepatic stellate cells, and hepatocytes in the liver. The endoplasmic reticulum (ER) is a central organelle of eukaryotic cells that exists as a place of lipid synthesis, protein folding and protein maturation. The ER is a major signal transduction organelle that senses and responds to changes in homeostasis. Conditions interfering with the function of the ER are collectively known as ER stress and can be induced by accumulation of unfolded protein aggregates or by excessive protein traffic as can occur during viral infection. The ability of ER stress to induce an inflammatory response is considered to play a role in disease pathogenesis. Importantly, ER stress is viewed as a contributor to the pathogenesis of liver diseases with evidence linking components of ER homeostasis as requirements for optimal Toll-like receptor function. In this context this review discusses the association of Toll-like receptors with ER stress. This is an emerging paradigm in the understanding of Toll-like receptor signalling which may have an underlying role in the pathogenesis of liver disease.
Collapse
|
49
|
Quarato G, D'Aprile A, Gavillet B, Vuagniaux G, Moradpour D, Capitanio N, Piccoli C. The cyclophilin inhibitor alisporivir prevents hepatitis C virus-mediated mitochondrial dysfunction. Hepatology 2012; 55:1333-43. [PMID: 22135208 DOI: 10.1002/hep.25514] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 11/15/2011] [Indexed: 12/17/2022]
Abstract
UNLABELLED Alisporivir (Debio-025) is an analogue of cyclosporine A and represents the prototype of a new class of non-immunosuppressive cyclophilin inhibitors. In vitro and in vivo studies have shown that alisporivir inhibits hepatitis C virus (HCV) replication, and ongoing clinical trials are exploring its therapeutic potential in patients with chronic hepatitis C. Recent data suggest that the antiviral effect is mediated by inhibition of cyclophilin A, which is an essential host factor in the HCV life cycle. However, alisporivir also inhibits mitochondrial permeability transition by binding to cyclophilin D. Because HCV is known to affect mitochondrial function, we explored the effect of alisporivir on HCV protein-mediated mitochondrial dysfunction. Through the use of inducible cell lines, which allow to investigate the effects of HCV polyprotein expression independent from viral RNA replication and which recapitulate the major alterations of mitochondrial bioenergetics observed in infectious cell systems, we show that alisporivir prevents HCV protein-mediated decrease of cell respiration, collapse of mitochondrial membrane potential, overproduction of reactive oxygen species and mitochondrial calcium overload. Strikingly, some of the HCV-mediated mitochondrial dysfunctions could even be rescued by alisporivir. CONCLUSION These observations provide new insights into the pathogenesis of HCV-related liver disease and reveal an additional mechanism of action of alisporivir that is likely beneficial in the treatment of chronic hepatitis C.
Collapse
Affiliation(s)
- Giovanni Quarato
- Department of Biomedical Sciences, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | |
Collapse
|
50
|
Hanada K, Nakai K, Tanaka H, Suzuki F, Kumada H, Ohno Y, Ozawa S, Ogata H. Effect of nuclear receptor downregulation on hepatic expression of cytochrome P450 and transporters in chronic hepatitis C in association with fibrosis development. Drug Metab Pharmacokinet 2011; 27:301-6. [PMID: 22166890 DOI: 10.2133/dmpk.dmpk-11-rg-077] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Analysis of mRNAs from liver biopsy samples of patients with chronic hepatitis C revealed that the levels of nuclear receptor expression were correlated with those of drug-metabolizing enzymes and transporters in relation to the development of fibrosis. Overall, the median mRNA level was largely dependent on fibrosis stage (F), and that for stage 3 patients (F3) was about 50% less than that for F1 patients. Levels of expression of AhR, together with CAR and PXR, were lowest in livers of F3 patients. Multivariate linear regression analysis revealed that AhR expression appeared to be involved in the regulation of CYP1A2, 2E1, 2D6, UGT1A, MDR1/3, MRP2/3, NTCP and OCT1 in the livers of patients with chronic hepatitis C. These results suggest that downregulation of AhR during the progression of liver fibrosis is associated with decreased expression levels of these phase I and II enzymes and drug transporters during inflammation-related signal transduction between AhR and other nuclear receptors.
Collapse
Affiliation(s)
- Kazuhiko Hanada
- Department of Biopharmaceutics, Meiji Pharmaceutical University, Kiyose, Japan.
| | | | | | | | | | | | | | | |
Collapse
|